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EXPERIENCE IN STATISTICAL DECISION PROBLEMS

VACLAV FABIAN, ANTONIN SPACEK, Praha.
(Received June 22, 1955.)

In this paper we consider a statistical decision problem the solution
of which 1s a random decision process constructed sequentially using
past experience. The sequence of losses is shown to be (C, 1) conver-
gent to the Bayes loss with probability one.

1. Basie notations

Let X = (X, &, 1) be a probability space. For avoiding misunderstandings,
the random variables on X (i. e. absolutely integrable functions on X) or ran-
dom vectors on X (1. e. finite sequences of random variables on X) will be
denoted by Greek letters, the numbers or vectors (finite sequences of numbers)
will be denoted by Latin letters.

An m-dimensional random vector v generates the probability space

X' = (Rm: %mﬁ_ﬂrml) )
where R,, is the m-dimensional Kuclidean space, *8,, the o-algebra of all Borel

sets BC R,,, and
prH(B) = u(r~1(B))

for every B ¢ ®B,,. If 4 is a random variable on X", the composite function At
1s a random variable on X. If ¢ is a random variable on X, then
Ep = [pdu, Eh = [hdur?.
X

R

The symbol E,¢p denotes the conditional expectation of ¢ with respect to t;
thus E,p is a random variable on X". An integration variable will be never
denoted by a letter; we denote it, if necessary, by an asterisk. |

For the sake of simplicity, we introduce the following conventions: Let

Ty = (T1p> T1oo -+ o Tlmi)
and |

Ty = (Top, Tazs « -+ szg)
be two random vectors. We denote by (71, 72) the random vector (7,4, 743, -- -
ceos Tam,» Tans « - Tam,). Further we shall say that H is 7, 7, integrable if (i) H is
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a function on K, X R, , (i1) for every fixed y ¢ R,, , H(y, ) is a random vari-
able on X, (iii) i (T4, 7:2) is a random variable on X.

We shall write 7, = 1, if 7,(x) = 7,(x) with probability one; by the con-
vergence of a sequence of random variables or vectors it is meant the conver-
gence with probability one.

In the following section we state Theorem I, immediate consequence of
which is Theorem 11 (section 3), the main result of this paper.

2

The following lemma stated here for convenience follows from Theorem II1I
of [3] and the fact, that dealing with expectations of finite number of random
variables we may suppose without loss of generality the basic space X to be
(R,, B,, u), where ¢ is a suitably chosen integer.

Lemma 1. Let 7, 7, be independent random vectors, H a function integrable
Ty, Ty Then, denoling |

9(y) = EH(y, ),
ot holds

g = E, H(t,, 7,) .

Theorem 1. Let {x,}, {9,} are two sequence of m, respectively m,-dimensional
random vectors. Let 9, be independent of 9y, Fq, ..., Fp_1, Ty, Tay «v v Tp_q, Ty.t)
Let h be a function integrable 7;, ¥, and

EAi(r, 9,) = b for every re R,, ,
ER’(r, 9,) < M for every re R, ,

where b and M are real numbers. Then

lim — 2 I, 9) =b.

N—>00 n 7 =

This assertion holds also if we replace the condition

K(r) = Eh(r, 9,) = b
(say)

by the weakened condition
Kn, = 0.

Proof. First we shall assume that Eh(y, w,) = b = 0. Let 0 < n; < n,
be two integers. Denote

Ty = [n’nl: ﬂng: fﬁfnl] , Tg = ﬁng .

1) In particular this condition of independence is satisfied if #,, are mdependent and
. 1s function at most of ¢, 95, ..., #,_;.
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By hypothesis 7; and 7, are independent. Clearly, from integrability =;, &, of
h it follows the integrability 7,, 7, of H defined by

H(TD TZ) — k(:n;'ni: ﬁfn ) h_(%'nza 29nz) ’

1

Thus lemma 1 applied, we get ¢ = 0 and

Eh(n ?9 ) h(?’[,n > Un, ) = EH(TI, T2) — E’HE H(T1, »52) — E’ng — 0 .

Thus, denoting ¢, = h(x,, ﬁn) we have proved that (j, C ss -.. are mutually
orthogonal. Clearly E{; = o> << M and thus

> 2

> -

1’1’62

n

From [2] Theorem 5.2 it follows lim : z ’; = 0.

n—soo W i=1

We have proved the first part of the theorem for b = 0. The generalization
for @ == 0 and the second part follow immediately.

3

Let k, s, m, be fixed positive integers. We shall consider a sequence of de-
cision problems. Each problem is of this type:

The statistician observes (sequentially) a random vector ¢ = [¢!, ¢?, ..., ¢°].
The random variable ¢? are distributed independently with the common
distribution ». The statistician knows that » is an element of the finite set
N = {vy, v5, ..., v} and selects, using observations on ¢, a decision d from the
set © = {d,, ...,d,}. If a decision function d is used, then every value of ¢
determines a decision d ¢ ©® and the number of coordinates of ¢ observed. Let
us denote by I'(d, ¢, ¢) the loss plus the cost of experimentation if § is used,
@ observed and v; is the ‘““true’” distribution.

It will be assumed that also ¢, the index of the true distribution », is a random

variable y, unobservable for the statistician and taking the values 1, 2, ..., k.
Obviously

v(B) = u({z; (%) € B}y -4) -
Thus we may denote by ¢ the random vector [y, ¢] and call it random decision

problem. For each § and each value 9(x) = [y(x), ¢(x)], the symbol I(§, ¥(x)) =

= ['(0, y(x), p(x)) denotes the loss when 6 is used and the elementary event x
occurs. |

The conditional expected loss, given y(x) = ¢, will be denoted by L,(9).

Rk
If the statistician estimates by r = (7, ..., 7%), 75 = 0, > r, = 1 the true
i1

apriori distribution p given by
p = (uy~{1}), ..., wy~({£})) ,
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he uses the r-Bayes decision function §, which minimises the expression

k

Z rid;(0) .
=1
Clearly L(d,) = min L(d,) = min L(5), where L (6) denotes the expected loos,
r 0

if the decision function 6 is used, i. e., L(6) = E [ (5, ).
We note that the existence of Bayes decision functions is guaranteed by

the finitenesse of N, D, and because ¢ is finite-dimensional.
From the Theorem 3.6 p. 89 of [4] it follows further that

lim L(8,) = L(4,) . (*)

r—>P

This suggest to consider the sequence of decisions problems of the same type
and to use an estimate based on past experience to construct better and better
decision functions. In Theorem II we show that not only the expected losses
converge to the minimum loss L(d,). In fact, if we denote by 4, the loss occuring
at the n-th step of the process, then

WZAeL@

n ;=1
Thus we shall consider a sequence 4, = &, 4, ,¥,, ... of independently and iden-
tically distributed random vectors (i. €. random decision problems) A sequence

of random vectors 7, 7,, ... (where for each =, = (7, ..., w,.), 7, > 0, Z T, =

= 1 hold), will be called regular sequence estimating p if =, — p a,nd .
independent of n,, m,, ..., w,, ¥4, ..., ¥,_y for every n =1, 2, ..

The statistician, who uses at the n-th step the decision function J, pays
the loss 4, = (4, , ¥,) = H(n,, ¥,). But from the constructive definition of
d, it follows easily that H is measurable i, J,. From the finitenesse of ©, N
and from the fact that ¢, are finite dimensional it follows that H is bounded
and therefore H satisfies the conditions of the Theorem I. Obviously, if we
denote
, K(r) = EH(r, 9),
we get

K(r) = L(o,) ;
from (*) and from =z, — p we have finally
Kn, — L(J,) .2
Hence from Theorem I it follows

Theorem II. If m, s a regular sequence estimaling p, then the sequence of
losses, if the sequence {0,,} of decision functions is used, is (C,1) convergent with
probability one to the minimum loss L(6,). In symbols ‘

2) We note that K=, 1s a random variable and is not EH (=, 3,).
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lim - 2 A = L(5,) .

77 —>00 n 7 =1

Example: Suppose k = 2, m = 1, s = 2, the weight function

.o 0 i =
W(’b,?)-«—m-\l lf ?:::7

and the cost of experimentation to be identically zero. Then if &, is a generalized
probability density of », with respect to some measure » (for + = 1, 2), then

the decision function d, , , accepts d, if

() € {y € By; 11y (y) > roha(y)}
and d, otherwise.

If v, and », are not identical, then a regular sequence m,, estimating
p = (uyn ({1}); pya (23))
can be defined as follows: o

B n .1 n—-1 -

1 1
n — 1 7;21 Crpnl2) n— 1 Z]_ - 5Pn(2)
T = Cn(B) —v(B) T (B = w(B)] |

where »,(If) == v,(£) and c, and ¢, _, are characteristic functions of the sets
E and R, — K respectively.

(This paper was presented by A. Spadek October 26th 1954 and supplemented by V.
Fabian J une 22nd 1955.)
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PesmouMe

OIBIT B CTATUCTUYECKUX PEHNIAIOHINX IMPOBJIEMAX

BAIIJIAB ®ABVAH, AHTOHMH HIMTAYEK (VACLAV FABIAN, ANTONfN SPACEK),
IIpara.

(IToctynuno B pegaxuuio 22/VI 1955 r.)

B CTaThe PaccMaTPUBAETCA CTATHCTHICCKAS Hpo6nema pelleHueM KOTOPOM
ABJIsieTcA cAydyalHasg HOCJeJl0BaTebHOCTh pemannX (yHKIUEA, MOCTPOeHUe
9TOM IOCJIel0BATEJIFHOCTH OLWPAETCsS HA KajyKIOM INAry O NMPeNbIIyIIuHA OIEIT.
ITocnemoBarenbHOCTE HOTepE cxomutcsi (O, 1) k morepe Baiteca ¢ BeposaTHOCTEIO 1.
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