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LOCALLY CONNECTED TOPOLOGIES

ZpeNEK FroLik, Praha
(Received April 1st, 1960)

This paper deals with some Iocélly connected topologies associated with
a given topology.

The term “topology for a set P will be used in the sense of Bourbaki [1]. Let t be
a topology for a set P. The symbols t[M], () and §(r) denote the t-closure of a set
M < P, the family of all t-open sets and the family of all z-closed sets, respectively.
The pair (P, 1) is a topological space. Let 7, and 1, be topologies for a set P. The topo-
logy 7, is coarcer (or smaller) than t,, in symbols 7, > 7, if and only if (1,) =
< 9(ty). If 1, = 14, than 7, is said to be finer (or larger) than t,. Let T be a family of
topologies for a set P. There exist topologies 7, and 7, such that

(a) if te T, then 7, < 7 < 1,

(b) if 7} and 7} are topologies satisfying the condition (a), then tj < 7, and
7y = 1,. The topology 7, (1) is said to be the supremum or the least upper bound
(the infimum or greatest lower bound) of the family T and it is denoted by sup T
(inf T, respectively).

It is easy to show that

O(sup T) = N{O(x); te T}
and that
U{L(r); teT}

is an open sub-base for O(inf T).
Let 7 be a topology for a set P and let M be a subset of P. The relativization of
to M is denoted by t/M and defined by

S(1/M) = S(z) 0 M.

Of course, if A is a family of sets and if M is a set, then A N M denotes the family of
all sets of the form 4 N M where A € 2. The topology t/M will be sometimes called
the relative fopology. We shall say that the topologies 7, and 7, agree on a set M if
/M = 1,/M.
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Let T be the set of all topologies 1’ for the set P satisfying the condition
©'/IM = 1/M .

The topology inf T will be denoted by t,,. It is easy to show that a U = P is 1y;-open
if and only if U N M is 1/M-open. ‘

Now we shall recall the definition and some properties of locally connected topo-
logies.

Let 7 be a topology for a set P. The topology 7 is said to be locally connected at
a point x € P if for every neighborhood U of x the component of x in U is a neigh-
borhood of x. The topology 7 is locally connected if it is locally connected at every
x € P. 7 is locally connected if and only if the components of open sets are open.
Every open subspace of a locally connected space is locally connected. If M, M, = P
and the relative topologies /M, and ©/M, are locally connected, then the topology
/My U M, is locally connected at every point of M; N M,. Moreover if M; and M,
are closed, then 1/M; U M, is locally connected. If 7 is connected, locally connected
and complete metrizable (that is, if there exists a metric ¢ for (P, 7) such that (P, g) is
a complete metric space), then every two points of P may be joined by a connected
locally connected compact subspace (that is, if x, y € P then there exists a locally
connected continuum K with x € K, y € K); moreover, every two points may by
joined by an arc. ’

In the present paper we shall investigate locally connected topologies asscciated
with a given topology. Let © be a topology for a set P. There exists a coarcest locally
connected topology s(t) < t (section 1). This topology agrees with t on locally con-
nected subspaces of (P, 7). The finest topology possessing the preceding property is
denoted by m(7) and it is studied in the section 3. In the section 2 there is introduced
a locally connected topology ¢(t) satisfying m(t) < ¢(7) < s(x).

I. THE COARCEST LOCALLY CONNECTED TOPOLOGY

Let 7 be a topology for a set P. There exists a locally connected topology s(t) for the
set P such that s(r) < 7 and if 7, is a locally connected topology with 7, < 7, then
7o < s(7). In this section we shall study the topology s(7).

The existence of s(t) is guaranteed by the following proposition:

1.1. Lemma. Let {t} be a family of locally connected topologies for a set P. Then
1o = sup {7} is a locally connected topology for a set P.

Proof. We have to show that 7,-components of non-void 7,-open sets are 7,-open.
Let U be a non-void 7,-open set and let C be a t,-component of U. To prove that Cis
To-0pen, it is sufficient to show that C is t-open for every t in {t}. Selecting a point x
in C we shall show that C is a t-neighborhood of x (t being an arbitrary topology
belonging to the family {r}). The set U being open with respect to the locally con-

399



nected topology 7, the t-component C’ of the point x in the set U is a 1-open set.
But 7, is smaller that 7 so that C’ is contained in C. The proof is complete.

From 1.1 we have at once

1.2. Let 7 be a topology for a set P. Denote by T the family of all locally connected
topologies 1’ for P for which t" < 7. Put
1.2.1. s(t) =sup T.

By 1.1 the topology s(t) is locally connected. The topology s(t) has the following
property:

1.2.2. s(r) < 7 and if 7, is a locally connected topology and 7, < 7, then 7, <
< (7).

The property 1.2.2 defines the topology s(t). The topology s(t) will be called the

coarcest locally connected topology associated with t.
Clearly, the topology T is locally connected if and only if = = s(z).

1.3. Note. The infimum of two locally connected topologies may fail to be a lo-
cally connected topology. For example, consider the following subsets of the Eucli-
dean plane:

P, = {(x,»); x > 0},
P, = {(x, y); x < 0},
P; = {(0, y); y rational} .

Denoting by 7 the natural topology we have at once that the topologies t; = 15 p,
and T, = 7p,,p, are locally connected. On the other hand we have

inf (14, 75) = 15, ,

and consequently, the infimum of 7, and 7, is not a locally connected topology.

1.4. Proposition. Let t be a topology for a set P and let R = P. If the relative
topology /R is locally connected, then

1.4.1. t/R = s(7)/R = s(t/R).
Thus s(t) and © agree on locally connected subspaces of (P, 7).

Proof. The topology 7 is locally connected provided that t/R is locally connected.
By definition of s(t) we have 1, < (7). It follows

z/R < s(1)/R £ 1R,
and consequentely, /R = s(7)/R. The equality t/R = s(t/R) is obvious.
1.5. Corollary. In order that a topology t for a set P be locally connected, it is

necessary and sufficient that if xe P and M < P, then x € t{[M] if and only if
there exists a set R = P such that the relative topology t/R is locally connected and

1.5.1. xe(t/R)[M nR].
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Proof. The necessity is obvious; for the sufficiency we need only show that t <
< s(t). Let us suppose that x € P belongs to the t-closure of a subset M of P. There
exists a set R = P such that 7/R is locally connected and 1.5.1 holds. According to 1.4
we have

x € (s(x)/R)[M] ,
and consequently, x belongs to s(t)[M].

Now we shall characterize the topology s(t) as the infimum of a transfinite sequence

of topologies.

1.6. Let t be a topology for a set P. The family B of all t-components of all
T-open sets is a base for some topology which will be denoted by t*. Of course,
™ < 1. In addition, if U is an open base for (P, t) then the family of all t-compo-
nents of sets from U is an open base for (P, t*).

Proof. We have to prove that for each B, and B, in B and for each x in B; n B,,
there exists a B in 9B such that
(*) xeBc B, nB,.

There exist t-open sets U, and U, such that B, (i = 1, 2) is the t-component of the
point x in U;. Let B be the t-component of the point x in U; n U,. Evidently the
relations (*) hold. The proof of the remaining assertions may be left to the reader.

From the definition of t* we have at once

1.7. Aset U = P is t*-open if and only if the following condition is satisfied:

1.7.1. If M < P and if the topology t/M is locally connected at a point xe M n U,
then U n M is a neighborhood of x in (M, t/M).

It is easy to deduce the following
1.8. Proposition. If t, > 1,, then tf = 7}. A topology t is locally connected if and
only if T = t*.

1.9. Definition. Let t be a topology for a set P. Let us defince t° = 1, 1* = (t*71)*
if « = 11is an isolated ordinal and
t* = inf {</; B < a}
if o is a limit ordinal. Thus for every « = 1 we have
t = inf {(*)*; B < a}.

The order of disconnectedness of the topology 7 is the least ordinal « for which t* is
a locally connected topology.

Evidently, if « is the order of disconnectedness of a topology t, then t* is finer than
s(t) since t* is locally connected. On the other hand, by 1.8 we have at once that < is
smaller than s(r) for every ordinal 8. Thus we have proved the following

1.10. Proposition. If o is the order of disconnectedness of a topology =, then
s(1) = 1%
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1.11. Proposition. If t is a metrizable topology for a set P, then the topology t* is
metrizable.

Proof. Let us suppose that the topology t is defined by a metric ¢. Without loss
of generality we may assume that ¢(x, y) < 1 for each x and y in P. We define a
metric @* for the set P in the following way:

Let x and y belong to P. Put ¢*(x, y) = 1 if there exists no t-connected set M con-
taining both x and y. In the other case, let p*(x, ) be the greatest lower bound of the
set of diameters (in the metric ¢) of all t-connected sets containing both x and y.

It is easy to see that ¢* is a metric and

*) P*(x, ¥) Z o(x, y)
for each x and y in P. Let us denote by t’ the topology defined by ¢*. We shall prove
that 7/ = t*.

First we shall show that 7’ is smaller than t*. Choose a point x in P and let ¢ be

a positive real-number. Put
g
K = {yayEP,(P(an’) < 5}'

Consider the 7-component C of the point x in K. C is t¥-open and the diameter of C
(with respect to the metric @) is < e. It follows that ¢*(x, y) < &for each y in C. Thus
@* is t*-continuous, that is, T’ = t*.

It remains to prove that t* is smaller than t’. If ¥ is an open base for the topology 7,
then the set 9B’ of all t-components of all belonging to B is an open base for the topo-
logy t*. Hence, to show t* > 7', it is sufficient to prove that for every x in P and for
every positive real number ¢ there exists a positive real number 6 such that the set

K, = {y; p*(x, y) < 6}
is contained in the t-component C of the point x in
K, = {y;o(x, y) <e}.

The set K, is T-connected as the union of a family of t-connected sets containg a com-
mon point x. Put § = &. By (*) we have K; = K,. Consequentely, K, = C, since C
is the T-component of the point x in K,. The proof is complete.

As an immediate consequence of 1.11 and of the fact that the greatest lower bound
of a countable family of metrizable topologies is a metrizable topology we have:

1.12. Proposition. If the order of disconnectedness of a metrizable topology 7t is
countable, then s(t) is a metrizable topology.

1.13. Definition. Two topologies 7, and 1, for a set P are said to be homeomorphic
at a point x € P if for every subset M of P

xet[M]<xet,[M].
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We have at once from the definition that 7, and t, are homeomorphic at the point x
if and only if a set U is a t,-neighborhood of x if and only if U is a 7,-neighborhood
of x.

1.14. Proposition. Let © be a topology for a set P. The topologies T and t* are
homeomorphic at a point x € P if and only if the topology t is locally connected at
the point x.

Proof. Let us suppose that the topology 7 is locally connected at the point x,
i. e. that the family of all connected neighborhoods of the point x is a local base at x.
If U is a t*-open set containing the point x, then there exists a t-open set V such that
the t-component C of the point x in V'is contained in U. The topology t is locally
connected at x and hence there exists a 7-connected neighborhood K of the point x
such that K = U. Evidently K is contained in C. We have proved that every t*-neigh-
borhood of the point x contains a t-neighborhood of the point x. Since T = 7%, t and
T* are homeomorphic at the point x.

Conversely, if the topology 7 is not locally connected at the point x then there exists
an open t-neighborhood U of x such that the t-component K of the point x in U is not
an t-neighborhood of x. If follows that t and * are not homeomorphic at the point x.

1.15. Example. For every positive integer k there exists a subspace M, of the
Euclidean plane having the order of disconnectedness k.

Construction. Let us denote by P, (n =1,2,.. ) the liné'segment in the Euclidean

plane joining the points (l , = 1> and (l , 1> . Let P, be the segment joining the points
n n

(0, —1) and (0, 1). Next let us denote by Q, (Q,, resp) n = 1,2, ..., the segment

1 1 .
joining the points i,l and ! , 1 ~,—1)and ,~1>,respect1vely .
n n+1 n n+1

Finally put p = (0, 0), ¢ = (1, 0). Let us consider the set

o0 0 o0

M=UP,nUQnUQz-1-
n=0 n=1 n=1

If p’ and ¢’ are two distinct points of the plane we can choose a set M(p’, q') geometri-

cally similar to M and such that p’ corresponds to p and ¢’ to g.

Now we are prepared to construct the spaces M. Put M; = M. It is easy to see
that the order of disconnectedness of the topology t/M is 1. Indeed, M is not locally
connected at the points of the segment P,. On the other hand the set P, is open with
respect to the topology (t/M)*. Having constructed, the set M, (k = 1) let us denote
by M, { the union of M, and all sets M(p’, q') such that the segment p'q’ joining p’
and ¢’ si contained in the first axis and the set M, N p’q’ contains only the points p’
and ¢'. Using the fact that P, is (t/M)*-open, we can prove by induction that the
order of disconnectedness of the topology /M, is k.
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1.16. Example. There exists a subset M of the Euclidean plane such that the order
of disconnectedness of the topology t/M is w,.

Construction. Let {U,} be a disjoint locally finite sequence of non-void open
sets in the Euclidean plane. According to the example 1.15 we can choose subsets
M,c U, k=1,2,..., such that the order of disconnectedness of the topology

/M, is k. Put M = (JM,. Evidently the order of disconnectedness of the topology
k=1
/M is w,.

Note. Using transfinite planes instead of the Euclidean plane, topologies of an
arbitrary order of disconnectedness can be constructed. I have not been able to con-
struct metrizable topologies with order of disconnectedness greater than w, + 1.

2. THE TOPOLOGY c(7)

In the whole section we assume that 7 is a topology for a set P. The family of all
connected subspaces of (P, ) will be denoted by C(t). The symbol F C(t) will be used
to denote the family of all closed subspaces of (P, t) belonging to C(t). Finally, the
family of all locally connected sets from C(t) and F C(t) will be denoted by L C(z) and
LF C(t), respectively.

For convenience we shall introduce the concept of a feebly additive family.

2.1. Definition. A family I of sets will be called feebly additive if
MieM, M,eM, MianM,+0=>M,uM,e.

Let us recall that if N is a set and if I is a family of sets, then the star of N in IN, in
symbols S(N, M), is the union of all M € M meeting N. The star of a point x is
defined as the star of the one-point set (x). If N is a set and if I is a family of sets, then
the family of all M e M, M = N will be denoted by IM/N. If is easy to see

2.1.1. If xe K = L, then S(x, M/K) = S(x, M/L).
2.1.2. If xe K n L then
S(x, M/K n L) = S(x, M/K) n S(x, M/L).
2.1.3. If the family 9 is feebly additive and both x and y belong to K, then either
S(x, M/K) = S(y, M/K)

or

S(x, M/K) n S(y, M/K) = 0.

A family I of subsets of a space (P, t) contains arbitrarily small sets if for every x
in P and every neighborhood U of x there exists a M in M with x e M = U. From the
assertions 2.1.1, 2.1.2 and 2.1.3 we obtain at once the following
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2.2. Theorem. Let M be a feebly additive family of subsets of a space (P, 1) and
let M contain arbitrarily small sets. The family

2.2.1. {S(x, MU); xeUed()}

is an open sub-base for some topology for the set P which will be denoted by 1:(9'.73)
The topology ©(IM) is finer than 1.

2.3. Theorem. Let M be a feebly additive family of subsets of a space P and let M
contains arbitrarily small sets. If © is metrizable, then ©(M) is metrizable.

Proof. Let ¢ be a metric for the space (P, 7). Without loss of generality we may
assume ¢(x, y) < 1 for every x and y in P. Let us define a metric ¢ for the set P as.
follows:

2.3.1. Letx, y € P. If there exists no M € 9 containing both x and y, then ¢(x, y) =
= 1. In the opposite case let o(x, y) be the greatest lower bound of the set of diameters.
(with respect to @) of all M € M containing both x and y.

It is easy to see that g is a metric for the space (P, t(M)). The fact that ¢ is a metric
is obvious. To prove that the topology () is generated by g, it is sufficient to notice
that
S(x, M/U(x, @, €)) = U(x, o, 2¢) = S(x, M/U(x, ¢, 2¢))
where :

U(x, Y, 8) = {y;y€ P, Y(x, y) < ¢},

¥ is a metric for P and ¢ is a positive real number. The proof of 2.3 is complete.

Examples. a) The family C(z) is feebly additive and contains arbitrarily small sets
(one-point sets). Thus we have defined the topology t(C(z)). Evidently, 7(C(t)) is the
topology t* defined in the first section.

b) By a well-known theorem the family LF C(t) is feebly additive and contains
arbitrarily small sets. Thus we have defined the topology t(LF C(z)).

¢) The family A(t) of all metrizable compact connected and locally connected
subspaces of (P, t) is feebly additive.

d) The family of all compact connected and locally connected subspaces of (P, T)is
feebly additive. '

It may be noticed that the family L C(z) is not feebly additive (in general). However,
there exists a smallest feebly additive family containing L C(t). Using this family, by
2.2 we obtain a topology which will be denoted by ¢(t). The purpose of this section is
to study this topology. We shall need a few propositions about the smallest feebly
additive family containing a given family.

2.4. Thesmallest feebly additive family. Let I be a family of sets and let M
be the union of the family M. There exists a smallest feebly additive family N, con-
taining M. Indeed, the family of all subsets of M is feebly additive and the intersection
of an arbitrary set of feebly additive families is feebly additive. Moreover, we have
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obtained that 9N, is a subfamily of the family of all subsets of M. Putting M, = M,
let us define by induction the sequence {I,} of families of sets such that M, , ; is the
family of all sets of the form K U L where both K and Lbelong to 9, and K N L 0.
It is easy to prove
2.4.1. M, =UM,.

n=1

Indeed, by induction we obtain at once that for every n the family I, is contained

in M,_,. Thus we have proved the inclusion <. On the other hand the family J IM,, is

n=1
feebly additive.

We shall need a description of stars S(x, ) in terms of chains of sets from M.
First let us recall that a chain (of sets)is a finite sequence & = {M,, ..., M, } of sets
with M;_; n M; 0 (i =1,...,n). A chain « = {M,, ..., M,} joins the points x
and yina family Mif M; e M (i =0, 1,...,n)and xe My, ye M,.

Let us define iterated stars by induction as follows:

2.4.2. So(x, M) = S(x, M) 5 S, 1(x, M) = S(S,(x, M), M).
By induction it is easy to obtain that

2.4.3. S,(x, M) = S(x, M,) .

and that

2.4.4. S,(x, M) is the set of all points y for which there exists a chain {M,, ..., M}
joining x and y in M.
It follows

2.45. S(x, M,) = U S(x, M) = U S,(x. M).
n=0 n=0

2.4.6. S(x, M,,) is the set of all points y for which there exists a finite chain joining x
and y in M. Next, it is easy to see that if M is a family of sets and K is a set, then
2.4.7. M,/K = (M/K),, M,/K = (M/K), .

Finally, if 9 is a family of subsets of a space containing arbitrarily small sets, then
M., also contains arbitrarily small sets.

2.5. The topology ©(IM.,). Let M be a family of subsets of a space (P, t) containing
arbitrarily small sets. By 2.4 and 2.2.2 we have defined the topology 1(9)200) which
(by 2.3) is metrizable provided that t is metrizable. Since the family 9, is uniquely
determined by I, the topology ©(M,,) will be denoted merely by (M).

2.5.1. Let us suppose that if M e, U is an open subspace of (M, t/M) and
xe U N M, then there exists a (t/M) — neighborhood H of x belonging to M.

Then for every M in I,
/M = 1(M)/M .
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Indeed, if U is open in M and x € U, then we may choose an open set V' in (P, 7)
with ¥ M = U. Evidently S(x, V/M,) n M < H.
2.5.2. If C(¢(M)) = M, then (M) is a locally connected topology.

Proof. It is sufficient to prove that the sets of the form S(x, M,,/U) with open U are
©(IM)-connected. By 2.4.5 and 2.4.6 we have

S(x, M, /U) = G S.(x, M/U) .
n=0

The set Sy = So(x, M/U) is 1(M)-connected as a union of t(M)-connected sets con-

taining a common point x. By induction, S, is ©(M)-connected as a union of the

©(M)-connected set S, and t(M)-connected sets meeting S,. Since S, = S,,q, n =
o0

=0,1,2,..,theset U S, is r(‘))?)—connected. The proof is complete.

n=1

2.6. The topology ¢(t). The topology ((L C(7)),.) = t(L C()) will be denoted
merely by ¢(t). According to the preceding results we have at once © = (1), ¢(7)/K =
= t/K for every K e L C(7) (by 2.5.1), ¢(t) is locally connected (by 2.5.2). If 7 is
metrizable, then ¢(t) is metrizable (by 2.3). According to the definition of s(t) we have
o(7) < s(7).

2.6.1. The topology ¢(t) is connected if and only if every two points may be
joined by a finite chain in L C(7).

Proof. As already known, every two points may be joined in L C(7) if and only if

S(x) = S(x, (L C(x)),,) = P
for every x in P. If S(x) = P for some x in P, then P is ¢(t)-connected since the sets of
the form S(x) are ¢(t)-connected (see 2.5.1 and the proof of 2.5.2). Conversely, sup-
pose S(x) % P for some x in P. By definition the sets of the form S(y) are ¢(t)-open
and by 2.1.3 either S(y,) = S(y,) or S(y;) N S(y,) = 0. Thus S(x) is ¢(z)-open;
since
S(x) = P = U{S(»); yeP - S(x)},

S(x) is ¢(z)-closed. If follows that the space (P, ¢(t)) is not connected. The proof is
complete.

2.6.2. An unsolved problem. I do not know whether the equality s(t) = ¢(t) holds.

3. THE FINEST TOPOLOGY AGREEING WITH A GIVEN TOPOLOGY
ON LOCALLY CONNECTED SUBSPACES

In this section we assume that t is a topology for a set P. We shall use the notation
from section 2. As we know from sections 1 and 2, the topologies 7, s(t) and ¢(t) agree
on sets belonging to L C(z). In this section we shall investigate the finest topology
agreeing with t on sets from a given subfamily of L C(t). First we shall prove the
following
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3.1. Theorem. Let N be a subfamily of L C(t). Let us denote by Tthe family of all
topologies 1’ for the set P agreeing with t on all sets belonging to N, i. e., for which

3.1.1. KeN=1/K=1/K.
Denote inf T by t,. Then t, € T and
3.1.2. To = sup {tg; KeN}.

The topology 1, is locally connected and a set U = P is ty-open if and only if the set
U n K is (t/K)-open for every K in N. Analogously, a set F < P is ty-closed if and
only if the set F \ K is(t/K)-closed for every K in W. Finally, x € 1o M] if and only
if there exists a K in N such that x € (1/K)[K n M].

Proof. First let us consider the topology ' = sup {tx; K e N}. If K e N, then
g < 14 since is the largest topology a{greeing with 7 on the set K. If follows that
7" £ 1. On the other hand 7,/K = t/K for every K in N, and consequently, t* = 1.
Thus the equality 3.1.2 is proved. Simultaneously we have 7, € T. The topologies
/K, K € N, being locally connected, the topologies tx are locally connected. Com-
bining 1.1 and 3.1.2 we obtain at once that 7, is locally connected. The description of
to-open and t,-closed sets follows at once from 3.1.2. Indeed, it is easy to show that
the family O of all sets U < P for which U n K is (t/K)-open for every K in 0 is the
family of all 7’-open sets for some topology t’ for P. By 3.1.2 we obtain the equality
1" = 1,. Besides, the definition of 7, by 3.1.2 is a well-known and standard method of
definition of topologies.

3.2. Let M be a subfamily of L C(t) and let t, be the topology from 3.1. The space
(P, o) is connected if and only if every two points of P may be joined by a finite
chain in N.

Proof. Choose a point x in P and consider the set
S(x) = S(x, N,,) .
By 2.4.5 the set S(x) is the set of all points y t P for which there exists a finite chain in
N joing x and y. By 3.1 the set S(x) is t4-open. Since
S(x) = U{S(y); y e (P — S(x))}
the set S(x) is closed. By induction we may conclude from 2.4.5 that S(x) is t,-con-

nected. Thus, if S(x) = P, then P is t,-connected, and conversely, if S(x) #* P, then 1,
is not connected. The proof is complete.

It is easy to see:

3.3. If U is an open subset of (P, 1,), then the relativization of 7, to U is the largest
topology agreeing with 7 on sets from M N U. From 3.2 we have at once that U is
7(M)-connected if and only if U is ty-connected.

3.4. The topology m(t). Putting M = L C(x) in 3.1 we obtain a topology which will
be denoted by m(t). From 3.1 we can again conclude that t is locally connected
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provided that for every x € t[M], M < P, there exists a K in L C(7) with x € (1/K) .
.[K n M]. Combining 3.2 and 2.6.1 we obtain:

3.4.1. The topology m(t) is connected if and only if the topology c(r) is connected.
That is, m(t) is connected if and only if every two points of P may be joined by a finite
chain in L C(t). More generally, (by 3.3).

3.4.2. An open subset U of (P, m(7)) is connected if and only if U is ¢(t)-connected.

3.5. Example. There exists a topology t such that ¢(7) # m(7).

Construction. Let P’ be the set of all countable ordinals. Let us denote by J the
interval {x; 0 < x < 1} of real numbers. The usual ordering of the sets P’ and J is
denoted by >. We define an ordering > for the set P = P’ x J such that (y, x)>
> (9, y) if and only if either y > & or y = § and x > y. The points (7 0) will be
denoted merely by y. Denote by 7, the order topology for the ordered set P. Next,
denote by 7, the usual topology (i. e. the order topology) for the set Z of all irrational
numbers of the unit interval <0, 1) of real numbers. Finally, let us choose an element
€ such that

QnoneZU PuUZxP.

We define a topology t for the set
R=(Zx P)u(Q)

as follows:

a) The set Z x P is t-open and the relativization of 7 to Z x P is the product topo-
logy 1, X 1,.

b) The family of all sets of the form

Uhp)=(Q) v {(z,x);zeZ,xeP,x = y},

where y (= (7, 0)) € P, is a local base at the point Q.

Evidently, 7 is a Hausdorff topology for the set R. Moreover it is easily proved that
the topology 7 is completely regular. Indeed, R is a subspace of the one-point com-
pactification of the locally compact completely regular space {0, 1> x P. We shall
prove that m(t) # (), more precise, that m(t) and ¢(t) are not homeomorphic at
the point Q.

3.5.1. If Q < Z x P and if the relative topology t/Q is connected, then there exists
a z, in Z such that Q = (zo) x P, and moreover, Q is an interval in (z,) x P (of
course, we define (z,, x) > (zo, y) if and only if x > y).

The proof of this proposition follows at once from the facts that the topology 7, is
totally disconnected and that a subset M of P is connected if and only if M is an in-
terval. The sets of the form z x P, z € Z, are locally connected and connected. Thus

3.5.2. S(Q, LC(x)/U(y)) = U(y) (y =(0,7)eP).
As an immediate corollary of 3.5.2 we have
3.5.3. The topologies t and ¢(t) are homeomorphic at the point Q.
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Now to prove m(7) # ¢(7) it is sufficient to show that

3.5.4. The topologies t and m(t) are not homeomorphic at the point Q.

Thus it remains to prove 3.5.4. Let us choose a subset Z’ of Z of potency N,. There
exists a one-to-one mapping f from P’ (the set of all countable ordinals) onto Z'. Let us
consider the set

T=(2)uU{(f(),x);xeP, x> (0,6} u U (z)x P.
zeZ-7'
The set Tis not a t-neighborhood of the point Q because it contains no set of the form
U(7). However, the set T is m(t)-open. According to theorem 3.1 it is sufficient to
show that for every Q € L C(t) the set Q n T is open with respect to the relativization
of T to Q. If Q =« Z x P, then according to 3.5.1 there exists a z, in Z such that
Q n R isaninterval in zy x P. T n (z, x P) being an open interval, the set T n Q
is an open interval in Q, and consequently T n Q is open in Q. There remains the case
Qe Q.;The topology 1/Q being connected, there exists a subset Z” of Z and a mapping
x from Z” in P such that
Q' — Qc{(zx(z):;zez2"}

where

Q' =(QuU{(z.x); xeP,x > x(z2)} .

zeZ”
We shall prove that the set Z” contains no accumulation point of Z”, that is, Z” is
discrete with respect to the relative topology. Let us suppose that there exists a se-
quence {z,} in Z” converging to a point z, € Z". Put

xo =sup {x(z,); n=1,2,...}.
Evidently, the relative topology t/Q is not locally connected at the points of the set
{(zo, x); x € P, x > x,}. This contradiction shows that the set Z” is discrete. Since the
relative topology t,/Z” is metrizable and separable, the set Z” is countable. Thus the
set Z' n Z" is countable and we may choose a point d in P’ such that

zeZ nZ'=f"'z] <(0,9).
It follows that

UB)nQc=TnQ,
thatis, T n Q is a (1/Q)-neighborhood of the point Q. Evidently the set 0 n T — (Q)
is (7/Q)-open. It follows that the set Q n Tis (t/Q)-open. The proof is complete.
I do not know whether in general ¢(t) = m(7) for all metrizable topologies t.

However it is easy to prove the equality ¢(t) = m(t) for complete metrizable topo-
logies 7. First we shall prove the following

3.6. Theorem. Let us suppose that the space (P, ) is metrizable. Denote by A(z)
the family of all compact A € L C(x). Let t, denote the topology sup {t4; A € A(1)}.
We have 1(A(7)) = 7.

Proof. Let us choose a metric ¢ for the space (P, 7) such that ¢(x, ¥) < 1 for every
x and y in P. Let ¢ be the metric defined in 2.3.1 (of course, we put M = A(1)).
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According to the proof of 2.3, ¢ is a metric for the space (P, 1(A(1))). We shall prove
that ¢ is a metric for (P, 7,). Since t(¥) = 7, it is sufficient to prove that if
lim Q(x,,, x) = 0, then x, converges to x with respect to the topology t,. Let us suppose

n—oo

lim g(x,, x) = 0. Without loss of generality we may assume g(x,, x) < 1 for every

n =1, 2,... According to the definition of ¢ we may select K, € %(r), n=12,... 80
that x € K,,, x, € K, and ¢(K,) < 2¢(x,, x). Let us consider the set

K=U{K;n=12..).

It is easy to see that K € A(t). The compactness of K is obvious. Indeed, if M is an
infinite subset of K, then either M = K, for some n, or x € M, since lim ¢(K,) = 0.

K is connected as a union of connected sets containing a common point. Finally, K is
locally connected because if y € K — x, then a neighborhood of y is contained in the
union of a finite number of K, and if y = x, then every neighborhood of y contains all
K, for sufficiently large n. From K e A(7) it follows that

H(A(?))/K = 1/K = 10/K .

In consequence the sequence {x,} converges to x with respect to the topology t,;
-this completes the proof.

3.7. Theorem. Let us suppose that the space (P, t) is complete metrizable. Then

o(t) = 1(A(x)) = m(r) = sup {t; A€ A1)} .

Proof. According to the preceding theorem it is sufficient to prove ¢(7) = t(A(t)).
For every M in L C(r) let us denote by M* the set of all x € P for which M U (x)
belongs to L C(z). Evidently M = M* = M, M* belongs to L C(t) and M* is a G,
in P. Thus t/M* is a complete metrizable topology. Now if x and y are points of M*,
then according to the well-known theorem of Mazurkiewicz-Moore-Menger there
exists an arc A = M* from x to y. Let {M,, ..., M, } be a chain in L C(t) joining the
points y, € M0 and y,,Jrl € M,. Then the chain {Mg, ..., M} also joins y, and y,, in
L C(z) and U M¥ c r[U M;]. Let us choose y,e M{_y n M}, i = 1 , n. Next let
us choose arcsA « M i=0,...,nfrom y;, to y;;;. Then 4 = U A; belongs to

i=0

A(t)and 4 < rfU M;]. From the proof of 2.3 we can conclude at once that ¢(t) =

= (). The plOOf is complete.
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Pe3rome

JIOKAJIbHO CBA3HBIE TOIIOJIOI'MHA
3JEHEK ®POJIMK (Zden&k Frolik), ITpara

B cTraThe paccCMaTpHUBAIOTCS HEKOTOPBIE JIOKANBHO CBA3HBIE TONOJOTHU COOTBET-
CTBYyIOLIME JTIFOOOH NaHOW TOMOJIOTUH.

Ilycte T U ¢ TOMOJIOTMYECKHE CTPYKTYpPHI (TOHOJIOFHI/I) B MHOXecTBe P. Mbl
OyneM roBOpUTb, UTO § TOHBIIE 0, WIH ¢ Tpybee T, M muueM T < 0, WK ¢ = T,
€CJIH BCAKOE G-OTKPBHITOE MHOXECTBO SIBJISETCS OJJHOBPEMEHHO T-OTKPBITHIM. B maji-
HeiieM t Bcerza 0603Ha4aeT TOMOJIOTHIO B MHOXeCTBe P.

(1) Tomousmorust ¢(t): INepeceuenne JF0OGOro CeMeNCTBA JIOKAIBHO CBS3HBIX TO-
MOJIOTHIA SBJISETCA JIOKAJIBHO CBA3HOW TOMoJorMel. B 4acTHOCTH, NepeceyeHue BCex
JIOKQJIbHO CBSI3HBIX TOIOJIOTHH ¢ = T SIBJISIETCS JIOKAJBHO CBSI3HOMN TONOJIOTHEH.
O6o3Hauum eé 5(7).

Tonosoruto s(t) BO3MOXKHO ONPEICINTh TAKKE CISAYIOLNM 06pa3om:

Ecii ¢ TONoJIOrHsl, TO CUCTEMA BCEX CBA3HBIX KOMIIOHEHT BCEX G-OTKPBITHIX MHO-
JKECTB SBJISIETCS OTPKBITBIM 623HCOM ISt HEKOTOPOIf TOMOJIOTHH, KOTOPYIO MBI GyieM
o6o3HavaTh o*. Jlanee ompezmenseM t- = T¥,

*=inf{(*)*; B< o}
JUISL BCAIKOTO OPAMHAJIBHOTO 4ncna «. OKas3blBaeTcs, 4T
s(t) = inf {z*}

(2) Tonosorus c(t): LC(r) oGo3HauaeT cHCTeMy BCEX CBSI3HBIX M JIOKAJIBHO
CBA3HBIX TMOAMHOXeCTB npocrpancta (P, t). Ecimi oTpkpbiToe MHOXecTBO U
CONEPKHUT TOUKY X, TMyCTb So(x, U) — 3Be31a TOYKH X OTHOCHTENILHO CHCTEM BCEX
MeLC(7), M < U, S,.+4(x, U) — 3Be3na MuOXecTBa S,(X, U) OTHOCHTENIBHO CHCTEM
Bcex M € LC(1), M = U. Ionoxum

L U) = USyx V).
n=0

CyuiectByeT Tononorus ¢(t) Tak, 4ro [uis Jro6oii ToukH x € P cucrema
{S,(x,U); U orkpeito, x€eU}

ABNSETCS TMOJIHBIM 6a3MCOM OKPECTHOCTEl B Todke X st Tomonoruu c(t). Okasbl-
BaeTCs, 4TO Tomoorus ¢(t) JoKanbHO CBs3HA; ciefoBatenbHo, ¢(t) < s(1). ATopy
HEM3BECTHO, MMeET JIM MecTo paBeHcTBO (1) = ¢(1). Ecnu © MeTpusyema, To Takxe
¢(t) MeTpu3syema.

(3) Tonosnorus m(t): Ecmu M < P, 10 7, 0003HaYaeT caMyr0 TOHKYIO TOMOJIOTHIO
B P, MHAyIMPYIOLIYIO HA M Ty e TOMOJIOTMIO KaK T; UHaye roBops, N — P sBuseTcst
T-OTKPBITBIM, €CIIM ¥ TOJIBKO MHOXeCTBO M N N OTKPHITO B MOANPOCTpaHCTBEe M
npocrpanctea (P, 7). Ilycts m(t)-epeceyerne Beex T, M e LC(t). OxasbiBaercs,
uto Tomoyorust m(t) sokambHo cBssHa U m(1) = c(t). CymiecTByer T Tak, 4TO
m(7) % ¢(t). Ecin (P, t) siBIsSieTCSl TONOIOTHYECKH MOJIHEIM METPU3yeMBIM IIPO-
crpancTBoM, 10 ¢(t) = m(7).
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