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A GENERALIZATION OF REALCOMPACT SPACES

ZpeNEK FroLik, Praha
(Received January 20, 1961)

Almost realcompact spaces are introduced and studied. In the last section
some theorems about realcompact spaces are proved.

1. NOTATION AND TERMINOLOGY

All spaces under consideration are supposed to be Hausdorff. The closure of a sub-
set M a space P will be denoted by M” or simply M. If % is a family of subsets of a
space P, then the symbol Y, or simply I, will be used to denote the family of all A",
A e . An almost covering of a space P is a family IN of subsets of P such that the
union of M is dense in P.

A family I of sets will be called centered if M has the finite intersection property. A
family 9 has the countable intersection property (in another terminology M is count-
ably centered) if the intersection of every countable subfamily of 9 is non-void.

If M is a family of subsets of a set P, and if N is a subset of P, then the symbol
M N N will be used to denote the family of all M n N, M € 9. The union and inter-
section of a family of sets Y will be denoted by U¥ and N, respectively.

The Cech-Stone compactification of a completely regular space P will always be
denoted by p(P).

2. INTRODUCTION

It is well-known that a completely regular space is a realcompact (see [5]; in the
original terminology of E. HEWITT [6], realcompact spaces are called Q-spaces) if, and
only if, the following condition is fulfilled:

(1) If the intersection of a maximal centered family 3 of zero-sets') in P is empty,
then the intersection of some countable subfamily of 3 is empty.

1y Z c P is a zero-set in P if there exists a real-valued continuous function f on P such that
Z={x;x€P,f(x)=0}.

a cozero-set is the complement of a zero-set.
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In the present note we shall investigate a class of spaces closely connected to real-
compact spaces.

Definition 1. A space P will be called almost realcompact if the following condition
is fulfilled:

(2) If ¥ is a maximal centered family of open subsets of P with ﬂ"l = 0, then
NB = 0 for some countable subfamily B of U.

Every completely regular realcompact space is almost realcompact (realcompactness
is defined for completely regular spaces only). Every normal almost realcompact space
is realcompact. Almost realcompact spaces are invariant under perfect mappings
(i.e. closed continuous mappings such that the inverses of points are compact). In
particular, the image under a perfect mapping of a normal realcompact space is real-
compact. Almost realcompact spaces P are externally characterized as intersections
of special subspaces (generalization of locally compact 6-compact spaces) of Kat&tov’s
almost-compact extension of P.

3. A CHARACTERIZATION OF ALMOST REALCOMPACT SPACES
BY A COMPLETENESS PROPERTY

It is well-known that a completely regular space P is realcompact if and only if
the uniformity generated by the family of all continuous real-valued functions in P is
complete. For our purpose we shall need the following general concept of complete
collections of open coverings (see [2]).

Definition 2. Let o = {9} be a collection of open coverings of a space P. An a-
Cauchy family is a centered family %8 of open subsets of P such that for every U in «
there exists an 4 in 2 and a B in B with B = A. The collection o will be called com-
plete if B + 0 for every a-Cauchy family %B.

Note 1. Let o be a collection of open coverings of a space P and let B be a maximal
centered family of open subsets of P. ¥ is an a-Cauchy family if and only if ¥ 1 B +
+ 0 for every U in a.

Note 2. A completely regular space P is topologically complete in the sense of
E. Cech (i.e. P is G, in B(P)) if and only if there exists a complete countable collection
of open coverings of P (for proof see [2], for further information and literature see

[3D-

Note 3. It is easy to see that a uniformity is complete if and only if the family of
all uniform open coverings is complete in the sense of Definition 2.

We shall prove the following theorem:

Theorem 1. A space P is almost realcompact if and only if the collection y‘=
= y(P) of all countable open coverings of P is complete.

128



Since every centered family of open sets is contained in a maximal one, the preceding
Theorem 1 is an immediate consequence of the following lemma:

Lemma 1. Let y be the collection of all countable coverings of a space P. A maxi-
mal centered family I of open subsets of P is a y-Cauchy family if and only if the
Jamily I has the countable intersection property.

Proof. Let M be a y-Cauchy family. Let us suppose that there exists a countable
subfamily M of M with \N = 0. Put

A={P—-N;NeM}.

By our assumption Y belongs to y. Thus we can choosean 4 = P — N in A n M.
We have ‘
AeM, NeM, AnN=90

which contradicts the finite intersection property of M.

Conversely, suppose that I has the countable intersection property. Let A € y. IT
A ~ M = 0, then evidently all sets of the form P — 4, A € U, belong to M and

MNP —A4; AceWcN{P -4, AeU} =P -UU =0
which contradicts the countable intersection property of S%. The proof is complete.

Note 4. Let P be a completely regular space. For every continuous real-valued
function f put

W) = (s 1) < nfson=1,2,...}.

Let o be the collection of all M(f). P is realcompact if and only if the collection « is
complete (for proof and further information see [4]) A centered family M of open
subsets of P is an a-Cauchy family if and only if every continuous real-valued function
is bounded on some M in M.

4. EXTERNAL CHARACTERIZATION

A space P will be called almost-compact (H-closed in the terminology of M. Ka-
TE10V) if A =+ 0 for every centered family 2 of open subsets of P, or equivalently, if
every open covering of P contains a finite almost covering. If P is a space, then there
exists an almost-compact space vP containing P as a dense subspace and such that

(3) if R is an almost-compact space containing P as a dense subspace, then there
exists a continuous mapping f of S = vP onto R such that the restriction of f to P is
the identity mapping.

The space vP will be called Katétov’s almost-compact extension of P or simply the
Kat&tov extension of P. The space vP has been defined and studied in [7]. Let us
recall that vP — P is a closed discrete subspace of vP.
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A space is said to be countably almost-compact (in the other terminology —
countably H-closed) if N # @ for every countable centered family of open subsets,
or equivalenty, if every countable open covering contains a finite almost covering.?)
Combining the above definitions we obtain

Theorem 2. Every coutably almost-compact and almost realcompact space is
almost-compact.

It is well-known (and it is easy to prove) that every o-compact (a union ot a count-
able number of compact subspaces), and more generally every completely regular
Lindelof space, is realcompact. From the definition it follows at once that every Linde-
16f space is almost realcompact.

Example 1. There exists a countably almost-compact space P with the following
properties: P is the union of a countable number of its almost-compact subspaces,
every point of P has a neighbourhood U whose closure is an almost-compact space
and finally P is not almost-compact. Thus P is not realcompact (see Theorem 2).

Construction. Let N be a countable infinite discrete space, let K be a one-point
compactification of N and let T be the space of all countable ordinals. The space
T x K islocally compact and countably compact. Let Q be an element with Q ¢ (T x
x K)u KU T. On the set R = (T x K) U (Q) let us define the topology such that
T x K is an open subspace of R and the sets of the form {U x N} form a local base
at Q, where U runs over all sets of the form

(4) U= {waeT, a>p}.
It is easy to see that R is a H-closed space. Indeed, if ¥ is an open covering of R, then
some 4 € U contains Q. The subspace
Rib=R-AcR-4

is compact and hence some finite subfamily ¥, of U covers R,. Clearly, 4 U U, =
= R. Now let

N=UN,,
or=1
where N, are disjoint infinite sets. Let {Q,} be a sequence of distinct elements, Q, + @,
Q,¢ TUK U (K x T). On the set
P=Tx Kvu{Q,,Q,,...}

let us define a topology such that I' x K is an open subspace of P and the family of

the sets
(2,) v {U x N,}

where U runs over all sets of the form (4), is a local base at Q,.

2) For further information see [1].
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Evidently, the subspaces
(%) Tx N =(Q)uTx NF

are homeomorphic with R, and hence are almost compact. Thus P is the union of a
countable number of almost-compact spaces.

P is locally compact at every point of T x K, since T x K is open in P and locally
compact. The set (5) is an almost compact neighborhood of Q,. Thus every point of P’
is contained in an almost-compact neighborhood.

Consider the family of all sets of the form

(6) {Ux U N,j
n=k+1

where k = 1,2, ... and U is of the form (4). It is easy to see that N = 0. Indeed,
(T x K) n NY = 0 and Q, does not belong to (6). Thus P is not almost-compact.

It remains to prove that P is countably almost-compact. But this is evident, because
T x K is a countably compact dense subspace of P.

It is well-known that the following conditions (a), (b) and (c) on a completely re-
gular space P are equivalent:

(a) P is realcompact,
(b) P is the intersection of cozero-sets in B(P),
(c) P is the intersection of g-compact subspaces of B(P).

The conditions (b) and (c) are examples of “‘external” characterizations of real-
compact spaces. A natural generalization of o-compact spaces are spaces which are the
union of a countable number of almost-compact subspaces. The preceding example
shows that these spaces cannot be used to characterize almost realcompact spaces. An
open subspace F of a compact space is a cozero-set if and only if F is a g-compact
subspace. The preceding Example 1 shows that also the ‘“natural” generalization of
cozero-set (i.e. locally almost-compact unions of a countable number of almost-
compact subspaces) cannot be used.

Definition. A space P will be called a generalized cozero-space if there exists a
countable open covering 2 of P such that the spaces from 9[ are almost-compact.

It is easy to see that every generalized cozero-set is locally almost-compact and a
union of a countable number of almost-compact subspaces. According to Theorem 2
and Example 1 the converse is not true because, clearly, every generalized cozero-set
is almost realcompact.

Theorem 3. The following condition is necessary and sufficient for a space P to
be almost realcompact:

(7) P is the intersection of generalized cozero-spaces in the Katétov almost-
compact extension vP of P.
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Proof. Lety = y(P) be the collection of all countable coverings of a space P. R will
be used to denote vP. First let us suppose that P is almost realcompact, i.c. that y is
complete. Then

(8) P = N{UA*; Yey}
and UYA®, where U €y, are generalized cozero-spaces.

If U is an open subset of P, then U® is a neighborhood of every point of U® — P
(this is a property of the Kat&tov extension). Thus

(AR — (A" — A); Ae}

is an open countable covering of UU® and the closure of every member of this cover-
ing is almost-compact. Thus R are generalized cozero-spaces. To prove the first
assertion, let us denote by Q the right side of (8) and suppose that there exists a point x
in Q — P. Let B be the family of all open neighborhoods of x in R and put C =
= B n P. Since x € Q, from (8) it follows at once that C is a y-Cauchy family. Hence
NC® =+ 0, but this is impossible because

{]C"C(YBR:(,V)CR—P.
We have proved that the condition is necessary.

Conversely, let us suppose that there exists a family B of generalized cozero-spaces
in R with Y = P. For every B in B choose an open countable covering Y(B) of B
such that the closures in B of members if Y(B) are almost-compact. It is easy to see
that the collection

B={UB)nP, BeB}cy

is complete. Indeed, if C is a maximal centered family of open subsets of P and if C'is
f-Cauchy, then
P+=NCRcnNB =P,

and consequently (\C® + 0, which completes the proof of Theorem 3.

5. PROPERTIES OF ALMOST REALCOMPACT SPACES

An open subspace of an almost realcompact space may fail to be almost real
compact. For example, it is sufficient to consider non-compact countably compact
open subspaces of a compact space. A closed subspace of an almost realcompact space
may fail to be almost realcompact. For example the space F = T x (K — N) from
the Example 1 is not almost realcompact, although the space R is almost realcompact
and F is closed in R.

Theorem 4. A regularly closed subset of an almost realcompact space is almost
realcompact.
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Proof. A regularly closed subset of a space P is a set of the form U, where U is
open. Let U be an open subset of an almost realcompact space P and let U be a maxi-
mal centered family of open subsets of 9 such that the intersection of closures in U of
sets from U is empty.

Let B be a maximal centered family of open subsets of P with B > U n U. Clearly,
NB" = 0, and consequently, P being almost realcompact, (YC* = @ for some count-

able subfamily of 9. 1t follows that C n U = % and C n U = 0. Thus U is almost
realcompact.

Theorem 5. Closed subspaces of a regular almost realcompact space are almost
realcompact.

The proof follows at once from the following simple lemma:

Lemma 2. [f o« = {U} is a complete collection of open coverings of a reqular space
P, then the following condition is fulfilled:
(9) If M is a centered family of sets and if for every U in o there exists a M in M
and an A in Y with M < A, then NI * 0.

Proof. Let B be the family of all open subsets B of P such that B > M for some M
in M. Clearly, B is an a-Cauchy family. Thus (B + 0. On the other hand, according

to the regularity of P we have NB = NM.

Proof of Theorem 5. If « = {U} is a complete collection of open coverings of
a regular space P and if F is a closed subspace of P, then from Lemma 2 it follows at
once that the collection « n F = {2 n F} of open coverings of F is complete.

Theorem 6. If a subspace R of a space P is the intersection of almost realcompact
subspaces of P, then R is almost realcompact.

Proof. Let ¥ be a maximal centered family of open subsets of R with NYR = 0.
Since NU” is at most a one-point set, we can choose an almost realcompact space
S o R such that N5 = 0. Let B be a maximal centered family of open subsets of S
with B " R o Y. Evidently 8 n R = U. Since

0 =nNU =nNB°,
according to almost realcompactness of S there exists a countable subfamily C of 5
with NC% = 0. Clearly CA R = % and NC n RS = 0. Thus R is an almost real-
compact space.

Note. Theorem 5 is an immediate consequence of Theorems 4 and 6, since in a
regular space every closed subspace is the intersection or regular closed subspaces.

Theorem 7. The topological product of an arbitrary family of almost realcompact
spaces is an almost realcompact space.

Proof. Let P be the topological product of a family {P,; a € 4} of almost real-
compact spaces. Let 2 be a maximal centered family of open subsets of P with the
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countable intersection property. For every a in 4 let Y, be the family of projections
onto P, of all sets from . It is easy to see that U, is a maximal centered family of open
subsets of P, with the countable intersection property. Thus

Nz = (x,) -
[t is easy to see that
NA° = ({x,;aeA}).
The proof is complete.

A mapping f from a space P to a space Q will be called perfect if f is continuous,
closed (the images of closed sets are closed) and if the inverses of points are compact.

Theorem 8. Let f be a perfect mapping of a space P onto a space Q. If P is an
almost realcompact space, then Q is also almost realcompact. Conversely, if Q is
almost realcompact and P regular, then P is an almost realcompact space.

Proof. First let us suppose that P is an almost realcompact space. Let 2 be a maxi-
mal centered family of open subsets of Q such that 9 has the countable intersection
property. Let 2B be a maximal centered family of open subsets of P with

¥ Y],

i.c. every f'[A], Ae ¥, belongs to B. We shall prove that B has the countable
intersection property. Let us suppose that there exists a countable subfamily C of B
with NC = 0. The mapping f being closed and the inverses of points compact, the
family

M ={Q - f[C]; C€}
is an open countable covering of Q. Hence there exists a C in € with
Q - f[C]e¥.
Tt follows that
/[0 - f[CT]e®.
But this is impossible, since C € % and
Cnf o -~f[C]]=0.

The space P being almost realcompact, we have (Y% = 0, and in consequence U +
=+ 0. This proves Q is almost realcompact. The proof of the second part of Theorem 8
it follows at once from the following theorem:

Theorem 9. Let f be a perfect mapping of a regular space P onto a space Q. If

a = {A} is a complete collection of open coverings of Q, then the family f~'[«] of
all coverings

ST =A{7MA] A}

where U runs over all Y € a, is a complete collection.
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Proof. From the regularity of P it follows at once that Q is also regular. From
Lemma 2 it follows that (\IN #+ O for every centered family of subsets of Q such that
MU+ 0 for all Wea. Let N be a maximal centered family of subsets of P such
that N DB + O for every B in f~'[a]. Clearly, the family M of all f[N], N eN, is
centered and M A Y + O for all Y in a. Thus N + O. Choose a point y in this
intersection. Clearly f ~'[y] n M is a centered family. The space f ~![y] being com-
pact, we have

T hlonm+0,
which proves that f~![a] is complete.

6. RELATIONS BETWEEN REALCOMPACT AND ALMOST REALCOMPACT
SPACES

In this section all spaces under consideration are supposed to be completely regular.

Theorem 10. Every realcompact space is almost realcompact.

Proof. If P is realcompact, then the collection {IB(f);fe C(P)} of coverings
9B(f) from Note 5 is complete and hence the collection of all open coverings is com-
plete.

Two subsets M and N of a space P will be called completely separated if there exists
a real-valued continuous function f on P with f[M] < (0) and f[N] < (1).

Lemma 3. Let U be an open subset of a space P and let M be a subset of P such
that M and P — U are completely separated. If V is a maximal open subset of B(P)
with V.o P = U, then the closure of M in B(P) is contained in V.

Lemma 4. Let o be a complete collection of open coverings of a space P, such that

(10) For every W in o there exists a B in a such that for every B in B there exists
an A in U such that Band P — A are completely separated.
Then

(11) N{VAP?; Aea} =P.

Proof. Let us denote by R the left side of (1 1). Suppose that there exists a point x in
R — P. Let M be the family of open neighborhoods of x in f(P). Put M = M n P. It
is easy to prove that N is an a-Cauchy family. Indeed, if ¥ is an open covering and B is
the covering satisfying (10), then there exists a B € B with x € B*®. If 4 is the set cor-
responding to B in accordance with (10), then 4 € M. The collection « being complete,
the intersection of N is non-void. But this is impossible, since NP = (x) =
<R —P.

If P is a normal space, then the family y of all countable open coverings does have
the property (10). By Lemma 4, if the space P is almost realcompact, then P is the
intersection of g-compact subspaces of B(P), and hence, P is realcompact. Thus we
have proved the following theorem:
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Theorem 11. Every normal almost realcompact space is realcompact.

I do not know any example of an almost realcompact space which is not real-
compact. Evidently, the image under a closed continuous mapping of a normal space
is a normal space. Thus from Theorems 8 and 11 there follows at once the following
theorem:

Theorem 12. The image under a perfect mapping of a realcompact normal space
is a realcompact space.

Note. It is easy to prove that the image under an open perfect mapping of a real-
compact space is a realcompact space. I do not know whether the assumption of nor-
mality may be omitted in Theorem 12.

Notes. In section 3 only complete collections of open coverings were defined. For
completely regular spaces it is useful to define complete collections (of not necessarily
open) coverings.

Definition 3. Let o = {2} be a collection of coverings of a space P. An a-Cauchy
family is a centered family 9 of subsets of P such that for every U in « there exists an
M in M and an A4 in A with 4 > M. The collection a will be called complete if M +
#+ 0 for every o-Cauchy family M.

If o = «(P) is the collection of all countable coverings of P consisting zero-sets,
then a maximal centered family 3 of zero-sets is an a-Cauchy family if and only if 3
has the countable intersection property. If 9 is a maximal centered a-Cauchy family,
then the zero-sets from M form an a-Cauchy family 3, and the space being completely
regular, M = N3. Thus we have proved

Theorem 13. A space P is realcompact if and only if the collection of all countable
coverings consisting of zero-sets is complete.

Let us denote by d the collection of all countable closed (i.e. consisting of closed
sets) coverings of a space P. Since « = 4, if  is complete, then ¢ is complete. If P is
normal and ¢ complete, then it is easy to prove that P is the intersection of o-compact
subspaces of B(P), more precisely

P = N{UA*'®; Ues}.

Let R denotes the right side of the preceding equality. Let us suppose that there exists
a point x in R — P. Let § be the family of all closed subsets F of P with x € F#(®)_p
being normal, § is a §-Cauchy family. Since, clearly, N§ = 0, J is not a complete col-
lection. Thus we have proved the following

Theorem 14. If P is a realcompact space, then the collection o of all closed cover-
ings is complete. If P is normal and 6 complete, then P is realcompact.

Let § be a maximal centered family of closed sets and let us suppose that the inter-
section of every countable subfamily of § is non-void. Then, clearly, § is a 6-Cauchy
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family. Thus, it J is a complete collection, then the intersection of § is non-void. Con-
versely, let us suppose that the intersection of every maximal centered family of closed
sets with the countable intersection property is non-void. If the following condition
(12) is fulfilled, then the collection & is complete.

(12) 1f§ is a maximal centered family of closed sets and if § does not have the count-
able intersection property, then there exist F, € § and open U, such that U, > F, and
nu,=0.
n=1

Indeed, from (12) it follows at once that if § is a maximal centered family of closed
sets and if § does not have the countable intersection property, then § is not a
o-Cauchy family. For example, every countably paracompact space, in particular,
every perfectly normal space, has the property (12).
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Pe3ome

OBOBIIEHUE Q-NMIPOCTPAHCTB

3AEHEK ®POJIUK (Zdenék Frolik), IMTpara

[IpocTpaHCTBO P Ha3bIBa€TCA NMOYMTH Q-npoCmpaHcmeom, €ClU BBINOJHEHO cClie-
JyIoIliee yCIOBHeE:

Eciu nepeceyenyie 3aMbIKaHHH MHOXECTB U3 HEKOTOPOH MaKCHMAaJIbHOM LEHTPH-
poBaHHOI cucTeMbl U OTKPBHITHIX MHOXECTB IYCTO, TO TYCTO TakXke NEPECEYECHHE
3aMBIKAHMIA MHOXECTB M3 HEKOTOPOii cueTHol B < Y.

Oxa3pIBaeTcs, 4TO BCAKOe (-NPOCTPAHCTBO SIBSIETCHSL MOYTH Q-TPOCTPAHCTBOM
M YTO BCSKOE HOPMaJIbHOE NMOYTH Q-TPOCTPAHCTOB sBJsETCS (Q-NPOCTPAHCTBOM.
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Jnst moyTH Q-NpOCTPaHCTB HMEIOT MECTO TEOPEMBI, AHAJIOTHYHBIE TeopeMaM
o Q-npocrpancrBax. Ho ux nokasaresnbcTsa 0OBIMHO TpoOILIE.

Teopema. ITycms P sasasemca npocmpancmeom Xaycoopga. Caedyrowue ycaogus
IKBUBANCHMHDL:

(1) P sganemca noumu Q-npocmpancmeom.

(2) Cucmema 6cex cuemmnblx OmMKpbIMbIX NOKPLIMULL NOAHA € cmbicae [2].

(3) P ssasemcea nepeceuenuem maxux noonpocmparcme Q H-3amxnymoii 060404Ku
Kamemosa [T npocmpancmea P, umo 045 6caxozo Q cywecmayem cuemnoe 0mKpsimoe
noxpeimue U npocmpancmea Q, umo A%, A e N, seaaromea H-3amxuymoimu.

Teopema. ITycms f— cosepuennoe omobpaxrcenue npocmpancmesa P na npocmpan-
cmeo Q. Hdaa mozo, umobst Q 6b110 noumu Q-npocmpaHcmeom, makyice 00CMamoyHo,
a ¢ cayyae pezyaapHozo P makoice u Heo6xooumo, umober P 6via0 Q-npocmparncmeom.

W3 nocnenueit TeopeMsbl BBITEKAET, 4TO 06pa3 HOpMaJIbHOro Q-NPOCTPAaHCTBA NIPH
COBEPUICHHOM OTOOpa)KeHUH SIBJsieTCS (Q-TIPOCTPAaHCTBOM. _

B nocnenueit yacTu maeTcs HoBasi XapakTepu3alusi HOPMaJIbHBIX ¥ CYETHO napa-
KOMIIAKTHBIX Q-NPOCTPAHCTB.
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