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AN INEQUALITY FOR TRACES OF MATRIX FUNCTIONS?)

CHANDLER DAvis, Toronto (Canada)

(Received October 3, 1963)

1. M. FIEDLER recently gave an inequality for traces of matrices [1]. H. SCHWERDT-
FEGER, reporting on this paper at the University of Wisconsin, suggested that, in
Fiedler’s theorem, the inverse function might be replaced by an arbitrary non-
constant matrixmonotone function [2]. I found to my surprise that the function may
be still more general. The result is as follows:

Theorem 1. Let A, H be n-by-n hermitian matrices, and [a,b] a real interval
containing the spectra of A and A + H. Let f be a real-valued function on [a,b]
such that the divided difference fUt, u) = [f(t) — f(u)]/[t — u] (t & u) satisfies

(1) m< fMLu) s M
for t,u€[a, b). Then the hermitian matrices f(A) and f(A + H) satisfy
2) mtr H*> < tr {H(f(4 + H) — f(4))} < M tr H*.

1 will prove this theorem in § 2. Then in § 3 I will discuss some particularly useful
special cases: Fiedler’s original theorem, and a Lipschitz condition for matrix
functions which is applicable to matrix analysis. The final section concerns weakening
of the restrictions on A4, H, and f.

2. I will write x* for the linear functional determined by any vector x. The inner
product of x with y will be written x*y; whereas yx* means an operator, namely,
(yx*) z = (x*z) y, for any z.

Thus the spectral decomposition for A and 4 + H may be written

(3) A=Y txx’, A+ H=Yuyyf,
i=1 =1

i

where {x;} and {y;} are orthonormal bases, while the t; and the u; are numbers
between a and b. By definition,

f(A)zzf(ti)xixT’ f(A + H)=Zf(ui)yl'y}k-
i=1 i=1
1) Research supported in part by N. S. F. Grant No. GP-249.
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I will occasionally use the notation |B|, = (tr (B*B))*. The notation ||B| will
mean the ‘““bound norm” of B.

The proof of the theorem is very short and follows familiar lines [2]. Define
numbers h;; = x} Hy; (note these are not the usual matrix elements in either represen-
tation). Since H = Yu;y;yf — Y t;x;x}, we compute
(4) | hij = (u; = 1) x7y; -

In a similar manner, we obtain
xi(f(4 + H) = f(4)) y; = (fu;) = f(t)) xy; -

Now we must estimate

tr {H(f(4 + H) = f(A)} = Ly} Hxx(f(4 + H) = f(4)) y; =
O T Al a0

(substituting (4)). In the last line the summation is extended over only those pairs (i, j)
such that u; # t,. Each such term is |h;;|* times a difference quotient which, by the
hypotbesis (1), lies between m and M. But terms with t; = u; have also h;; = 0 by (4),
so(5)is between m Y. |h;;|*> and M Y. |h;;|*. Since H is hermitian, tr H> = Y |h;|* =
= |H]3.

This proves the theorem.

3. In particular, suppose f is the function f(f) = — t~" for t€[0, b]. If A and
A + H are both positive-deﬁnite then the theorem applies. Let us discuss only the

Mt uy) = (tu) ! > HA” LA+ H|| . This gives
tr (H(f(4 + H) — f(A)} = |4]~* |4 + H] ™ |H]3,

which is Fiedler’s result in different notation, except that it does not include conditions
for the equality to hold. Thus, with this reservation, Fiedler’s theorem is a special
case of Theorem 1. By slightly modifying the proof, the following theorem is obtained,
which seems to be the most natural generalization of Fiedler’s Corollary 2.

Theorem 2. Let A, H be hermitian matrices, and [a, b] a real interval containing
the spectra of A and A + H. Let f be a strictly monotone increasing real function
on [a, b]. Then

(6) tr {H(f(4 + H) — f(4))} z 0,
with equality only if H = 0.
Again, Fiedler’s case is f(f) = — ¢! and a = 0.

To prove (6), one again uses (5). Each term in the last sum in (5) is 2 0, so (6) is
immediate. For equality to hold in (6) — that is, in (5) — h;; must be O for all the
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terms with u; # ;. But if this is assumed we conclude that H = Y h;;x;y} must be 0,
for we know by (4) that h;; is zero for the other terms, those with u; = t,. The proof
is complete.

Thus the function need not have divided differences bounded strictly above zero,
and it need not be matrix-monotone. The latter circumstance seemed less surprising
to me when I reflected that if H > 0 and f is monotone (not necessarily matrix-
monotone) then tr f(4 + H) = tr f(4). This more-or-less familiar theorem is an
immediate consequence of Weyl’s theorem on monotonicity of eigenvalues.

Note that conditions for equality in Theorem 1 can also be supplied easily.

As noted in the introduction, there is a Lipchitz condition of a sort which results
form Theorem 1.

Corollary. Let A, H, a, b be as in Theorem 1. Let f be a real-valued function
on [a,b] satisfying the Lipchitz condition |f(t) — f(u)] < M .|t — u| there.
Then

|tr {H(f(A + H) — f(A)}| £ M tr H*.

Proof. Take m = — M in Theorem 1.

4. Here is a more general version of the theorem; the restrictions on A, H and
on f have both been relaxed, but the statement of the theorem has become more
clumsy. A and H are no longer required to be hermitian, or even diagonable. T use
the notation o(A) for the spectrum of any A.

" Theorem 3. Let A, H be n-by-n complex matrices, H # 0. Let f be a complex-
valued function such that f(A) and f(A + H) are defined. Assume, for a suitable
closed convex subset A of the complex plane, that fU(t,u) e for all t€ o(A)
and ueo(A + H), t + u. Then

) [H]2* tr {H*(f(4 + H) = f(A)}ex" .

First let me deal with the case where both 4 and A + H are diagonable, that is,
are similar to normal matrices; for in that case all goes as in Theorem 1.

In place of the spectral decomposition (3) we now have this weaker statement:
There exist bases {x;}, {xi}, {y:}, {i} and numbers {1;}, {u;} (i = 1, ..., n) such that
(8) x:'*xj = 5:’,‘ s ,V:'*Yj = 5ij s
9) A=Ytxx*, A+ H=Yuyy?*,;
by definition f(4) = Y f(1;) x;x}¥, etc.

Every closed convex set #” of complex numbers is characterized by a real function h

in the following way: a complex number { is in #” if and only if, for all @, Re (e™"®() =
= h(@). Thus the hypothesis involving /" in the present theorem may be expressed
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Re (e7"f1)(t, u)) 2 h(@). The argument involving (5) is essentially unaltered:
if hy; = x/* Hy;, then h;; = yi*H*x;, and so

e tr (H¥(f(A + H) — f(A)} = e ® Yy *H*xx;*(f(4 + H) — f(4)) y; =
=X |hil? e St u)) 5
dividing by Y |h;;|* = |H|3 and taking real parts, and using the same argument as
above for the terms with ¢; = u;, shows that the number { in (7) satisfies Re (e™*°¢) =
= h(O), which was to be proved.

Now let A and 4 + H be allowed to be non-diagonable. To use the customary
definitions of f(4) [4,3] we must assume that, for each ¢ € o (4), a value has been
assigned not only to f(f), but also to f(t), ..., f*~ (), where k is the degree of
(A — 1) in the minimal polynomial m(2) of A. Similarly for each ucoa(A + H).
If f(s) was given values for any other points s of the complex plane, they would not
affect hypotheses or conclusion of Theorem 3. We can suit our convenience, accor-
dingly, by supposing f'is a polynomial having the assigned values (with its derivatives
up to the orders which enter) at the points of the spectra of 4 and 4 + H. Also, if
there is a point s, common to the spectra of 4 and A + H, at which f*(s) is not yet
assigned, we can require our interpolating polynomial to satisfy f'(s)e #". The
reason we want to do this is so that we can assert f1')(t, u) € & for all cases when
t€ o(A4) and u € 6(4 + H); for the polynomial fI'1 is extended to equal arguments
by f1(s, s) = f'(s).

We can now assert that f(B) has been defined as a continuous function of B, using
the usual topology for the space of matrices.

With these understandings I proceed to extend Theorem 3 by continuity.

For any ¢ > 0 let £, denote the set of all complex { at distance ¢ or less from X%’;
it is a closed convex set. Because fI' is now continuous and everywhere defined, and
because [, u) e A" for t € 6(A) and u € 6(4 + H), there is a neighborhood of 4,
say %,, such that, for B€ %,, we have fI'Xt, u)e o, for t € ¢(B) and u € o(B + H).
That is, all B € %, satisfy the hypotheses of the theorem for J7,.

Now %, is a manifold. The subset of matrices with all n eigenvalues simple, is an
open dense set. Hence the set of non-diagonable B in %, is nowhere dense; likewise
the set of B with B + H non-diagonable is nowhere dense; hence so is their union.
But for B and B + H diagonable, Theorem 3 is already established; it gives the con-
clusion that the number

|H|z* tr {H*(f(B + H) — f(B))}
is in A, for a set of B dense in %,. But then it is in %, for all B € %,. In particular
for B = A,itisin A, = A, which was to be proved.
It would be interesting to find a more ‘“elementary” proof — perhaps to avoid
continuity arguments altogether. ‘

Corollary. Theorem 3 remains true if the word ‘““closed” is omitted from its
statement.
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Proof. Every convex set is the union of an increasing sequence of closed convex
sets; the rest is easy.

Added in proof: G. MINTY has called my attention to his definition of numerical
range of non-linear functions on vector spaces. The result of the present paper may
be regarded as a theorem about such numerical ranges.

If @ is a non-linear operator in a Hilbert space with vectors X.Y,..., then Minty
defines its numerical range as the set of all complex numbers

X¥@(Y + X) — &(Y))/X*X

for all X,Y (X =+ 0), Let in particular the Hilbert space be that of all n-by-n matrices,
under the norm || ||,; and let ® be the non-linear operator obtained by extending
a numerical function f to matrix arguments. Then Theorem 3 and Corollary above
say that the numegical range of @ is contained in the convex hull of the range of f{'7.
To be exact, they say more, for they allow for the case where f is not defined on
the whole complex plane and @ has a correspondingly restricted domain.
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Pe3rome

OJIHO HEPABEHCTBO JJISl CJIEAOB ®VHKIIVUN MATPUILL
YAHIJIEP OOMBUC (Chandler Davis), TopouTto, Kanana

I'maBHBIM pe3ynbTaToM pabOTHI SABIAETCS CleAyIoLas TeopeMa:

Ecau A u H — cummempuunvie mampuysl, a f — OeiicmeumenvHas @yHKyus,
onpeodeneHHas Ha HeKOMOPOM OMKDLIMOM UHIMeEPBAe, COOepHCaemM CReKmpPbl Mampuyy
A, A + H u makas, umo Ha 5mom uHmepeaie umMerom mMecmo HepageHcmea

RIOEY 0PIV

t—u
mo cnpaeed/lueo COOMHOUleHue
mtr H> < tr {H(f(A + H) = f(A))} = M tr H*.
npl/IBO,IISITCﬂ HEKOTOPBIC CIIEACTBUSA TOM TEOPEMBI, a TAKXE HEKOTOPBIC PE3YJib-

TaThl GoJyee oOuIero xapakrepa.
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