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Чехословацкий математический журнал, т, 6 (81) 1956, Прага 

EXPERIENCE IN STATISTICAL DECISION PROBLEMS 

VACLAV FABIAN, ANTONÏN ЙРАСЕК, Praha . 
(Received June 22, 1955.) 

In this paper we consider a statistical decision problem the solution 
of which is a random decision process constructed sequentially using 
past experience. The sequence of losses is shown to be (O, 1) conver­
gent to the Bayes loss with probability one. 

Let X = {X, ®, ju) be a probability space. For avoiding misunderstandings, 
the random variables on X (i. e. absolutely integrable functions on X) or ran­
dom vectors on X (i. e. finite sequences of random variables on X) will be 
denoted by Greek letters, the numbers or vectors (finite sequences of numbers) 
will be denoted by Latin letters. 

An m-dimensional random vector r generates the probability space 

where i?„, is the m-dimensional Euclidean space, Ъ^ the a-algebra of all Borel 
sets В С Ищу â nd 

fir-^B) = ф-ЦВ)) 

for every JS e 95^. If A is a random variable on X"", the composite function hr 
is a random variable on X. If 99 is a random variable on X, then 

Eç) = Jcp dju , Wh = JA d/iT~^ . 

The symbol E^(p denotes the conditional expectation of cp with respect to r; 
thus E^(p is a random variable on X"". An integration variable will be never 
denoted by a letter; we denote it, if necessary, by an asterisk. 

For the sake of simplicity, we introduce the following conventions: Let 

and 
TTg = (^217 "^22? • • •' ^2m.J 

be two random vectors. We denote by (TI, T2) the random vector (Тц, T12, ..., 
..., Ti^ , T21, ..., Taw,)- Further we shall say that H is TI, Tg integrable if (i) H is 
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a function on R^ X i?̂ ^ , (ii) for every fixed y e R^ , H(y, x) is a random vari-
able on X''% (iii) Я(т1, random variable on X. 

We shall write r^ = Tg if ri{x) = Г2,{х) with probability one; by the con­
vergence of a sequence of random variables or vectors it is meant the conver­
gence with probability one. 

In the following section we state Theorem I, immediate consequence of 
which is Theorem I I (section 3), the main result of this paper. 

The following lemma stated here for convenience follows from Theorem I I I 
of [3] and the fact, that dealing with expectations of finite number of random 
variables we may suppose without loss of generality the basic space X to be 

,̂ 58i, /^), where ^ is a suitably chosen integer. 

Lemma 1. Let г-^.х^ be independent random vectors, H a function integrable 

g(y) = EH{y, T2) 

Theorem 1. Let {Яп}, i'&n} ^^^ ^^^ sequence of m^ respectively m^-dimensional 
random vectors. Let ê^ be independent of ê^, #2? •••? ^п-ъ %? ^2? •••? ^n-i^ ^n-^ 
Let h be a function integrable п^, ê^ and 

Eh{r, en) = ^ for every r e R^^ , 

EÄ (̂r, en) < M for every r e R^^ , 

where b and M are real numbers. Then 
n 

lim - - 2 H^i, ^i) = b . 
И—>co '̂ ^ г == 1 

This assertion holds also if we replace the condition 

K{r) = EA(r, en) "^ Ь 
{say) 

by the weakened condition 
Кяп —> b 

Proof. First we shall assume that Eh{y, Жп) = 5 = 0. Let 0 < % < ^g 
be two intefi Denote 

TTj — l^n^, Жщ, i/nj ? '^2 — '^ « 2 

)̂ In particular this condition of independence is satisfied if ê^ are independent and 
function at most of ^j^, #2, . . . , #^_i. 
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By hypothesis r^ and Tg are independent. Clearly, from integrability л:,, ê^ of 
h it follows the integrability TI, Tg of H defined by 

Thus lemma 1 applied, we get g = 0 and 

Thus, denoting Cn = Н^п, ^w)? we have proved that Ci, Сг? ••• are mutually 
orthogonal. Clearly Ef̂  = a^ < Ж and thus 

OO л 

2 —|- log^ ?i < + 00 • 
n = l ^ ^ 

1 '̂  
From [2] Theorem 5.2 it follows lim — ^ d =" ^• 

n->oo "^ г = 1 

We have proved the first part of the theorem for b = 0. The generalization 
for a Ф 0 and the second part follow immediately. 

3 

Let k, s, Ш, be fixed positive integers. We shall consider a sequence of de­
cision problems. Each problem is of this type: 

The statistician observes (sequentially) a random vector 99 = [cp'^, 99̂ , ..., 99«]. 
The random variable 99* are distributed independently with the common 
distribution v. The statistician knows that v is an element of the finite set 
^ =z {̂ jj V2, "-, Vjc} and selects, using observations on 99, a decision d from the 
set Î) = {d-^, ..., d^}. If a decision function ô is used, then every value of 99 
determines a decision d e'Z and the number of coordinates of 99 observed. Let 
us denote by V{ô, i, cp) the loss plus the cost of experimentation if ô is used,, 
99 observed and v^ is the " t rue" distribution. 

I t will be assumed that also i, the index of the true distribution Vi is a random 
variable y, unobservable for the statistician and taking the values 1, 2, ..., k. 
Obviously 

Vi{B) = pt({x; (p\x) € 5}|y(^)^ J . 

Thus we may denote by ê the random vector [7, 99] and call it random decision 
problem. For each ô and each value ê(x) = [y(^), 9{^)], the symbol l(ô, Щх)) = 
= Г{о, y(;x), q){x)) denotes the loss when ô is used and the elementary event x 
occurs. 

The conditional expected loss, given y(x) = i, will be denoted by Li{ô), 

If the statistician estimates by f = (fj, ..., rj,), r, ^ 0 , ^r^ = I the t rue 

apriori distribution p given by 

p= (fj,y-H{l}),...,iuy-4{Ic})), 
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he uses the r-Bayes decision function ô^ which minimises the expression 
к 

Clearly L{ô^) == min L(ô^) = min L{ô), where L (ô) denotes the expected loos, 
r Ô 

if the decision function ô is used, i. е., L(ô) = E I (д, ê). 
We note that the existence of Bayes decision functions is guaranteed by 

the finitenesse of Ш:, ©, and because (p is finite-dimensional. 
From the Theorem 3.6 p. 89 of [4] it follows further that 

lim L{ôr) - L(ô^) . (*) 

This suggest to consider the sequence of decisions problems of the same type 
and to use an estimate based on past experience to construct better and better 
decision functions. In Theorem I I we show that not only the expected losses 
converge to the minimum loss L(ôp). In fact, if we denote by À^ the loss occuring 
at the n-th step of the process, then 

, n 

П i^l 

Thus we shall consider a sequence êi = ê, ^2 ,^з, . . . of independently and iden­
tically distributed random vectors (i. e. random decision problems). A sequence 

of random vectors (where for each тс̂  = {л1, ..., ж^), :7г̂  ^ О, У л^ 
Ä 

п 

= 1 hold), will be called regular sequence estimating f \î n^ -^ p and ê^ is 
independent of n-^, n^, ..., n^, i?i, ..., ^^-i for every n ^=^ 1, 2, . . . 

The statistician, who uses at the ^-th step the decision function à^^ pays 
the loss Tin = l{à^ , êy^ = Н{пп, ^n)- But from the constructive definition of 

fir 

0^ it follows easily that H is measurable n^, ^n- From the finitenesse of S , 91 
and from the fact that (p^ are finite dimensional it follows that H is bounded 
and therefore H satisfies the conditions of the Theorem I. Obviously, if we 
denote 

K(r) = EH(r, en) , 
we get 

K{r) = L{ôr) ; 
from (*) and from Яп -^ p we have finally 

Hence from Theorem I it follows 
Theorem II . / / TZ^ i^ « regular sequence estimating p, then the sequence of 

losses, if the sequence {d^J of decision functions is used, is (0,1) convergent with 
probability/ one to the minimum loss L(ôj,). In symbols 

^) We note tha t Кл^^ is a random variable and is not ЕЖ(я^, #„) 
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• n 

l im —- У A^i = Ju[Op) . 

Example; Suppose к =^ 2, ш = 1, s ^= 2, the weight function 

\ 1 it г Ф ;; 
and the cost of experimentation to be identically zero. Then if A, is a generalized 
probability density of Vi with respect to some measure v (for i = I, 2), then 
the decision function (5(̂^ ^̂^ accepts d^ if 

g)^{x) €{y€ i?i; ТгЫу) > чЫу)) 
and dg otherwise. 

lîv^ and о'з ^re 1̂ 0̂  identical, then a regular sequence Пп estimating 

can be defined as follows: 

J n (X) 

, n 1 -J 7Î - 1 

n — L iZ"! n — I i^i 

v,{E)-v,(E) ' v,{E)-^ v,{E)] 

where Vi(E) Ф V2{E) and ĉ  and c^ „^ are characteristic functions of the sets 
E and Rj^ — E respectively. 

(This paper was presented by A. Spacek October 26th 1954 and supplemented by V. 
Fabian June 22nd 1955.) 
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Резюме 

ОПЫТ В СТАТИСТИЧЕСКИХ РЕШАЮЩИХ ПРОБЛЕМАХ 

ВАЦЛАВ ФАБИАН, АНТОНИНШПАЧЕК (VACLAVFABIAN, A N T O N Ï N S P A C E K ) , 
Прага. 

(Поступило в редакцию 22/VI 1955 г.) 

В статье рассматривается статистическая проблема, решением которой 
является случайная последовательность решающих функций; построение 
этой последовательности опирается на каждом шагу о предыдущий опыт. 
Последовательность потерь сходится {С, 1) к потере Вэйеса с вероятностью 1. 
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