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PROLONGATION OF SECTIONS IN LOCAL DYNAMICAL SYSTEMS

OT1oMAR HAJEK, Praha

(Received June 24, 1964)

This paper is closely connected with [1], and aims to extend some of the results
obtained there. The generalisation is as follows:

(i) From the global dynamical systems of [1] to local dynamical systems (cf. [2]).
Formally, this is almost trivial — one need only take a little more care in the proofs —
but quite useful as far as applications are concerned.

(ii) It is shown that every compact section S, may be embedded in another section
which then generates a neighbourhood of S, (theorem 5). The motivation for this
was the special case described in theorem 7. Obviously, if a single noncritical point
is taken for S,, one obtains the Whitney-Bebutov theorem.

(iii) Finally it is proved that in theorem 1 of [1], local connectedness may be
omitted from the assumptions (theorem 8).

Let P be a completely regular topological space. A local dynamical system on P
is a mapping T with the properties 1°—3° (cf. [2]):

1° T is a continous map of an open subset of P x E' into P (taking the usual
product topology of P x E'); for each x € P there are —o0 < o, <0< f, < + @
such that T is defined at (x, 0) iff o, < 0 < B, (the value of T at (x, ) will be denoted
by x16);

2° x10 = x;

3° (x10,)10, = x T (0, + 0,) whenever both xT0; and either the left or
right side are defined.

If domain T is P x E! itself, T may be called a global dynamical system. These
form the subject of [1]; see also [3, chap. V]. The difference between local and
global dynamical systems may be illustrated by the fundamental application: In
vector notation, let ’

dx
a &

denote an autonomous system of differential equations in E". Let f : E* — E” be con-
tinous, and assume some local unicity condition. For x e E", 0 e E! let xT0 be the
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value at 6 of that solution which has initial value x at 6 = 0. By clas-
sical theorems, this defines a local dynamical system; it is global iff each solution
can be prolonged over the entire 0 —axis.

Henceforth we assume that there is given a local dynamical system T on a separated
uniformisable space P.

In the usual manner, if X < P and A < E', and if xT0 is defined for all x € X,
0 € A, then XTA will denote the set of all these elements. A point x € P is called
critical iff x = x 70 for all 0, «, < 0 < B,.

Lemma 1. Let X = P, A = E!', XTA defined. If A is compact, then XTA = X TA

For proof, see [1, lemma 2]. The following are easily proved: If both X, 4 are
compact or both connected then the same holds for XTA4. If X is open then XTA
is open if either T is global or P is locally euclidean.

Next we modify a definition from global dynamical system theory [3, p. 352], [1]:

Definition 2. A subset S = P is a section if there exists a A > 0 such that xT6
is defined for (x,0) e S x (—A, ) and that

Sn(ST9) =0 for 0<|0] <A.

Any such A may then be called a length of S. Given S and A, the set ST(—41, 1) is
said to be generated by S.

The following are immediate: S = P is a section of length 1 > 0 iff the sets
ST0, STO' are disjoint for —1/2 <60 < 6’ < /2. Any subset of a section is
a section. A singleton is a section iff it is noncritical. A compact S = P is a section
iff it is a section locally at each x € S (or equivalently, at each x € P, since 0 is a section).

Construction 3. Let there be given a compact nonvoid section S,. We shall first
construct a mapping ¢, then a neighbourhood U of S, and finally a set S whose
properties will be examined.

Let S, have length 24, > 0. Since sets S,T0 with distinct 8’s are disjoint, we may
define a map Y,: So T<{—A, 4> = E' by Yo(xT0) =0 for xeS,, |0] < 2.
Obviously ¥, is continuous on a compact domain (lemma 1), so that there is a con-
tinuous extension ¥, Yo < ¥ : P —» E'. Now define, wherever possible, ¢(x) =
= %o, ¥(xT0) d0. Obviously ¢(x) is defined at least for x € Sy, and then

Lo

0
(1) o(x) = j Yo(xT0) db = f 0do =0.
- —2o
From this point on, the construction parallells that of [4].
Our next step is to obtain neighbourhoods of S, of a special type. Merely for the
purpose of this construction, a subset of P x E! of the form X x {—a, a) with
X < P, a > 0 will be termed cartesian; it is compact iff X is compact.
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From definition 2, T is defined on So X {—24,, 24¢), so that it is also defined on
a cartesian neighbourhood of S, x {4¢> 40>. Hence ¢ is defined and continuous on
a neighbourhood of S,; therefore @(xT0) (i.e., the composition of ¢ with T) is
defined and continuous on a cartesian neighbourhood of S, x {0}. Then

o(x10) = J‘ Hol//(xTS) ds, (—%(p(xTG) = Y(xT0 + o) — Y(xTO— o),

60— 2o

0

so that (9/00) p(xT0) is also defined and continuous on a cartesian neighbourhood
of S, x {0}. Furthermore, by construction of i,

6%(p(x'r0) =2}, for (x,0)eS, x {0};
by continuity, then,
) a%(p(xTH) >0 for (x,0)eU, x (—22,22),

some cartesian neighbourhood of S, x {0} (this 2 will be important later).

In particular, ¢(xT1) > ¢@(x) = 0 > @(xT — 1) for x € S;. Hence one may take
a neighbourhood U, of S, with the property that

(3) o(x12) > 0 > @(xT—2) for xeU,.

Now take any neighbourhood U of S, with U = U, n U, (particular choices of
this U will, subsequently, determine various properties of the section to be con-
structed).

The final step in the construction is to set

S={x:0(x)=0n(UT{=424)), F=STK{-441.

Lemma 4. Both S, F are closed, and

So=cScF, SocIntUc UcF.
The relations

xeU, p(x)=xT10eS, [0 <2

define a continuous closed map p of U onto S.
For proof, see that of lemma 6 in [1].

Theorem 5. To any compact section S, there exists a closed section S > S, which
generates arbitrarily small neighbourhoods of S,,.

For proof, see that of theorem 2 in [1].
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Proposition 6. In theorem 5,

1° if P is locally compact, then S may be chosen compact,
2° if P is locally connected and S, connected, then S may be chosen connected,

3° if P is metrisable with property &,then S may be chosen locally connected;

Furthermore, if P has any combination of these properties, then S may be taken
with the corresponding combination of properties.

For proof, see that of theorem 2 in [1]; one only needs the additional easily
established fact that a connected set in a locally connected space has small connected
neighbourhoods.

Now we shall obtain consequences of the extension theorem in the case that the
carrier space P is a 2-manifold. We recall a former result applying to this situation:
every locally connected continuum section is either a simple arc or a simple closed

curve [1, theorem 1]. It is easily established that the proof [1] again carries over
bodily to our case of local dynamical systems.

Theorem 7. Let S, be a simple arc section of a local dynamical system on a 2-
manifold. Then there exists a second simple arc section S o S, such that neither
end-point of S, is an end-point of S.

Proof. First use proposition 6 to obtain a compact connected locally connected
section S o S, of length say A, which generates a neighbourhood F of S,. Since S,
contains at least two points, so does S; thus S is a locally connected continuum, and
[1, theorem 1] applies.

Therefore there is a homeomorphism g : Q ~ S (a “parametrisation” of S) where Q
is either the interval <0, 1) in E* or the unit circle in E? (according as S is or not an
arc).

Now, S is a section of length A; it is then easily verified that the map h,

h0,6) = q(o) TO, (0,0)e(—%4, 41> x Q,

is 1 — 1. Obviously h is continuous, and maps its compact domain onto F. Thus i
is a homeomorphism, in fact an extension of g. The set F is a neighbourhood of S,
and hence neither end-point of S, can be an end-point of S — this is quite obvious in
the image set under A~ .

Finally, if S is a closed curve, then omission of a suitable open subarc of S — S,
results in a simple arc section as required. This completes the proof.

An interesting detail may be noticed in proposition 6 — that, under certain condi-
tions, one obtains a locally connected S even though local connectedness was not
assumed of S,. We shall now exploit this to eliminate the local connectivity assump-
tion of [1, theorem 1]:
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Theorem 8. Given, a local dynamical system on a 2-manifold P. Then every
continuum section is locally connected and thus is a simple arc or a simple closed
curve.

Proof. Let S, be a continuum and a section. Apply proposition 6, obtaining
a locally connected continuum section S > S,. From [1, theorem 1], S is a simple
arc or simple closed curve; in either case, S is hereditarily locally connected, so that
Sy = S is locally connected.

Our method of proof of this latter result was rather roundabout, using theorem 1
of [1] (and hence dendrite theory) as an intermediate step. A more direct proof would
be most satisfactory.
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Pe3rome

IMPOJOJIKEHUE CEUYEHUI B JIOKAJIBHBIX
JUHAMUYECKHUX CUCTEMAX

Otomap I'aex (Otomar H4jek), Ilpara

I'maBuble pesynbraTthl: IIycTh Sy — KOMOAKTHOE CEYEHWE JIOK. AWH. CHCTEMEI
B TUXOHOBCKOM IIPOCTpaHCTBe P; Torzma cymectByeT ceyeHue S O S,, KOTOpoe Mo-
POXAAaeT OKPECTHOCTHh CSYEHUS S,. (Knaccn'{ecxaﬂ TeopeMa BurHeit-BeGyToBa
COOTBETCTBYET CIIydar0, KOTAa S, — CAMHCTBSHHAsE HEKpUTHYecKas Touka.) Ecimu,
Jajee, P JIOK. KOMIIAKTHOE U JIOK. CBSI3HOE, ¥ S CBA3HOE, TO CYLIECTBYET KOHTHHY-
ym S. Ecmu P MeTpusyeMo ¥ 00s1agaeT CBOWCTBOM &, TO CYILIIECTBYET JIOK. CBSI3HOE S
(Teopemst 5 u 6).

Jpyrue pe3ynbTaThl OTHOCATCS K CIily4aro, koma.P — MHorooGpasue pasmzp-
HOCTH 2. Besikoe cedeHMe — KOHTHMHYYM SIBIISIETCS IIPOCTOM [Iyrod MM MPOCTOM
3aMKHYTOH KpPUBOM (0606H1€HHC TeopeMsl 1 u3 [1]) IIycte S, — mpocrast myra
M CeveHMe; TOrJa CyHIECTBYeT S D S, sBIAIOIIeeCs IIPOCTON AYrod M CEUCHUEM
TaKUM, YTO KOHIEBBIE TOYKH S HE SBJISFOTCA KOHIEBBIMBI IS S.
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