Zdeněk Frolík Locally connected topologies associated with a given complete metrizable topology

Czechoslovak Mathematical Journal, Vol. 11 (1961), No. 3, 423-427

Persistent URL: http://dml.cz/dmlcz/100470

Terms of use:

© Institute of Mathematics AS CR, 1961

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

LOCALLY CONNECTED TOPOLOGIES ASSOCIATED WITH A GIVEN COMPLETE METRIZABLE TOPOLOGY

ZDENĚK FROLÍK, Praha (Received May 4, 1960)

It is proved that if (P, τ) is a complete metrizable¹) space of a countable order of disconnectedness, then $(P, m(\tau))$ is a complete metrizable space and $m(\tau) = s(\tau)$.

Let τ be a topology for a set *P*. Let us denote by $C(\tau)$ the family of all connected subspaces of (P, τ) . The family of all locally connected sets from $C(\tau)$ will be denoted by L $C(\tau)$. Finally, the family of all compact connected and locally connected subspaces of (P, τ) will be denoted by $A(\tau)$. The notation and terminology of [1] will be used throughout.

According to [1], 1.2, there exists a locally connected topology $s(\tau)$ for the set P such that $s(\tau) \leq \tau$ (that is, $s(\tau)$ is finer than τ) and if τ_0 is a locally connected topology for the set P with $\tau_0 \leq \tau$, then $\tau_0 \leq s(\tau)$.

Let us denote by $m(\tau)$ the finest among all the topologies for P which induce the same topology as τ on every $M \in L C(\tau)$. According to [1], the topology $m(\tau)$ is locally connected.

If U is an open subset of (P, τ) and if $x \in U$, let $S_1(x, U)$ be the union of all $M \in C(\tau)$, $x \in M \subset U$, and by induction, let $S_{n+1}(x, U)$ be the union of all $M \in C(\tau)$ satisfying $M \subset U$ and $S_n(x, U) \cap M \neq \emptyset$. Put

$$S_{\infty}(x, U) = \bigcup_{n=1}^{\infty} S_n(x, U) .$$

Let us denote by $c(\tau)$ the topology for which the family

 $\{S_{\infty}(x, U); U \text{ is an open neighborhood of } x\}$

is a local base at x. According to [1] the topology $c(\tau)$ is locally connected and $m(\tau) \leq c(\tau) \leq s(\tau)$.

In general $m(\tau) < c(\tau)$. However, if τ is a complete metrizable topology then

¹) A space P will be called complete metrizable if there exists a metrix φ generating the topology of P such that (P, φ) is a complete metric space.

 $m(\tau) = c(\tau)$. In the present note we shall prove that $m(\tau) = s(\tau)$ in the case when τ is a complete metrizable topology of a countable order of disconnectedness. Moreover, in this case $(P, m(\tau))$ is complete metrizable.

The topology $s(\tau)$ may be obtained by iterating the operator η^* defined as follows: Let η be a topology for a set P. The family of all η -components of all η -open sets is an open base for η^* . Let us define $\tau^0 = \tau$ and for every ordinal $\alpha \ge 1$,

$$\tau^{\alpha} = \inf \{ (\tau^{\beta})^*, \beta < \alpha \}.$$

It may be shown that $s(\tau) = \inf \tau^{\alpha}$. The least ordinal α for which $s(\tau) = \tau^{\alpha}$ is said to be the order of disconnectedness of the topology τ .

Theorem 1. If τ is a complete metrizable topology for a set P of a countable order of disconnectedness, then $s(\tau)$ is complete metrizable.

First we shall prove the following

Lemma 1. If τ is a complete metrizable topology then τ^* is a complete metrizable topology.

Proof. Let φ be a complete metric for the space (P, τ) . Without loss of generality we may assume that $\varphi(x, y) \leq 1$ for every x and y in P. According to [1], theorem 1.11, the topology τ^* is generated by the metric ϱ defined as follows: Let $x, y \in P$; if there exists no $M \in C(\tau)$ containing both x and y, then $\varrho(x, y) = 1$; in the opposite case $\varrho(x, y)$ is the greatest lower bound of the set of diameters (with respect to φ) of all $M \in C(\tau)$ containing both x and y. We shall prove that (P, ϱ) is a complete metric space. Let $\{x_n\}$ be a Cauchy sequence with respect to ϱ . Since $\varphi(x, y) \leq \varrho(x, y)$, $\{x_n\}$ is a Cauchy sequence with respect to φ . Thus there exists a point x in P such that

(*)
$$\lim_{n \to \infty} \varphi(x_n, x) = 0.$$

We shall prove that

(**)
$$\lim_{n \to \infty} \varrho(x_n, x) = 0$$

Without loss of generality we may assume

$$\varrho(x_n, x_{n+1}) < 2^{-n} \quad (n = 1, 2, ...).$$

Let us choose C_n in $C(\tau)$ such that the diameter (with respect to φ) of C_n is less than 2^{-n} and $x_n \in C_n$, $x_{n+1} \in C_n$. If is easy to see that the sets

$$K_n = \bigcup \{ C_k; \ k = n, n + 1, \ldots \}$$

are connected and the diameter of K_n (n = 1, 2, ...) is less than 2^{-n+1} . It follows that the diameter of the τ -closure L_n of K_n is less than 2^{-n+1} and $L_n \in C(\tau)$. According to (*), the point x belongs to every L_n . Thus by definition of $\varrho(x, y)$ we have

$$\varrho(x_n, x) \leq 2^{-n+1}$$

which establishes (**) and completes the proof of lemma 1.

424

Proof of Theorem 1. Let α be the order of disconnectedness of the topology τ . By our assumption, $\alpha < \omega_1$ and the topology $\tau^0 = \tau$ is complete metrizable. Let $1 \leq \alpha_0 \leq \alpha$ and let us suppose that the topologies τ^{β} , $\beta < \alpha_0$, are complete metrizable. By definition of τ^{α_0} ,

Since $\beta_1 \ge \beta_2$ implies $(\tau^{\beta_1})^* \le (\tau^{\beta_2})^*$ and $\eta_1 \le \eta_2$ implies $\eta_1^* \le \eta_2^*$, we have that $\beta_1 \ge \beta_2$ implies $(\tau^{\beta_1})^* \le (\tau^{\beta_2})^*$. Thus we may choose ordinals β_n , n = 1, 2, ..., such that

(*)
$$\tau^{\alpha_0} = \inf \{ (\tau^{\beta_n})^*; n = 1, 2, ... \}.$$

Since the topologies τ^{β_n} are complete metrizable, by lemma 1 we may choose metrics ϱ_n for the set *P* such that the metric space $(P, \varrho_n), n = 1, 2, ...,$ is complete, $\varrho_n(x, y) \leq 1$ and ϱ_n generates the topology τ^{β_n} . For x and y in *P* put

(**)
$$\varrho(x, y) = \sum_{n=1}^{\infty} 2^{-n} \varrho_n(x, y).$$

By (*), ρ is a metric for the space (P, τ^{α_0}). From (**) it follows at once that ρ is a complete metric. Indeed, let $\{x_n\}$ be a Cauchy sequence with respect to ρ , *i. e.*

$$\lim_{\substack{n\to\infty\\m\to\infty}}\varrho(x_n,x_m)=0$$

It follows that

$$\lim_{\substack{n \to \infty \\ m \to \infty}} \varrho_k(x_n, x_m) = 0 \quad (k = 1, 2, \ldots).$$

The metrics ϱ_k being complete, we may choose $y_k \in P$, k = 1, 2, ..., such that

$$\lim_{n\to\infty}\varrho_k(x_n, y_k)=0.$$

Since $n \ge m$ implies $\tau^{\beta_n} \le \tau^{\beta_m}$, we may conclude at once that $y_1 = y_k$ for every k = 1, 2, ... Now it is easy to see that

$$\lim_{n\to\infty}\varrho(x_n,\,y_1)=0\,.$$

The proof of Theorem 1 is complete.

If (P, τ) is a space and M is a subset of P then the symbol τ/M denotes the relativisation of τ to M and the symbol τ_M denotes the infimum of all topologies η for the set P satisfying $\eta/M \ge \tau/M$. In [1] the following theorem (3.7) is proved:

Theorem 2. Let τ be a complete metrizable topology for a set P. Then

$$c(\tau) = \sup \{\tau_M; M \in \mathsf{L} \mathsf{C}(\tau)\} = \sup \{\tau_M; M \in \mathsf{A}(\tau)\}$$

Theorem 3. Let τ be a complete metrizable topology (for a set P) of a countable order of disconnectedness. Then $s(\tau) = \sup \{\tau_M; M \in A(\tau)\}$. In consequence, $s(\tau) = c(\tau) = m(\tau)$.

Proof. Let us denote by τ_0 the topology sup $\{\tau_M; M \in A(\tau)\}$. It is easy to see that $\tau \ge \tau_0$ It may be noticed that $A(\tau) = A(\tau_0)$. Indeed, if $M \in A(\tau)$, then by definition of τ_0 we have $\tau_0/M \ge \tau/M$. Now from the inequality $\tau \ge \tau_0$ it follows that $\tau_0/M = \tau/M$. Thus $M \in A(\tau_0)$. Conversely, if $M \in A(\tau_0)$ then from the fact that the topology τ_0/M is compact and from the inequality $\tau \ge \tau_0$ it follows at once that $\tau_0/M = \tau/M$. Thus $M \in A(\tau)$. Since $\tau \ge s(\tau) \ge \tau_0$, from the equality $A(\tau) = A(\tau_0)$ we have at once

$$A(\tau) = A(s(\tau)) = A(\tau_0).$$

Since the topology $s(\tau)$ is locally connected, we have

$$s(\tau) = \sup \{\tau_M; M \in \mathsf{L} \mathsf{C}(s(\tau))\}.$$

By theorem 2 we have

 $\sup \{\tau_M; M \in \mathsf{A}(s(\tau))\} = \sup \{\tau_M; M \in \mathsf{L} \mathsf{C}(s(\tau))\}.$

Finally, combining (*), (**) and (***), we obtain $s(\tau) = \tau_0$. The proof of the theorem 3 is complete.

By theorem 1, if the topology is complete metrizable, then the topology $s(\tau)$ is complete metrizable. Now we shall construct a complete metric for $(P, s(\tau))$.

Theorem 4. Let (P, τ) be a complete metrizable space. Let φ be a complete metric generating the topology τ such that $\varphi(x, y) \leq 1$ for every x and y in P. Let us define a metric ϱ for the set P as follows:

If there exists no $A \in A(\tau)$ containing both x and y, then $\varrho(x, y) = 1$. In the other case let $\varrho(x, y)$ be the greatest lower bound of the set of diameters of all $A \in A(\tau)$ containing both x and y.

The metric space (P, ϱ) is complete (and by [1], theorem 3.7, ϱ generates the topology $m(\tau) = c(\tau)$) and by theorem 3 on the present note, the metric ϱ generates the topology $s(\tau)$.

Proof. Let us suppose that $\{x_n\}$ is a Cauchy sequence with respect to the metric ϱ . Since $\varphi(x, y) \leq \varrho(x, y), \{x_n\}$ is a Cauchy sequence with respect to φ . Thus there exists a point x in P such that

(*)
$$\lim_{n \to \infty} \varphi(x, x_n) = 0.$$

We shall prove

(**)
$$\lim_{n\to\infty}\varrho(x,x_n)=0.$$

To prove (**), we may assume without loss of the generality that

$$\varrho(x_n, x_{n+1}) < 2^{-n} \quad (n = 1, 2, ...).$$

Let us choose $A_n \in A(\tau)$ for n = 1, 2, ..., such that the diameter (with respect to φ) of A_n is less than 2^{-n} and that both x_n and x_{n+1} belong to A_n . Put

$$K_n = \bigcup_{k=n}^{\infty} A_k \quad (n = 1, 2, \ldots).$$

426

Let us denote by C_n the τ -closure of K_n , n = 1, 2, ... Evidently the diameter (with respect to φ) of K_n , and hence that of C_n also, is less than $\sum_{k=n}^{\infty} 2^{-k} = 2^{-n+1}$. By (*) the point x belongs to C_n (n = 1, 2, ...). Thus to prove (**) it is sufficient to show that $C_n \in A(\tau)$, n = 1, 2, ... Evidently the sets C_n are τ -connected. To prove compactness of C_n , it is sufficient to notice that any infinite subset M of C_n either is contained in the union of a finite number of A_n or the point x is an accumulation point of M. It remains to prove that the sets C_n are locally connected. If $y \in C_n$ and $y \neq x$, then $\varrho(x, y) =$ $= \varepsilon > 0$, and consequently, the φ -spheres about x of radius less than ε are contained in the union of a finite number of A_k . Thus C_n is locally connected at every point $y \neq x$. To prove that C_n is locally connected at the point x, it is sufficient to notice that the sets C_k are connected, the sets A_k are locally connected and the diameters with respect to φ of C_k converge to zero with $k \to \infty$. Thus the proof is complete.

References

[1] Z. Frolik: Locally connected topologies. Czech. Math. J. 11 (86), 1961, 398-412.

Резюме

ЛОКАЛЬНО СВЯЗНЫЕ ТОПОЛОГИИ АССОЦИИРОВАННЫЕ С ДАННОЙ ПОЛНО МЕТРИЗУЕМОЙ ТОПОЛОГИЕЙ

ЗДЕНЕК ФРОЛИК (Zdeněk Frolík), Прага

Топология τ на множестве *P* называется полно метризуемой, если существует метрика ϱ пространства (*P*, τ) такая, что (*P*, ϱ) является полным метрическим пространством.

В работе [1] для всякой топологии τ на множестве *P* определены локально связные топологии $s(\tau)$, $m(\tau)$ и $c(\tau)$ на множестве *P*, и рассматриваются соотношения между τ , $s(\tau)$, $c(\tau)$ и $m(\tau)$.

Главным результатом настоящей работы является теорема 3, которая утверждает, что $s(\tau) = c(\tau) = m(\tau)$, если только τ полно метризуема и если τ имеет счетный порядок несвязности. В этом случае также конструируется полная метрика для пространства (*P*, *s*(τ)).