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INTRODUCTION

The only aim of this paper is to describe a class of mathematically well defined
mappings which meet probably all the linguistic requirements for (singulary) transfor-
mations. The main requirement expressed by N. CHOMSKY is that the transformations
are mappings the domains and ranges of which are sets of phrase-markers. There
are different mathematical definitions of a context-free grammar and of a phrase-
marker determined by it, but the term phrase-marker is very often used by linguists
independently of any context-free grammar and without any mathematical definition
at all.

To be able to make any use of the main linguistic requirement concerning the
transformations it is necessary to introduce a new definition of a phrase-marker (or
of a structural description) which is independent of any context-free grammar and
which is acceptable to linguists (i.e. which can be justified empirically). Both these
conditions can easily be satisfied by a definition which is on the one part equivalent
to that which depends on the notion of context-free grammar (as it was introduced
originally by N. Chomsky, e.g. [1, 2]) but which does not make any use of the term
rule (only the terms terminal and nonterminal symbols or vocabularies are necessary),
i.e. a definition using the terms of graph theory only (see [3, 4]). Using this mathema-
tical definition of the phrase-marker the reasoning leading to the considered class of
mappings seems to be very natural. A mathematical definition of a transformation
follows almost immediately from simple purely mathematical requirements.

Concerning the linguistic requirements for transformations the following explana-
tion of the situation can be of some use.

'Y The main part of this paper was lectured at the summer seminar (June, July, August 1965)
on mathematical linguistics in M.L.T. under the leadership of N. Chomsky. During this seminar
there were fruitful discussions with many other participants, especially with E. Bach, M. Halle,
J. J. Katz et all.
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In a traditional grammar of a natural language the one-to-one correspondences
(in fact, there are some exceptions) between the sets of the active sentences and of the
passive ones or between the declarative sentences and the questions etc., are very
well known and very often used in teaching that language. Correspondences of that
type were called transformations by Z. Harris [5]. In teaching e.g. English, the active
sentences are considered simpler than the corresponding passive ones and therefore
they are taught sooner. Only after a grammar for active sentences is built are the
passive sentences introduced or described as a result of the active-passive transforma-
tion which is applied to the active sentences. Finally a grammar for the passive sen-
tences is also built or the original grammar is extended to that case.

It is well known that in the traditional grammar the set L of all English sentences
can be divided into special subsets L, L,, ..., L, (e.g. L, is the set of active sentences,
L, of passive ones, L; of declarative ones, L, of questions etc.) such that some one-
to-one correspondences C; ; between L; and L; can be discovered as an important
result of linguistic research (e.g. C, , is the active-passive correspondence and Cj 4
the declarative-question one etc.). To avoid any misunderstanding, the corresponden-
ces C; ; will be called descriptive transformations.

Now from a pure mathematical point of view if we have the subsets L;, L, ...,L,
and the descriptive transformations C; ,, C; 4, ..., it is possible to define new subsets
L,, L,, ..., L, by the condition that L’ isnon void and is an intersection of some of the
original subsets L;, L,, ..., L, such that always either LynL; =0 or L;nL; =

= L; (e.g. L contains active declarative sentences, L, active questions, L; passive
declarative sentences, L passive questions etc.). In general the subsets L] contain less
elements than the subsets L; but, on the other side the number m of the subsets L; is
greater than the number n of L;. Furthermore the partial transformations C; ; of C;
are also determined between L] and Lj such that Ly n L; + 0 = L; n L, (e.g. C} , is
the transformation which assigns the corresponding question to the given declarative
sentences but only if both are active sentences, C} ; is the active-passive transforma-
tion but only for the declarative sentences, etc.). Finally, it is always possible to
compose the transformations C;; and Cj,. The composed function Cj,C;; is
a new transformation between L; and L, (e.g. C5 ,C} 5 assigns the corresponding
passive question belonging to L to each active declarative sentence from L;, because
C; 5 assigns the passive form from Lj to the given active declarative sentence from L}
and then C} , assigns the corresponding question from L}).

In this situation one can look for a single distinguished subset L; or (perhaps con-
struct a new subset L containing some artificial sentences) and some distinguished
transformations such that, using them and using the composition of them, all the
subsets Lj, L}, ..., L, can be generated. And this fact was stressed by N. Chomsky
and used in his generative transformational grammars.

On the other hand, it was expressly required by N. Chomsky that the transforma-
tions in his sense — they will be called structural transformations here — concern the
whole phrase-markers (or structural descriptions) of the sentences and not only the
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sentences themselves as it is the case when using descriptive transformations. Of
course the notion of a structural transformation is more powerful than that of
a descriptive one and each structural transformation defined for phrase-markers
induces the corresponding descriptive one defined only for the sentence which is the
terminal string of the considered phrase-marker.

In the transformational grammar of English N. Chomsky assumes that a set of
phrase-markers P, of the “kernel sentences™ (or later of the “basic strings”) L is
given and also some structural transformations Ty, T,, ..., T,, are given together
with certain rules of composition of them such that using the allowed composed
transformations Tj Ty, ... T;, to the elements of PB,, all the phrase-markers of all
English sentences can be generated. If we denote by C; the descriptive transformation
corresponding to the structural transformation T} and if we use the same rules of com-
position of C; as of T} then by some composed transformation C; Cj, ... Cj_ applied
to Ly we have to obtain L}, by some different composed transformation applied to Lj
we obtain Lj, etc. It is clear that the original subsets L, L,, ..., L, are also the
unions of some L; and the original transformations C; ; are also determined by
some C; » S0 we are back in the starting situation in traditional grammar.

By that the connection between the transformations in the Harris’s sense and in
the Chomsky’s sense is clarified, of course only in the simplest case concerning so
called singulary transformations (i.e. to a single sentence or to a single phrase-marker
again a single sentence or single phrase-marker should always be assigned; the
possibility of constructing from two or more sentences or phrase-markers only
a single one is not considered here).

Finally there is an assumption about B, expressed by N. Chomsky, namely that P,
is determined by a context-free grammar G,, but not similar assumption is made
with regard to the sets of derived phrase-markers Pj, B3, ..., B,, of the sentences
belonging to L, L), ..., L, resp. Lete.g. P; = Ty ,(Bo) where Ty ; = T}, T}, ..., T},
is a certain allowed composed transformation. As B is a finite set, P is also finite
and therefore we can assume that B} is determined by a context-free grammar G,.
Under these assumptions the transformation Ty ; can be considered as a correspon-
dence between two context-free grammars G, and G,. And that is just the starting
point for a general definition of a (singular) transformation introduced in this paper.

1. PHRASE-MARKERS AND MARKERS

Let us introduce — only in order to clarify the terms used here — the following
conventions: the term phrase-marker is always dependent on a context-free grammar
as it is stressed in its informal definition given by N. Chomsky [1] where the starting
point is a derivation of the considered grammar and where the familiar diagram
having the form of a labeled tree is drawn step by step for all the used rules; the term
structural description is always independent of any context-free grammar but it
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corresponds again to the diagrams having the form of a labeled tree (e. g. the diagrams
of the deep structure of “basic strings”) where — probably — the edges express the
immediate constituent relationship.

The confusing fact is that the same picture, the diagram of a labelled tree can be
considered once as a phrase-marker and at some other time as a structural descrip-
tion. If we wanted to distinguish these two interpretations of the same labelled tree
we could do it in the following way: in a phrase-marker we should mark out all the
particular rules used in it by a closed dotted line around the corresponding vertices
as shown in Fig. lb), where evidently the rules used are as follows:

1. {VP) ::= (Verb) (NP)

2. {Verb) ::= (V) {Prt)

3. (V) .= turn,

4. (Prt) .= out,

5. (NP> = (Determ) (N,

6. {Determ) ;= {Quant) {Art),
7. {Quant) ::= some of,

8. (Art) .= the,

9. (N) ::=lights.

Thus a) is a structural description but b) is a phrase-marker.

Unfortunately there is an exact mathematical definition neither for the notion of
the phrase-marker nor for the structural description and therefore nothing that now
follows can be proved, it can be only justified empirically by linguists or resulted by
an example.

It is clear how to pass on from a phrase-marker to a “corresponding’ structural
description and also how to mark out certain “rules” in a structural description such
that it becomes a ‘“corresponding” phrase-marker. What we are claiming is an
assumption — probably acceptable to all linguists — that the classes of all structural
descriptions and of all phrase-markers are identical, i.e. it is of no importance to
distinguish between the notions of a phrase-marker and a structural decription.

To be able to make any use of this assumption at a mathematical level it is necessary
to have an exact mathematical notion underlying the two notions of phrase-marker
and structural description and also being acceptable to all the linguists, i.e. each
linguistically correct phrase-marker or structural description always satisfies the
underlying definition and conversely each diagram satisfying the underlying definition
is a phrase-marker or a corresponding structural description.

If we look at the diagrams in Fig. 1 it is clear that very important information is
contained in the placing of the particular symbols on the paper. One part of this
information is expressed by the drawn lines and by placing the relation “up — down”
and the second part is not expressed by any lines at all but only by the relation ““left-
right”. The first part of the information concerns a binary relation ¢ which is the
immediate constitutent relationship and the second part concerns another binary
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relation ¢ which is the immediate ordering relationship (a part of it concerning the
terminal symbols is the immediate word-order relationship and the remaining part
concerns the order of non-terminal symbols which in the strings belong to the certain
derivations).

Fig. 2a) shows an underlying structural description of a basic string and b) is the
corresponding diagram where also the o-lines but dotted are drawn and both the -

S

T

NP vp

Aux Verd NP Adv manner

VP
\ John Past drink milk by Passive
Verd NP\
o TN
turn out % A1|‘t lights NP - - VP
some of the /Au)g—-uVer‘b———»NP—bAdv wanner
///ﬁ// />\/\ ERNR /\:’\’/

John———»Past »drinl&»milk»’by »Passive

-hPaSSiVE / thnJ

Fig. 1a, b. Fig. 2a, b, c.

and o-lines are directed by making the use of the directions “up — down” and “left —
right” respectively. The most important difference between a) and b) is that in b)
nothing depends on the placing of the particular symbols on the paper because all
the necessary information is contained in both types of arrows (that type of a descrip-
tion is necessary for any rigorous handling, e.g. for a machine handling). Thus b)
and c) express the same phrase-marker or the same structural description as a), but
evidently both are rather complicated.

There is another important fact in the structural description a) in Fig. 2, namely
that the non-terminal symbol NP is used in two different places. This is the reason why
it is necessary to distinguish the tree or generally the graph structure of a structural
description on the one hand and the labelling of the nodes of it by some symbols on
the other hand. Then a labelling of nodes is a function defined on the set of nodes of
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the underlying graph. The values of this function are the terminal or non-terminal
symbols.

Now the required definition underlying all the linguistic structural descriptions or
phrase-markers can be formulated as follows: a structural description (or a phrase-
marker) over the terminal or non-terminal vocabulary V. or Vj resp. (and over the
context-free rules in R, i.e. over a contex-free grammar G = {Vy, Vy, R)) is a finite
double graph with labelled vertices P = (R, ¢, o, f», where R is a finite set of vertices,
¢ © R x Rand ¢ < R x R are the binary relations the elements of which are called
edges and f =« R x V, V= VU Vy is a function called labelling, such that the
following conditions are satisfied

(a) o isarooted tree relation,i.e. there is a distinguished vertex r € R called the root
such that for each x € R, x = r there is exactly one path in ¢ from r to x (ie.
a sequence (v, vy, ..., v,) of vertices from R such that (v;_;, v;) € ¢ for each i =
=12 ..,nand vy =1, v, = x);

(b) o is an arbitrary atransitive and acyclic relation, i.e.if (vy, vy, ..., v,) is a path
in ¢ then (vo, v,) ¢ o for each n > 1 and (v,, v,) ¢ o for each n = 1, which is con-
nected; the two relations ¢ and o are connected by the following conditions

(c) if x, ye R and x % y then there always occurs precisely one of the following
possibilities: there is a path either in ¢ from x to y or in ¢ from x to y or in ¢ from y
to x or in ¢ from y to x;

(d) if (x, y)eo and (x, x), (v, y)' € ¢ then (x', y'), (x, '), (x', y) € To (where To
is the transitive closure of 0'); and the labelling f satisfies

(e) if x € R and f(x) € Vy then x is an end vertex, i.e. there is no vertex y such that
(x, y) e o (f(r)is a distinguished symbol — usually S € V}); and if we are considering
a phrase-marker over G = {(Vr, V3R) then

(f)if xeRand Q = {yeR; (x,y)eo} + 0 and Q = {y,, 2, ..., ¥} such that
(yi» yiz1) €0 for each i = 1,2,...,k — 1 then (f(x) ::= f(y,) f(¥2) --- f(») € R

This definition was introduced in [3, 4] on the base of an analysis of phrase-
markers or structural descriptions, only the conditions were formulated using the
transitive closures Tp and To of both relations (namely then Tp and To are special
partially ordering relations and Tg U To is a full ordering relation).

It is clear that it is very difficult to work with such a complicated formulation.
Therefore in [6] another definition of phrase-marker was introduced (of course
equivalent to the previous one in the sense that there is a one-to-one correspondence
between the formations in the first and in the second sense) which is dependent on
the rules of a context-free grammar, i.e. the condition (f) is used in full. To avoid any
possible confusions we shall speak only about the markers over the given context-free
grammar instead about the phrase-markers.

A proper marker over a context-free grammar G = {(V, Vy, R) is a rooted tree
with labelled vertices and edges M = (A4, r, B, ¢, ¥>; A is a finite set of vertices,
redis aroot, Bc A x A is the set of edges, ¢ = 4 x R is a function called
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labelling of verticesand < B x {1, 2, 3, ...} is a function called labelling of edges,
such that the following conditions are satisfied:

(A) {A, r, B) is a rooted tree with the root r, i.e. r is a distinguished vertex and for
each vertex a € A, a + r there is exactly one path in B from r to a;

(B) if (a, b)eBand ¢(a) = (Xo: 1= XX, ... X)) €R, 0(b) = (Yo 1 1= Y, Y, ...
Y,,)eiR where X;e Vfor 0 < i< m, Y eVfor 0=<j=n then there exists an
integer k such that 1 < k < m, X, = Y, and y(a, b) = k.

(C) is b * c then Y(a, b) * Y(a,

An improper marker is each particular symbol from V. An improper marker has
no vertices. Finally a disconnected marker is any finite sequence of the length I > 1
of proper or improper markers over G.

=

ey (ve)

A
n

~
n

(duxy {Verb) (NP) {Ad&v manner)

1t o= it o= NP) :: = mi Adv manner ) ::
{hux) :i = Past {Verb) artnk (NP} k < e e

Fig. 3a, b.

In Fig. 3a) is a marker corresponding to the phrase-marker in Fig. 1b) and in
Fig. 3b) is a marker which corresponds to Fig. 2. In the first case the labelling of
vertices uses only the numbers of the particular rules instead of the rules themselves.

Again it is very easy to see how to pass from a phrase-marker to the corresponding
marker (of course the underlying rooted tree is determined only in regard to the usual
graph-theoretical isomorphism) and conversely from the markers to the phrase-
markers.

What is important to stress here is that — briefly speaking — to the two non-
isomorphic phrase-markers two isomorphic markers can correspond, because the
isomorphism concerning the underlying rooted tree by markers is weaker than the
isomorphism concerning the underlying double graphs by phrase-markers. In fact
the ordering relation o is expressed in a marker only by the labelling of edges .
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2. LINGUISTIC REQUIREMENTS CONCERNING TRANSFORMATIONAL
GRAMMARS

The first requirement expressed bp N. Chomsky is that each transformation T is
or is to be a mapping the domain and the range of which are the sets P and P* of
phrase-markers resp. In fact the range P* is not given in advance or explicitly but it
has to be determined uniquely by the transformation T and by its domain %, i. e.
P* = {P*; there is P € P such that T(P) = P*}. That means that a transformation
has to be a constructive mapping containing always a complete procedure for obtain-
ing P from P.

The second requirement expressed by N. Chomsky concerns the determination of
the domain P of T. The existence of a broad and unspecified class of phrase-markers
(e. g. the cless ok all possible phrase markers over the all possible context-free
grammars) is assumed and ¥ is a subset of it which is fully characterised by the struc-
ture index of T. Namely, if a is an arbitrary string over V = VU Vy, where obviously
in Vy and Vy there are symbols used in the phrase-markers from P, then there is
a uniquely determined set Y, of phrase-markers such that a is their structure index.
If we use the notion of th phrase-marker introduced in the previous section then
a— A,A, ... A, where AV for 1 £ i < nis a structural index of a phrase-marker
P = (R, g, g, f) if there are vertices ry, r,, ..., r, € R such that r, r,-H) € o for
i=1,2,....,n—1,1e. (rl, Fay oens r,,) isa pathin ¢ aue it is not possible to extend i,
ane iff:(r,-) = A;foreach i = 1,2, ..., n.

The third requirement expressed by N. Chomsky concerns the so-called elementary
transformation T,,; which underlies T. If ¢ = L(P), where L(P) denotes the last
string of P, i.e. concatenation of all symbols by which the end vertices are labeled in
the order determined by o, then by the structural index a = A4, ... A, of P
a sequence of strings (¢, t,, ..., t,) is uniquely determined such that t,t,...1, =t
and that ¢; is traceable in P to the vertex labeled by 4, for each i = 1,2, ..., n, i.e.
using the previous notation we can say that each vertex r; determines one sub-phrase-
marker P; of P the root of which is r; (in all details we can put R; = {x € R; either
X = r; or x & r; but there is a path from r; to x in ¢}, ¢; = ¢ " (R; X R)), 0; =
=on(R; xR), fi=f|R) and t, = L(P;) for each i=1,2,...,n. Now the
requirement is that L(P*) = 0,0, ... 6, where o, = T, (i; ty,t5,..., 1,) for each
i =1,2,...,n Besides that if P'e B, L(P') = ¢’ and P; with the root r; are the
corresponding sub-phrase-markers such that L(Pj) = t; and f'(r;) = A; for each
i=1,2,...,n, then each a; = T,(i; t}, t3, ..., t) is formed from g; by replacing ¢;
by t;foreachj = 1, 2, ..., n. That means that o; has to be a string having the following
form: o; = x(Vt,x4"1; ... t,x{”, where x{? is a terminal string over V;. for each i, 1 <
Si<nandeachj0=j=<n (otherwise it would not be possible to substitute t;
in o; for each j = 1,2, ..., n). But obviously it should not be required L(P*) =
= x{Vtxt, L xOxPtx Pty L tx P L xPt L 1,x™ and therefore the require-

ment concerning 7, has to be reformulated in accordance with the effect which was
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to be realized, namely the effect of ruling out the possibility of applying transforma-
tions to particular strings of actually occuring words (or morphems) or in other words
the effect of avoiding an arbitrary pairing off of sentences. That means that here the
complete characterisation which mappings are transformations is required.

The fourth requirement expressed by N. Chomsky concerns the resulting effect
that T has on the terms ty, ?,, ..., t,. N. Chomsky requires that, for instance, T may
have effect of deleting or permuting certain terms, of substituting one for another, or
adding a constant string in a fixed place and so on.

The fifth requirement expressed by N. Chomsky is picking out the importance of
the relation “¢;is an 4;” in the phrase-marker P, i.e. the relation “¢; is traceable to A4;”
or in other words “there is a sub-phrase-marker P; of P such that L(P;) = ¢, and
F(P;)) = A;”, where F(P) is the first string of P. By that he only reminds us that the
graph-structure of P has to be changed very carefully in order to obtain the new
graph-structure of P*.

All five requirements concern only the so called singular transformations (such
that apply to a single phrase-marker and not to pairs or generally to n-tuples of
phrase-markers). If we review all of them we find out that there is no description at
all of any procedure how to get P* from P.

Using some examples how the singular transformations are determined by the
linguist working in the area of transformational grammars the following scheme can
be deduced: if T'is a transformation and a = 4,4, ... A, its structural index then the
following transformational rule is used 4,4, ... 4, = agATa, A5 ... A¥a, where
(i1 iz, ..., i) is @ permutation of {1,2,...,n}, a; are strings over V; and either
A} = A;, or A7 = I (I is the null-siring in the free semigroup over V).

If we are thinking about the phrase-marker P in Fig. 1 the transformational rule
can be (V) (Prt) (NP) = (V) (NP) {Prt), i.e. using the usual notation A4, =
=(V), A, = (Prt), A; = (NP),ie.n =3 and i; = 1,i, = 3,i; =2, A] = 4,,
forj=1,2,3and a; = I forj = 0,1,2,3. Then the T(P) = P* s to be the phrase-
marker drawn in Fig. 4a).

Similarly if P is phrase-marker in Fig. 2 the transformational rule can be as follows:
n==6, A = (NP), A4, = {Aux), A; = (Verb), A, = (NP), A5 = by, A, =
= Passive and i; =4, i, =2, i3 =6, i;=3, is=75, ig =1, A] = A;, for j =
=1,2,...,6and a, = be,a; =Iforj+2,j=0,1,...,6. Then the T(P) = P* is
to be a phrase-marker in Fig. 4b).

In the first case in P* it is possible to find the corresponding structural index <V}
{NP) (Prt) and in the second case (NP> {Aux) be Passive {Verb) by (NP}, both
are in fact the right sides of the used transformational rules. In the first case —because
this transformation should be a permutation only — the subphrase-markers of P*
below the structural index are well defined but not above it and in the second case
neither below nor above the structural index of P* there is determined what sub-
phrase-markers should be — because of adding “be”.
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As the last requirement it can be stressed that the transformations are to be positively
one-to-one mappings. Thus to a transformation T there allways exists its inverse
transformation T~!. This is an important requirement in regard to the semantical
questions, namely that by using a transformation no information can be lost.

Vsrb/ N\tht
| 2N

some of the

a)

/ \
/ mmanner
l b

milk Past ’bdvxl’assive drink  DbyvwNP

the
Jom
b)
Fig. 4a, b.

3. LINGUISTIC REQUIREMENTS CONCERNING TRADITIONAL
TRANSFORMATIONS

In regard to a traditional grammar of a natural language we can suppose that all
the sentences of that language contained in the set L are strings over the terminal
vocabulary Vy, where V. contains all the basic forms of all word-forms, all suffixes
and also a special symbol denoting space (we do not go into details and consider e.g.
the irregular verbs, where in the word-forms “goes” and ““went” there is no common
root or stem, etc.). Further we can suppose that Vi is divided into subsets according
to the traditional grammatical categories as substantives, adjectives, verbs, numerals
on the one hand and into the other grammatical or logical categories as pronouns,
articles, auxiliary verbs, prepositions, conjunctions and all other phrases having pure
logical character as negation, “if ... then”, “there exists”, “for each” etc. and of
course what remains, i.e. different sufﬁxes, on the other hand. The first type of
categories can be called proper and a set of all terminal symbols belonging to any
proper category can be called proper (terminal) vocabulary and denoted by V. The
second type of categories can be called auxiliary and V = V; — Vp can be called
auxiliary (terminal) vocabulary. Obviously the words having full lexical meaning
belong to ¥, while the words of a grammatical or logical character belong to V,
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(again here we are not going into all details about the meaning because we do not
consider a determination of place and time and different possible modalities etc.).

Besides that we can generally suppose that we have more specialized proper cate-
gories than the above mentioned ones, e.g. we have the categories for intransitive
verbs, transitive and double transitive ones etc. and let C, C,, ..., C, be the subsets
of Vp corresponding to the particular proper categories {C;), <C,), ..., <C,>
(further it is possible to assign to each category {C;) certain logical characteristics
expressing whether the words belonging to C; express some individual objects or
classes of them, or properties of them, or relations between them, or properties of
properties etc. which in other words says what type of a logical predicate the words
are or can be). Now we can define the variables &; for each i = 1, 2, ..., p as the new
symbols denoting arbitrary elements of C,. In fact it would not be necessary to intro-
duce these new symbols &; because we could use the names {(C;) to be same purposes
as it is done in the ALGOL 60 language description [7]

Now in regard to the division of V7 into V, and V, each string g from L (or each
string over the vocabulary V;) can be uniquely expressed in a canonical form q =
= q0Q1qy --- Qidx Where Q;€C;, = Vp for each i = 1,2, ...,k and g, are strings
(may be null-string I') over the auxiliary vocabulary V, foreachi = 0, 1, ..., k. Here k
can be called canonical length of q. Further the string q,&;,q; ... £;,qs Where &;, is
a variable corresponding to the category {(C;,> determined by the condition Q; e C;,
for each i =1,2,..., k, can be called a sentence-form of q and the strings g; or
symbols ;, are called the constants or variables of that form resp. It is clear that such
a sentence-form q¢;1q; ... &;,4, is uniquely determined by a sequence of constants
(40> 415 ---» 4x) and by a sequence of categories ((C;,», {C;,>, ..., {C;,») or only by
their indices (jy, ja, ..., ji) if a fixed ordering of them is assumed.

If we are thinking about the subsets L;, L,, ..., L, of the considered set L such
that any the traditional transformation T; ; between L; and L; may be obtained, then
the following requirement concerning the subsets L; has to be satisfied: if g € L; and
q = o044 ... Qxqy is a canonical expression then also 4,Q%q,0% ... QFq, e L, for
each Qj such that O and Q, belong to the same category C;, foreach h = 1,2, ..., k.
In other words if F is the set of all sentence-forms determined by the set Lof sentences
and if in the similar way the sentence-forms F; correspond to the subsets L; for i =
= 1,2, ..., n then the previous requirement can be expressed as a condition F; n F; =
=0Qforif+jandi,j=1,2,...,n

The further requirement can be formulated as a mathematical definition of a tradi-
tional transformation (only a singular one!) T; ; between L; and L; in the following way:
T;,; is a one-to-one mapping from L; onto L; such that if ¢ = q,0,q, ... Qyq € L;
then T; ;(q) = q30Q74q} ... Q7q,and a) | = k, b) there is a mapping f; ; which assigns
a sequence (s, Sy, ..., s,) € F; to an arbitrary sequence (ro, ry, ..., 1;,) € F; of the
strings (may be also null-strings) over ¥V, for each k =0, 1,2, ... such that
fi{do> 41> - @i) = (45, 45> -, 4}), ) to each sequence (go, g, ---» qx) there cor-

288



responds a permutation 7, of the integers {1, 2, ..., k} such that Q,’:“ = Q.. 1 for
eachh=1,2,...,k.

In a very special case it can happen that every sentence belonging to L; has a fixed
canonical length k. Then f; ; corresponds to the Chomsky’s elementary transformation
and it is always possible to consider instead of f; ; a sequence of mappings f©, f, ...,
.. f® such that f*%(q,, g4, ..., q,) = qj for each h = 0, 1, 2, ..., k. However, one
cannot make any use of that because it does not touch the important question how
to determine f; ; in another manner than by an enumeration, which is of course a non-
effective method in a general case.

The mapping f; ; is the most important part of a transformation because — in
fact — the transformations are essentially the mappings rather of sentence-forms
than of the sentences themselves.

But also in a general case it is here quite clear what is a constant and what a variable
(i.e. a category or the corresponding non-terminal symbol called the metalinguistic
variable in ALGOL 60 language) and also all the possible effects of the transforma-
tion are determined exactly. Namely the proper symbols (or the variables if we are
thinking at the level of sentence-forms) can be permuted or — which is the same —
one can be substituted for another which is determined by the permutation =. It is
also clear that a deleting or adding of a symbol always concerns the constants, i.e.
the auxiliary terminal strings only and that it is determined by the mapping f; ; which
is as general as possible. E.g. T; ; will be a pure permutation if f; (g0, 4y, ..., q;) =
= (4o, 41, ---» ) for each sequence (¢, 41> ---» qy), i.. if f; ; is an identity mapping;
there will be an effect of deleting or adding if for f; (d¢, 41, .- 4) = (9%, 45, .-, qi)
there is anindex h such that g, & I and q; = I or on the contrary g, = I but g;° + I etc.

But it is important to mention here that these properties of permuting, deleting or
adding are not the properties of the mapping f; ; or even T; ; in general but that they
are only locally depending on each particular choice of a sequence (4o, q;, -- ., 4i),
i.e. the effects can be different for different sequences under the condition that we
have not in our mind some special cases (e.g. if L; and L; are very small subsets
containing only the sentences belonging to one single sentence-form; then the domain
of f; ; is a single sequence etc.).

With regard to the transformations which are mappings of phrase-markers the
two previous requirements concern the last strings of them only. They determine
a very strong correspondence between the proper terminal symbols (namely they do
not change, only permute and therefore in the corresponding last strings it has to be
the same number of such symbols) but very weak correspondence between the
auxiliary terminal strings (there are almost no conditions concerning f besides that
the length of sequences has to be preserved).

Further it can be assumed that in each phrase-marker each proper terminal
symbol Q is dominated by the corresponding category {C;», i.e. Q € C; and all the
categories are the non-terminal symbols of an underlying context-free grammar (and
obviously {C;> ::= Q; are some of the rules). According to that assumption there
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is a very strong correspondence between the categories used in the corresponding
phrase-markers.

The last requirement concerning the non-terminal symbols in the corresponding
phrase-markers contains' also the previous assumption about the proper categories.
If Vy and Vy are all the nonterminal symbols used in the phrase-marker of the
domain and range of a transformation T resp. then by T a correspondence between Vy
and Vy should be determined that it might be possible to interpret and understand
the new phrase-markers using the ““is a” relation from the original ones.

That correspondences between Vy and V5 of two context-free grammars G and G*
have a great importance in all the linguistic questions where two languages or two
grammars have to be considered and compared simultaneously as it is by the transla-
tion or in comparative linguistics or when constructing a grammar from several
partial grammars for special parts of a language etc. Here a question is touched about
the linguistic categories which are independent on the particular languages (see
Chomsky [8]).

4. HOMOMORPHISMS OF GRAMMARS

Let G = (Vp, Vy,R, S) be a context-free grammar, SeVy, VinVy =0, R <
< Vy x V= where V = V,; u Vy and V* denotes a free semigroup of strings over V,
G(S) denotes the language generated by G from S etc. E.g. e is an identity symbol
(with respect to the operation of concatenation), i.e. xe = ex = x for each string
xeV® buteg¢ V™.

G is said to be canonical if the terminal vocabulary V; is divided into two parts
Ve # 0 and V, called proper and auxiliary vocabulary resp. (i.e. Vp =V, U V,,
Ve 0 V4 = 0) in such a way that the following condition is satisfied

(1)’ if (x :: = y) e R then y has to contain either a nonterminal or a proper symbol.

Then the union V; = Vy U V; is called the canonical vocabulary of G. Separately
we shall also extend the notion of the canonical grammar to the case Vp = 0, namely
each context-free grammar will be called canonical without the necessity to satisfy (1).
It will be seen that even in this special case of canonical grammars all further notions
will have good sense.

"In a canonical grammar G each rule w, € R or wy € R (where the capitals 4, B are
used as indices only) can be expressed in a unique way in the following canonical
form

(2)  wa=(40::=aedsay... 4a,) or wy=(By::=b,B;b,...Bb,), where
A;eViand a;e V or a; = eforeachi =0,1,..., k (and similarly for wp).

The integer k determines a number of occurences of canonical symbols at the right
side of the rule w, and is said to be the canonical length of w,. The number of
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occurences of proper symbols in a string x is said to be the proper length of x.
Obviously an arbitrary string x over ¥ can also be expressed in its canonical form
XoX1X1 ... XX, = x, where X; eV, foreachi=1,2,...,kand x;eVy orx; =e
for each i = 0, 1, ..., k. The canonical form is also determined in the case V¢ = V.

The most important characteristic concerning the recursive structure of a context-
free grammar G and therefore also the language generated by it is the following ternary
relation

(3) O = {(wsy,wsi); wi,wpeR, Bo=A; and 1 i<k,

where k is the canonical length of w,}

which can be called the relation of applicability of rules, because the triple (w4, wg, i)
means that the rule wy can be used to the i-th canonical symbol (which has to be
a nonterminal one) of the right side of the rule w,. Again it is clear that this notion has
an exact meaning in the context-free grammars too.

Now let G* = (Vy, Vi, Vi, ®* S*) be another canonical grammar and let us
assume that either Vp & 0 & V} or Vp = 0 = V3.

An (usual) homomorphism of R into R* is a mapping @ of R into or onto R*
preserving the canonical and proper lengths of rules and preserving the relation of
applicability of rules too, i.e. @ satisfies the following two conditions

(4)  if w e R then P(w) € R* and the right side of &(w) has the same canonical and
proper length as the w has,

(5) (Wi wp, i) € Gy if and only if (B(w), D(wg), i) € Gy i.e. By = A, if and only
if By = Af where we denote the canonical forms as follows: ®(w,) =
= (Ag .= agATal ... Afa;) and ®(wg) = (B ;1= bgBib} ... Byb}).

It is necessary to lay stress on the fact that in (4) and (5) there is no requirement
concerning the auxiliary vocabulary or, in the case V, = 0 = Vj, no requirement
concerning the terminal vocabulary at all. At the first sight this is the main difference
between our definition of homomorphism and that which was introduced by M. P.
SCHUTZENBERGER [11] and which concerns the vocabularies instead of sets of rules
as it is here. Later on, however, some connections between these two different con-
cepts of homomorphism will be established.

As we want to be able to change the word-order of sentences or to compare the
sentences distinguished from each other by the ordering of their elements only, it is
necessary to introduce a more general notion of homomorphism as follows.

Let n, g, ..., 1, be permutations assigned to all the particular rules wy,, wg, ...,
..., Wz from R such that each ny permutes the set of integers {1, 2, ..., k} if and only
if k is the canonical length of wy. A mapping @ of R into or onto R* together with
these prescribed permutations n4, 7y, ..., 75 is said to be the permutational hoino-
morphism if ® satisfies (4) and
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(6) (w4, w, i) € Gy ifand only if (B(w,), B(wWp), n4(i)) € Gy i.e. B, = 4; if and only
if By = A

na(i)

If all the prescribed permutations =, are identical (i.e. m,(i) = i for each i) then
the permutational homorphism is a usual one. Evidently under these assumptions
condition (6) reduces to condition (5).

Theorem 1. Let R satisfy the following requirement: Each nonterminal symbol is
contained at the right side of a rule and also at the left side of a rule. Now a map-
ping @ of R into R* satisfying (4) is a permutational homomorphism with respect
to the prescribed permutations n,, g, ..., 1y if and only if the following two con-
ditions are satisfied: let us denote w, = (Ay ::= agA,a, ... Ayay) and D(w,) = wh =
= (agATay ... Afay) the canonical forms; then

(7) A;eVyifandonlyif A, eV} foreachi=1,2,..., kand

(8)  there is a mapping ty of Vy into Vy such that if A, € Vy then A}, = t(4))
foreach i =1,2,..., k and ty(A,) = A} for each w, e R.

Proof. First of all let us suppose that @ is a permutational homomorphism with
respect to the given permutations m,, 7, ..., 7z and let us prove (7) and (8).

If A;e Vyforsomei,1 < i < kand some w, € R then there is — according to our
requirement concerning R — wy € R such that B, = A; and therefore by (6) Bj =
= Ay iy 16 A7,y e Vy. If A; eV}, for some i, 1 < i < k and if it were A7, e Vy
then w, and w¥ would have different proper lengths which is a contradiction to (4).
Therefore @ satisfies (7).

Further let us consider the set of all couples, (4;, A,’fA(i)) corresponding to all
rules wyeR, wy = (4o ::= apAay... A,a,) and to all integers i = 1,2, ..., k such
that 4; e Vy. We add to this set the couples (4,, A5) corresponding to all rules
w, € R. Formally we assume that each permutation 7, is extended as follows:
n4(0) = 0. If this set of couples were nota mapping there would be two different
couples (4;, A5 ) and (B;, By, ;) such that 4, = B; but A}, * By, . We need
to deduce a contradiction from this assumption. There are the following possibilities:

(1) i =1, j = 1; according to the requirement about R there exists a rule wy e R
such that X, = 4; = B; where wy = (X ::=XoX X, ... X;x,). Then (wA, Wy, z) €
€6y and (w,,, Wx,]) € (Sm and therefore by (6) X§ = 4%, and X§ = B
AY iy = By, Which is the required contradiction.

na(i) =
(i) i =0, j =z 1 (and similarly i = 1, j = 0); now the first considered couple is
(Ao, A3) — according to the extension of 7 4 — and therefore 4, = B, and by (6)
A = B}, ;). On the other side A5 = 47, i.e. A% o) = BX ;) which is again a con-
tradiction.
(iii) i = 0, j = O; using the other part of the requirement about R a rule
wx € R such that X, = A, = B, for some t, 1 <t < h has to exist, where Wy =

(i) 2p(j) 1

ne(j
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= (Xo::= xoXx; ... X;x,). Then by (6) A5 = X, and By = X7, and therefore
A% o) = A5 = By = B}, which is also a contradition.

We have proved that the considered set of couples (A4;, Ay )is (or it determines)
a mapping 1y of Vy into V' and we can therefore write t5(4;) = Ay;, always when
A; € V, which means that @ satisfies the condition (8).

If conversely @ satisfies (4), (7) and (8) then for all rules w,, wy € R such that B, =
= A,, where i = 1 the following must be valid: Bf = By, o) = T™(Bo) = ta(4,) =
= A% which is the condition (6).

The requirement concerning R in the theorem 1 is not very strong because every
canonical grammar G can be reduced in such a way that the new grammar satisfies
this requirement. For this reason there is a very small loss of generality if we mainly
consider the homomorphisms such that the mapping t from Theorem 1 really exists.
Moreover we shall consider the homomorphisms @ such that the assumed mapping Ty
can be extended to the proper vocabulary V} too, i.e. that the following condition is

valid

(9)  There is a mapping 1, of Vj, into Vj such that if 4; € V, then A} ;) = 15(4,)
foreachi=1,2,..., k.

If we define the mapping 7 of V¢ into V¢ by the conditions 1|, = ty and 1|, = tp
then the conditions (8) and (9) can be expressed in another form

(10)  B(Ag:i= agdyay ... Ayay) = (W(Ao) i1 = ag 1(Ar,-11) T - (Ar,-109) a%)
for each (A4, ::= apd,a; ... Aq;) € R.

Corollary 1. Let a canonical grammar G = (Vp, V,, Vy, R, S) be given and let the
sets Vi, Vi, Vi be prescribed in such a way that they are mutually disjoint and
S* e VX. If ty is an arbitrary mapping of Vy into Vi and tp of Vp into V3 and if to
each rule wy e R, having the canonical form A, .. = ayAa, ... Aa, a permuta-
tion my of {1,2,...,k} and a sequence (ay, ay, ..., ay) is prescribed such that
aj e Vi® oraf = eforeachi=0,1,..., k then R* = {(1(4o) : : = ay(A,-1c1)) AT ---
v (Ar - 10) a3); wa € R} is the homomorphic image of R with respect to the permu-
tations w4, Ty, ..., 7z and G* = (Vy, Vi, Vi R* S* > is a canonical grammar.

The proof is obvious.

A permutational homomorphism of a canonical grammar G = (Vp, V,, Vy, R,
S) into or onto another canonical grammar G* = (V3, Vi, Vi 9R* S*) is a
permutational homomorphism @ of R into or onto N such that there exists
a mapping t of V, into V§ satisfying the condition 1(S) = S*.

5. WELL TRANSFORMATIONS

From a pure mathematical point of view it seems to be natural and useful to look
for a subclass of transformations of phrase-markers such that all the other transforma-
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tions could be generated by some type of composition of them. Besides that this
subclass should contain the transformations which are as simple as possible.

As the transformations should be mappings of phrase-markers the simplest trans-
formations have to be those which map the simplest phrase-markers.

The simplest phrase-markers as the labelled trees are those containing only one
vertex and no edge, but from these — without edges — it is not possible to compose
more complicated phrase-markers. Therefore we have to choose the simple phrase-
markers containing at least one edge.

From the theoretical point of view it is sufficient to choose only one type of these
phrase-markers, namely that one which contains two vertices (one of them being the
root) connected by an edge, because each phrase-marker can be composed of them
using the identification of vertices only.

But there are very good reasons that we allow also a little more complicated trees
containing in general more than one edge but having a very special form, namely
thatall their edges are connected with the root. Exactly these simple rooted trees — or the
double graphs from Sec. 1 — with a labelling of their vertices, correspond to the
particular rules of the context-free grammars as it was shown in Fig. 1. And this fact
is a crucial point in regard to the next definitions of transformation, because essentially
the transformations of phrase-markers will be determined by some mappings of rules,
namely by the homomorphisms investigated in the previous Sec. 4.

The following structural transformations are said to be well-transformations
because they are essentially the same mappings as the well-translations introduced
and studied in [6, 9]. In the following definition the term of marker instead of phrase-
marker is used because it is easier and clearer to describe by them the mappings of
rules (actually only the labellings will be changed).

Let be given the canonical grammars G = {(Vp, V,, Vy, R, SD and G* = (V}, V3,
Vi, ®*, S*>, a permutational homomorphism @ of G onto G* with the prescribed
permutations «,,, 7,,, ..., T, corresponding to the rules w;, w,,...,w, from R
resp. Further let M and MM* be the sets of all proper markers in G and G* resp. (i.e.
they are proper markers over R and iR*)

Now a well transformation T of G into or onto G* determined by the homo-
morphism @ is a mapping of M into M* such thatif we denote M = (A, r, B, o, Y> € M
and T(M) = M* = {A*, r*, B*, ¢*, y*) the following conditions are satisfied:

(11)  there is an isomorphism ¢ of the rooted tree (A4, r, B) onto {(A4*, r*, B*), i.e.
tis a one-to-one mapping of A onto A* such thate(r) = r* and (a, b) € B if
and only if ((a), «(b)) € B¥; in other words we can suppose A* = 4, r* = r,
B* = B;

(12) if a € A then ¢*(((a)) = D(¢(a));
(13) if (a, b) € B then y*((a), b)) = m,((¥(a, b)).
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It is necessary to note that in canonical grammars we use a little modified notion of
marker in the following sense: in the condition (B) of Sec. 1 the labelling y concerns
the canonical forms of rules, i.e. if Y(a, b) = k then ¢(a) = (X, ::= xoX,x, ...

< X,x,) and @(b) = (Y, ::= yo Yy, ... Y,y,) and Y, = X,, where X, is the k-th
canonical symbol (either nonterminal or proper) and not the k-th symbol at the right
side of the rule ¢(a).

Lemma 1. The well transformation T determined by a homomorphism & of G
onto G* is a mapping of M onto M*.

Proof. Let M* = {A*, r¥, B¥, ¢*, y*> be an arbitrary marker such that M* e ¢*
and let us define another marker M = {4, r, B, ¢, ¥> as follows: 4 = A*, r = r¥,
B = B*; as ® mapps N onto R*, &~ '(w*) & 0 for each w* e R* and therefore one
can choose a rule w,e @~ '(w;) for each wy € R* and then put ¢(a) = w, for each
ae A and for each w; = ¢*(a). Finally one defines (a, b) = =, '(¥*(a, b)) where
w, = @(a).

Now we have to show that M satisfies (A), (B) and (C) from Sec. 1. Condition (A)
is evidently satisfied and also condition (C) immediately follows by the fact that M*
isamarkerand n;kl has to be a permutation again. As to condition (B) we want to prove
that if (a, b) € B and ¢(a) = (X, 1= xoX;x; ... X;x,), @(b) = (Yo ::1= yoYyyy ...
... Yiy)) then Xy, 5 = Yo, ie. (¢(a), ¢(b), Y(a, b)) € Gy. By these assumptions and
by the fact that M* is a marker it follows that (a, b) € B* and (¢*(a), ¢*(b), Yy*(a, b)) €
€ Oy where o*(a) = (X5 1= xpXixT ... Xix;) and ¢*(b) = (Y7 ::= yeYiyl ...
< YT, fes X¥,,4 = Yo. By condition (6) the required condition follows im-
mediately.

Finally obviously M € 9 and it is clear that T(M) = M*.

Theorem 2. If T is well transformation determined by a permutational homo-
morphism & such that there exists a mapping t of Vi into V¥ and if M € M then

1) the strings L(M) and L(T(M)) have the same canonical and proper length and

2) if XXXy ... Xox, and xgXixT ... Xix; are the canonical forms of L(M) and
L(T(M)) resp. then there exists a permutation]I of {1,2, ..., k} such that X}, =
= t(X;) foreachi =1,2,.., k.

Proof. We shall use an induction with respect to the integer n = card 4 where
M = (A, r, B, *, ) is a proper marker over R®. Let us denote T(M) = M* =
= (A*, r¥, B*, ¢*, y*)> where A* = A4, r* = r and B* = B which s allowed accord-
ing to (11).

If n=1 then 4= {r} and o(r) = (X, ::= x,X;x; ... X,x,) and ¢*(r) =
= (x7 1i= xpX1xT ... Xixy); further &(¢(r)) = @*(r) and therefore by (4) L(M)
and L(M*) have the same canonical and proper length, i.e. the requirement 1) is
satisfied. On the other side if 7, is prescribed permutation corresponding to the rule
o(r) then by (10) X, ., = 7(X;) for each i = 1,2, ..., k and therefore we can put
II = m,,, i.e. the requirement 2) is satisfied.
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Now let be n > 1. Then there exists the end vertex b € A of the rooted tree {4, r, B)
such that b # 7 (i.e. there is no vertex ¢ € 4 such that (b, ¢) € B). Let a be the unique
vertex such that a € 4 and (a, b) € B. If we define 4 = A — {b}, #=r, B=B —
—{(a,b)}, @ = ¢|z and § = Y|z then M = (4, F B, @, > is a proper marker
over N again, i.e. M € M, and therefore we can denote T(M) = M* = (4*, #*, B*,
@*, ¥*>. Ascard 4 < n we can use the following inductive assumptions; 1) the cano-
nical and proper length of L(M) and L(M*) is the same, i.e. we can denote the
canonical forms of L(M) and of L(M*) by z,Z,z, ... Z,z, and z3Z%z} ... Z%z%
resp.; 2) there exists a permutation I7 of {1, 2, ..., m} such that Z} ,, = ¢(Z,) for each
i=12,...,m.

Further let us denote ¢(b) = (Yo ::= yoYyy; ... Yiy;) and ¢(a) = (W, ::=
= woW,w, ... Wyw,). As ¢*(b) = &(p(b)) and ¢*(a) = ®(¢p(a)) we can by (4)
denote @*(b) = (Y5 ::= yaYiyi ... Y[y)) and o*(a) = (W§ 1= wiWin] ...
... Wywy) and we know that the proper length of ¢*(b) and ¢(b) and similarly
of ¢*(a) and ¢(a) is also the same. Let 7y and 7y, be a permutation prescribed by @
to the rules ¢(b) and ¢(a) resp. Then by (10) Yy ;) = ©(Y;) foreach i = 1,2, ..., L.

Now according to the definition of the marker Y, = W, and Yg = Wy, in M
and M* resp. On the other side the canonical symbol W, ;, has to appear in L(M)
as a canonical symbol Z, for some p, 1 £ p < m (this fact is clarified by introduction
of a mapping v, see the end of this section and Lemma 2 and Theorem 3). Similarly
W, %a» has to appear in L(M*) as Z; for some g, 1 < ¢ < m. Thus L(M) = z,Z,z, ...
cZp 1 Yo YiVieo Y2, Z 11 .. Zyy2,, and similarly L(M*) = zgZ3zY ...z} ye YiyT. .
D G HE Y AP A

By these expressions and by the previous inductive assumptions it is clear that L(M)
and L(M*) have the same canonical and proper length which proves 1).

Further as L(M) and L(M*) have the canonical expressions xoXx; ... X,x, and
xgXTx% ... Xixy the following equalities hold: k =m + 1 —1; X; = Z, for 1 <
Ssi<p X;=Y_,y for pfi<p+l, X;=Z;_,;, for p+1<i<k and
similarly X} = Z7 for 1<j<gq, X; =Y} ,4; for g<j<gq+1 and X] =
=7 forg+15jsk

Now we can define the permutation IT of {1,2,...,m + I — 1} by a special type
of composition of the permutations IT of {1,2,...,m} and =y of {1,2,...,1}. This
composition depends on the prescribed integers p and ¢ and can be determined
as follows:
if 1<i<pand 1<) <q then (i) = [I(i)
ifl§i<pandq§1~](i)§mthenH(i)=I~7(i)+l
ifpsi<p+!1 then (i) = n(i —p+ 1) +q— 1
ifp+Il<ism+1l—1and 1 <TI(i — 1) < q then I1(i) = I(i — 1)
ifp+ISism+l—1and g<H(i~-1)<m then O(i) =M — 1)+ L
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Using the inductive assumptions we obtain immediately that X}, = t(X;) for each
i = 1,2, ..., k, which proves 2) and accomplishes our proof.

The following part of this section is intended to clarify the statement 2) and the
proof of Theorem 2. Therefore we shall not prove some results in this direction.

Let M = <{A, r, B, ¢, ¥)> be a proper marker over R and let x,X,x; ... X;x, be
the canonical form of L(M). If we take an arbitrary vertex a € A and if we denote
the canonical form of the rule ¢(a) as (Y, ::= yoY,y, ... ¥,p;) then it can happen
that there exists an integer n, 1 < n < I, and such that there does not exist a vertex
b € A such that (a, b) € B and y(a, b) = n. We can say that the n-th canonical symbol
corresponding to the vertex a is free and we shall express this fact by the pair [a, n].

Now there is exactly one path in {4, r, B) starting in r and ending in a; let us
write it as a sequence (r = by, by, ..., b, = a) (ie. (b;—y, b;) € B for each i =
=1,2,...,m). By this path one uniquely determines the following sequence of
integers (ky, ks, ..., k,,) defined by the condition k; = y(b;_y, b;) for each i =
=1,2,...,m If m = 0,ie.if a = r, we put instead of the sequence (ky, ..., k,,) the
single number 0. In this way to each vertex a € A there belongs its value v(a) =
= (ky, kj, ..., k,) and we can suppose that the set of values or the set of all vertices
is fully ordered by the lexicographical ordering (i.e. according to the first difference
from left to right) <. Obviously two different vertices have two different values.

Further the marker M’ = (A", ¢, B, ¢’,¥'> is uniquely determined where
A’ = {c e A; either t(c) £ v(a) or v(c) = (hy, hy, ..., h,)and h; = k;fori =1,2,...,
..., m, where v(a) = (ky, kg, .. kp)}s ¥ =13 B =B (4 x A); ¢'(c) = ¢(c) for
¢+ b, where i =0,1,...,m and (b, by, ..., b,) is the path connecting r and a;
if c = b; forsome i,0 < i < mand if (ZO =22,z ... Z,,z,,) is the canonical form
of ¢(c) then ¢'(c) has the canonical form (Z, ::= z,Z,zy ... z,,,-1Z,,,,) Where
kivy = Y(bs, bisy) < h; if ¢ = a then ¢'(a) = (Y ::= yoY1¥1 ... yo_1Y,); at last
¥'(c, d) = Y(c, d) for each (¢, d) e B'.

By all the previous constructions there is defined a mapping v of all the pairs [a, n]
of M into the set of all integers {1, 2, ...} if we put v [a, n] = p, where p is the canoni-
cal length of L(M’).

Lemma 2. Let M = (A, r, B, ,{¥) be a proper marker over the R, where G =
= (Vps Vs Vi, R, S) is a canonical grammar. Then the mapping v (belonging
t0 M) is one-to-one mapping onto the set {1,2,...,k} where k is the canonical
length of L(M) and Y, = X, ,, for each pair [a, n], where the canonical forms of
¢(a) and L(M) are (Yo = yoY1y; ... Y,)) and xoX X, ... XX, respectively.

Theorem 3. (Continuation of Theorem 2.) Using the mappings v in M and v* in
M* the permutationII of 2) can be determined as follows

(14) 11(v[a, n]) = v¥[a, m,u(n)]

for each pair [a, n] in M where Tty is a permutation corresponding to the rule ¢(a).
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6. DESCRIPTIVE TRANSFORMATIONS

A language generated by a canonical grammar is said to be canonical. Let G(S)
and G*(S*) be the canonical languages generated by the canonical grammars G =
= (Vp, V4o Vi, R, S) and G* = (V3, Vi, Vi, R*, S*) resp.

The sequences (xg, X, ..., X;) such that x; € V or x; = e and xoX;X; ... X;X, €
€ G(S) where X; eV, for each i =0, 1,..., k are said to be forms of G(S). Let us
denote the set of all forms of G(S) by the symbol Fs.

A mapping ¢ of G(S) into or onto G*(S*)is said to be a descriptive transformation
if there exists a mapping ¢ of V, into ¥ and if there exists a permutation my of
{1, 2, ..., k} corresponding to the string x € G(S) with the proper length k such that
the following condition is satisfied:

(15) if XX x, ... X;x, is the canonical form of x and if x§X}x7} ... Xix] is the
canonical form of x* = #(x) then k = I and Xj ; = o(X;) for each i =
=12,...,k

A descriptive transformation ¢t is said to be a descriptive form transformation if
there exists a mapping f of F into §e such that f preserves the length of forms and

(16) if xX X, ... Xy, is the canonical form of x and if xgXix} ... X}'x} is the
canonical form of #(x) = x* then (x§, xT, ..., x5) = f(Xo, Xy, ..., X;) and

(17)  if the permutations 7y and 7, correspond to the canonical forms x,X,x, ...
... Xix, € G(S) and y,Yyy, ... Yy, G(S) such that k=1 and x; = y, for
eachi=0,1,...,k, then ny = 7y.

Let us note that for these notions the requirement V, # 0 is essential.

We say that the descriptive transformation ¢ of G(S) into G*(S*) is induced by the
well transformation T of 9 into M* if

(18) L(T(M)) = 1(L(M)) for each M € Mg,

where M; = {M e M; F(M) = S and L(M) e V§}.
Let us note that if M € M then L(M) e G(S) but it can happen that L(M) e G(S)
but M ¢ M.

Theorem 4. If the well transformation T is determined by a permutational
homomorphism ® of a canonical grammar G into G* then T induces a descriptive
transformation t of G(S) into G*(S*) if and only if the following is valid
(19) if L(M,) = L(M,) then L(T(M,)) = L(T(M,)) for all M, M, € M
If T satisfies (19) and & maps R onto R* then t maps G(S) onto G*(S*).

Proof. If M eM; then L(M)e G(S), F(M) = S and L(M)e V{ which means
that the proper and canonical length of L(M) are the same. Now by the definition of
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the homomorphism & of the grammar G into G* (i.e. not only of R into R*; see the
end of Sec. 4) there exists the mapping t of V into V¢ such that 7(S) = S* and there-
fore by (10) F(T(M)) = S*. Further in virtue of the part 1) of Theorem 2 L(M) and
L(T(M)) have the same proper and canonical lengths and therefore L(T(M)) € V3.
Thus we have showed that T(M) e Mg and therefore also L(T(M)) € G*(S*). Now
it is clear that by T a binary relation is determined containing all the pairs (L(M),
L(T(M))) € G(S) x G*(S*)and (19)is a necessary and sufficient condition when this
relation is a function. The remaining part of this Theorem follows immediately
by Lemma 1.

Corollary 2. Let T be a well transformation determined by a permutational
homomorphism & of G into G*. If G is not ambiguous or if V, = 0 and & is not
permutational, then the condition (19) is satisfied.

Proof is obvious.

The basic problem concerning the descriptive transformations is the problem of
the construction of a well transformation which induces the given descriptive trans-
formation. The canonical grammars generating the given canonical languages either
are given fixed or they are to be chosen suitably such that they admit a permutational
homomorphism determining the required well transformation. Obviously this
problem need not always have a solution.

7. DECOMPOSITION TRANSFORMATIONS

As there can be many different (eventually permutational) homomorphisms of G
into G* it is possible to introduce more general structural transformations than the
well ones are. For this purpose we shall use some decompositions of markers into
submarkers such that each of these submarkers will be mapped by a different homo-
morphism (or by a different well transformation).

Therefore first of all let us suppose that a procedure & how to determine a decom-
position @(M ) of a marker M € 9 is given. It can be allowed that the procedure 2
be not applicable to all markers from 9t but only to some subset. This subset will be
denoted by 9.

A decomposition M of a proper marker M = {A, r, B, ¢, ¥ is a set of proper
markers M, M,, ..., M, which satisfy the following conditions:

(20) M, isasubmarker of M foreachi = 1,2, ..., n,i.e.if M; = (A, r;, B;, 0, ;>
then A; = A; B; = B (4; x Ay);

to each vertex a; e A; there is a path in M from r to a; containing r;; @; = ‘P[Aé
¥; = Y|p, and further

(21) U A;=Aand A;n A4; =0 for each i,j = 1,2, ..., n where i = j.
i=1
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A decomposition of an unproper marker is only this unproper marker itself and
a decomposition of a disconnected marker is a sequence of the decompositions of its
components.

Lemma 3. There is a one-to-one correspondence between the set of all decomposi-
tions of a proper marker and the set of all subsets of its vertices containing the
root. Namely, the elements of the given subset of vertices are the prescribed roots of
the corresponding submarkers.

Proof. Let a decomposition M = {M, M,, ..., M,} be given. Then r, r5, ..., 1,
is the required subset of vertices because according to (21) there has to be an index j
such that r; = r, where r is the root of the considered proper marker M.

If on the contrary the required subset {r, r,, ..., r,} = Aisgivenandife.g.r; = r,
then the subsets 4, for each i = 1, 2, ..., n can be defined as follows: using the paths
from r to r; we take a vertex r; such that its path has the maximum length and we
define 4; = {a; € 4; there is a path in M from r to a; which contains r;}; it is clear
that by the set of vertices A — A, (as far as 4 — A, # 0) again a proper submarker
of M is determined and therefore the described construction may be repeated.
Obviously the obtained subsets Ay, 4,, ..., 4, satisfy (21) and if we define B, =
=Bn(4; x A), p; = @|a, Vi = Y|y, then M; = (A, r;, B, ¢;, ;> is a submarker
of M which satisfies (20). Therefore M = {M,, M, ..., M,} is a decomposition of M
with the prescribed set of roots {ry, r,, ..., 7,}.

Using this lemma a decomposition procedure of a marker can be determined as
a procedure determining some subset of vertices of the given marker.

By a decomposition M = {M,, M,, ..., M,} of a proper marker M = (4, r, B,
@, ¥ the following factor-marker My = {Ay, 7o, Bo, @0, Yo of M can be defined:
Ao = {ry, 13, ..., r,} (but it would also be possible to put A4, = {My, M,, ..., M,}
because that is unimportant with respect to an isomorphism of markers); ro = r
(by Lemma 3 r; has to be such that r; = r); Bo{(r;, r;); there is a; € 4; such that
(apr))eB and i j, where i,j =1,2,...,n}; @or) = (F(M;) ::= L(M,)) for
eachi = 1,2,..., nand the integers y(r;, r;) for all j such that (r;, r;) € B, are deter-
mined in a non arithmetical way as follows: we take all the paths in M; which con-
nect the root r; with an arbitrary end vertex a; € A;; by each end vertex g; its value v(a;)
is determined (see the end of Sec. 5), these values are ordered lexicographically and
if in the k-th place of this ordering is v(a;) such that (a;, r;) € B then we put yo(r;, r;) =
= k.

We will not prove that the factor-marker of a proper marker is really a marker.
Evidently the factor-marker M, is not a marker over the set of rules R as the
original marker M is but it is easy to construct new rules from the rules of R over
which the factor-marker is defined. A factor-marker of a disconnected marker
is a sequence of factor-markers of its components.

Now let us introduce further assumptions concerning the decomposition proce-
dure 9. We shall say that & has the length nif 2(M) = {M{, M,, ..., M,} for each
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M <= M,, ie. if each decomposition consists of n submarkers. Further we shall
assume that an ordering of each decomposition 2(M) = {M, M,, ..., M,} can be
established. This ordered decomposition will be denoted by [M,, M,, ..., M,] and
the corresponding procedure 2 will be called the ordered decomposition procedure
(there are many different possibilities how to order the submarkers M, M,, ..., M
or — by the lemma — the vertices of M).

A sequence of homomorphisms @, @5, ..., @, of G into G* (whose corresponding
mappings of V¢ into V§ are 14, 1, ..., 7,) is compatible with the ordered decomposi-
tion procedure Z of the length n if the following condition is satisfied:

(22)  t(F(po(r;))) = tj(F(@o(r;))) for each (r,r;)eB, and for each MeM,
where M|, is a factor-marker of M.

If we denote @o(r;) = (x ::= y) then — a single rule can always be considered as
a proper marker — F(¢o(r;)) = x and the condition (22) requires t,(x) = 7,{x).

Now a decomposition transformation T of G into G* determined by an ordered
decomposition procedure 2 of the length n and by a compatible sequence of homo-
morphisms &, D, ..., §, of G into G* is a mapping of M, into M* such that if we
denote M = (A, 1, B, ¢, ¥>, T(M)= M* = {A* r* B* o* y*) and 2(M) =
= [M, M,, ..., M,] the following conditions are satisfied:

(1) A* = 4; r* = r; B* = B;
(12') if a € 4, then @*(a) = ®(¢(a)) for each i = 1,2,...,n;
(13') if (a, b)e B ae A, then y*(a, b) = n$,(¥(a, b)) for each i =1,2,...,n,

@(a)

where n(,;(),,) is the permutation belonging to the rule ¢(a) in the permutational

homomorphism @;.

Obviously the previous notation M; = (A4;, r;, B;, ¢, ¥;» foreach i=1,2,...,ne.t.c.
is assumed.

1t is clear that each well transformation is a decomposition because we can always
choose a trivial decomposition procedure of the length 1 which is of course ordered.

On the other hand everybody expects that after the necessary modifications
Theorems 2 and 3 remain to be valid for the decomposition transformations, but we
shall not give complete proofs here (they can be given in a strong analogy to the proofs
of Theorems 2 and 3).

Let us assume that a decomposition transformation T of G into G* is given
and that 9 is its ordered decomposition procedure of the length n. If 2(M) =
=[M,M,,...,M,] where MeM, and M, = {4, r, B;, ¢, ¥;> for each i =
=1,2,...,n and if T(M) = M* then by (11') and by Lemma 3 a decomposition
M* = [MY, M3, ..., M)] of M* is determined (the prescribed roots of submarkers
for M* are the same as for M*, i.e. {ry, 5, ..., 1,,}). Thus another ordered decomposi-
tion procedure & is determined putting Z*(M*) = M* for each M*e M. =
= {M* e M*; there is M € M such that M* = T(M)},
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If My = (Ag, 7o, Bo, @os Yoy and My = (A3, 5, B, @u, WY is a factor-marker
of M and M* resp. corresponding to the decomposition 2(M) and 2*(M*) resp.
then it is easy to see that by T another well transformation T, of the factor-markers
is determined. This factor transformation Ty, i.e. the underlying homomorphism and
the permutations corresponding to the particular rules, can be explicitly determined
by Theorems 2 and 3 (but it is necessary to give a complete definition of the modified
grammar and the set of rules concerning the factor-marker; this has not been done
here).

Remark. There is another possibility how to describe the situation by decomposi-
tion transformations. Instead of introducing factor-markers one can introduce rather
different algebraic structure M = (4, 7, B, ¢, J> corresponding to the decomposi-
tion M = {M,, M,, ..., M,} which is not a marker. Here (4, 7, B) is the same
rooted tree as in the factor-marker only ¢ does not assign particular rules but the
whole submarkers to the vertices r;, M; and  is again the same as in the factor-
marker. Obviously this definition has a recurrent character.

Now we shall introduce a special type of decomposition transformations which are
very close to the singulary transformations described by Chomsky, Bach a.o. using
the notions of structural index and transformational rule.

Each string L(M) where M is a marker in the canonical grammar G such that
F(M) = S can be called a structural index in G. In fact the most important cases
occur if L(M ) contains also other elements than the terminal symbols.

A submarker M’ = (A', ¥, B, ¢', ') of a proper marker M = {A,r, B, ¢, {>
is said to be main or secondary if r' = rorr’ = rresp.Itis clear thatin a decomposi-
tion of a proper marker exactly one of the submarkers must be main. M’ is said to be
an end submarker of M if each vertex a’ € A" which is an end vertex in M’ is an end
vertex in M too (let us remind that a’ is an end vertex in M’ if there is no b’ € 4’
such that (a’, b') € B'). In a decomposition there must be at least one end submarker
and at least as many end submarkers as is the difference between canonical and
proper length of the last string belonging to its main submarker.

A specialization of our decomposition transformation depends on the used
decomposition procedure Z. We shall be concerned with the decompositions such
that each their secondary submarker must be an end submarker, i.e. in other words
the factor-markers of these decompositions are extremely simple because they contain
only the root and the end vertices. Such decompositions will be called index decom-
positions.

Lemma 4. Let M' be a main submarker of a proper marker M. There exists
exactly one index decomposition of M containing M'.

Proof. If M = (A, 1, B, ¢, ¥)» and M’ = {A', ¥, B’, ¢', ') then either A" = A4,
i.e. M’ = M, which is a trivial case or A" + A4, i.e. A — A" & 0. In this last case
{A— A,Bn((4 - A") x (A — A'))is adirected graph the connected components
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of which are the rooted trees {A4;, r;, B;> for i = 1, 2, ..., n. If we define ¢; = q)[,,i
and J; = MB'. foreachi =1,2,...,nthen M; = {A;, r;, B;, ¢;, ¥;» are submarkers
of M. It is easy to show that M, is an end submarker of M foreachi =1,2,...,n
and therefore {M’, M, M,, ..., M,} is an index decomposition of M containing M’.

If conversely {M', M, M,, ..., M,} is an index decomposition of M and {M’, M7,
M), ..., M} another index decomposition, then the equality of these decompositions
follows by a simple induction with respect to n.

Lemma 5. Let M’ and M" be the main submarkers of a proper marker M and
let M be a marker over a not ambiguous canonical grammar G. If L(M') =
= L(M") then M’ = M" but this assertion need not be valid if G is ambiguous.

The proof follows immediately by the definition of ambiguity of G.

Finally an ordered decomposition procedure & which is determined by a structural
index w in an unambiguous canonical grammar G can be described as follows:
My = {M e M; there is a main submarker M’ of M such that L(M') = w}; if
M e M, then by Lemma 4 there exists only one main submarker M’ of M such that
L(M') = M and therefore by Lemma 5 there exists exactly one index decomposi-
tion M of M containing M’ and we put (M) = M. By Lemma 4 it follows that the
length of @ is equal to the difference of the canonical and proper length of w and it is
clear that M can be ordered in a unique way using a one-to-one correspondence
between all the end submarkers of M and all the end vertices of the factor-marker M,
of M which is determined by M (this ordering corresponds to the ordering of the
occurrences of nonterminal symbolsin w). Such ordered decomposition procedure
with a fixed length will be called an index decomposition procedure.

Now let us assume that a decomposition transformation T of a canonical
grammar G into G* is given, the underlying compatible sequence of homomorphisms
of which is @,, ®,, ..., ®,, and the decomposition procedure of which is an index
decomposition procedure & with the prescribed structural index w = woWyw, ...
... W,w, (this is the canonical form of w). It is clear that there are exactly m — 1
occurrences of nonterminal symbols among the canonical symbols W, W,, ..., W,,
ie. m—1=<n If MeMy, then 9(M) = [M, M,, ..., M,] and we can assume
that the first submarker M, is main and that the remaining submarkers M; correspond
(in the factor-marker) to the nonterminal occurrences W;, _, foreachi =2,3,...,
mwherel £j, <j,<...<ju1 = n.

It is easy to show that the corresponding decomposition procedure 2* of M* =
= T(M) is again an index decomposition procedure because the main submarker M,
is mapped by &, (451 is nothing else than a well transformation; obviously the possible
permutations corresponding to the particular rules are always assumed) onto a main
submarker M of M* and from the fact L(M,) = w by Theorems 2 and 3 it follows
that L(MY) = woWiws ... W}w} and that there is a permutation I, of {1, 2, ..., n}
satisfying the condition W, = t(W,) for each i = 1, 2, ..., n where t is a mapping
of V, into V& assumed by T.
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Now a pair of structural indices (w, w*) together with the permutation IT can be
called a transformational rule of T.Itis necessary to note here that a transformational
rule need not determine the decomposition transformation T uniquely and therefore
a transformational rule is not sufficient to determine 7. The necessary additional
information concerning the vertices and edges of new phrase-markers always given
by the linguists (see e.g. Chomsky [10], Bach [12]) is here fully expressed by the
underlying homomorphisms and their permutations.

It is possible to deduce the necessary and sufficient conditions for a pair (w, w*) of
structural indices in order that it may be a transformational rule.

In a special simple case when @; = & for each i = 1, 2, ..., m the decomposition
procedure 2 is not necessary and it is sufficient to consider a well transformation
instead of that of decomposition. The prescribed structural index w remains to be
necessary for the determination of the domain M, of the well transformation T.

In order to clarify the value of the transformational rule we can say that by the
transformational rule a partially descriptive transformation is prescribed (the descrip-
tive transformation is used here in a broader sense which does not require only the
terminal symbols to be concerned — the essential characteristic is that a descriptive
transformation maps string onto strings but a structural transformation maps markers
onto markers) and we are looking for a structural transformation by which the given
descriptive transformation would be induced.

8. EXAMPLES

In this Section different examples are considered. Examples 1 and 2 concern the
pure linguistic point of view but the further examples are more abstract and finally
the last examples concern some pure mathematical questions, not completely solved
here, :

*

Example 1. The canonical grammars G,., = {Vp, Vy, Vy, R, S>> and G, =
= V3, Vi, Vi, R*, {(S*>> are determined as follows:

Vp = {father, daughter, desk, ..., kill, see, like, ...},

V3 = {father, daughter, desk, ..., killed, seen, liked, ...},
VA. = {the, a, s, [}, where | denotes space,

Vi = {the, a, is, by, [},

Va = {<8>, (NPD, {VPD, {ND, Vo>, {Viase}s

Vi = {K5%), (NP), <VPD, (ND, (V5 >, {Vpred )

R = {wy, Wy, ..., Wy} and R* = {w], w3, ..., w;} where the particular rules w;
or w} are given in the i-th row of the following list in the left or right column resp.
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1. (S) ::=<{NP)(VP) 1. (S*y :=<(VP){NP)
2. (NP) ::= [the (ND 2. NPy .= /the {N)

3. (NP) ::= [a(N) 3. (NP) ::= [a(N)

4. (VP) 1=V, (NP) 4. (VP) :=(NP) (V.
5. {Vaew> 0= (Viage) 8 5. (Vpasy 1= [is {Vpred [ bY
6. (N) = [father 6. (N) .= [father

7. (N) ::= [daughter 7. {N) ::= [daughter

8. (N) ::=[desk 8. (N) = [desk

9. (Ve oo = [Kill 9. (Vyeery & = [killed

10. (Voo i1 = [see 10. (Ve o= [seen

11 (Vigge [like 1L (Ve o1 = [liked

It is easy to see that the canonical language G(S) and also G*(S*) contains 108
different sentences. Therefore we shall not enumerate all the corresponding pairs
of sentences in the well known active-passive descriptive transformation ¢ of G(S)
onto G*(S*). E.g. if s = [the/father/kills/a/daughter then se G(S) and #(s) =
= [adaughter /is/killed | by [ the [father € G*(S*) etc. The form of sis (/the, e, s/a, €)
and of 1(s) is (/a, [is/, [by/the, ¢/).

All the sentences of G(S) have the canonical length 3 and the required transforma-
tion 7, of {1, 2, 3} is equal n(1) = 3, n(2) = 2 and n(3) = 1 for each s € G(s). The
required mapping ¢ of V, into V} is determined as follows: a(father) = father,
o(daughter) = daughter, o(desk) = desk, ..., o(kill) = killed, o(see) = seen, o(like)=
= liked, ...

Both grammars G, and G, are chosen in such a way that there exists a structural
transformation T of G,,, into G, which induces ¢.

act pas

The mapping 7 is defined as follows: 7(x) = o(x) for each x € ¥}, and ¢({S)) =
= (8§*), 7({NP)) = (NP}, 1({VP)) = (VP), 1(XN}) = <N}, (Vo)) = (Vpus)s
({Vpase?) = {Vprery- The homomorphism & of G onto G* is defined as follows:
@(w;) = w] for each i = 1,2,...,11. @ is permutational and there are nonidentical
permutations for w; and w, only. They are prescribed as follows: (1) = 2, 7,(2) =
= 1; n,(1) = 2, my(2) = 1. By v and & a well transformation T'is determined which
induces ¢ indeed.

In Fig. 5 there are phrase-markers P and P* of the sentences s and #(s) resp. which
were chosen above.

The well transformation T can be considered as a decomposition transformation
with respect to the index decomposition procedure & determined by the structural
index w = (NP) {V,> {NP) and with respect to the transformational rule (w, w*)
where w* = (NP) (V> (NP} together with the permutation IT of {1, 2, 3} such
that I1(1) = 3, I1(2) = 2,11(3) = 1. Obviously it is necessary to put &; = & for each
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i = 1,2,3,4(itis clear that 2 has the length 4). Here it is clear how the permutation I7
is determined by the permutations 7, and 7.

In Fig. 5 the particular sub-phrase-markers of the index decompositions Z(P)
and 2*(P*) are marked out by the dotted lines.

AN ~ X
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fme BN v et | Voae Wthe N |
' [ S N 4 “I : | e —— A = " I
| rather)! vi\ 3y D / | r\ | :
\__rtathery) Vyage &1/@ N, 1/a X .:/i ¢ /by‘\ /tather jp*
P ] i b i pre ““““““ 4
2 ' l i o |
i 1
J \

According to the previous definitions the markers and submarkers M, M* and
M;, M7 are used instead of phrase-markers. These markers and their decompositions
and the corresponding factor-markers Mg are shown in Fig. 6. If M = {4, r, B, p,¥>
then 4 = {r,a,b,c,d, e f,g}; B={(r, a),(a, b), (r,c), (c, d), (d, e), (c. /), (f>9)};
(P(") = Wy, (p(a) = Wy, (P(b) = We, ‘P(C) = Wy, (P(d) = Ws, (P(e) = Wo, q’(f) = Ws,
o(9) = wy, and Y(r,a) =1, Y(a,b) =1 Y(r,c) =2, Y(c,d) =1, Y(d,e) =1,
Y(ce,f) =2, Y(f, g) = 1 and similarly all the other submarkers M;, M*, M} and
also the factor-markers M, and Mg can be described by the enumeration of their
different elements as it was done by M. Especially if M* = {A*, r¥, B*, ¢o*, y*)
where evidently A* = A, r* = r and B* = B, i.e. condition (11) is satisfied, then
¢*(x) = ®(¢(x)) for each x € 4, i.e. condition (12) is satisfied, because the labellings
of the vertices in both markers M and M* are the same. Finally y*(r,a) = 2 =
= 1,(Y(r, a)), y*(r, ¢) = 1 = n,(Y(r, ¢)) and Y*(c, d) = 2 = n,(Y(c, d)), ¥*(c,f) =
=1 = n,(¥(c, f)) and in all other cases the prescribed permutations are identical,
thus condition (13) is satisfied. Therefore M* = T(M).
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One easily sees that L(M ;) = (NP) (V,¢,» {NP) and L(M7Y) = (NP} (V> (NP}
and that IT for M, satisfies (14) when the mappings v and +* are determined.

In this example it was not necessary to define &, = @ for each i = 1, 2, 3, 4, i.e.
to define @, for each rule of R, because obviously e.g. it was sufficient to define &,
only on the subset R; = R, where R, = {w,,w,}; P, only on the subset R, =
= {W,, W3, Wg, Wy, wg} etc. That means that @, need not be necessarily homomorph-
isms of R into R* but sometimes they can be homomorphisms of some special
subsets R; of R. It is clear that the subset R, is always determined as the set of rules

Z8 NS
Pa O xP ) ﬁff{ HP\Pr;) :\‘ie']_ib‘: Bt KR/

RO R o S : o] e
T v 1

Fig. 7. Fig. 8.

which are used in the submarker M; for each marker M € M. This is a practical
reason why it can be useful to consider a well transformation as a decomposition
transformation and use the structural indices too.

There is another possibility how to define the canonical grammars generating the
canonical languages G(S) and G*(S*). The following changes are necessary: the
symbols “the” and “a” are transferred from V, and V% in V, and V}; a new non-
terminal symbol (Det) is added to Vy and V5 and instead of the rules w, and w,,
the rules wy, = wi, = (NP) ::= (Det) (N, w3 = w}; = (Det) ;.= [the and
Wiy = wi, = (Det) ;= [a are introduced.

These modified canonical grammars are weakly equivalent to the previous ones and
again the former can be well transformed onto the latter. The forms of the considered
particular sentences s and (s) are as follows: (e, ¢, e, 5, ¢, ) and (e, e, [is, [ by, e, ¢).
Therefore this descriptive transformation is a form transformation.

Example 2. Here particular examples are investigated of the singular transforma-
tions which are not well transformations and which are introduced by different
linguists.

In Fig. 1a) and 4a) a pair of corresponding phrase-markers was shown in the
simplest case when “the singulary transformation is a permutation”. According to the
basic definitions of well or decomposition transformations it is clear that the phrase-
marker in Fig. 4a) can never be the image of Fig. la) in a well transformation. This
impossibility is caused by the impossibility that the right side in Fig. 7 is the image of
the left side in a well transformation, because the canonical lengths of the both rules
in the left side are equal to 2 and on the right side one is equal to 3 and other the to 1.

There are no difficulties from the mathematical point of view to introduce more
general mappings of phrase-markers than the well and decomposition transforma-
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tions are. It is possible to decompose the phrase-marker (or the markers) into parts
which need not be rules but some chosen types of sub-phrase markers and to prescribe
directly the corresponding sub-phrase-marker (i.e. a new rooted tree and new label-
lings). The pair of phrase-markers in Fig. 7 can be an example of such general cor-
respondence. We have not introduced these general transformations here because
there is another way how to make possible to use the notion of decomposition trans-
formation here.

Let us change the left side in Fig. 7 as it is shown in Fig. 8. Now it is clear that this
modified sub-phrase marker can be mapped onto the right side of Fig. 7 by a well
transformation. This modification means that in the underlying context-free grammar
the rules {VP} ::= (Verb) (NP} and (Verb) .= (V) {Prt) are substituted by
new rules {VP) .. = (Verb) (Prt) (NP} and (Verb) ::= (V). We do not know
any linguistic objections against this modification, because it seems to us that the
linguistic interpretations of the nonterminal symbols (VP), {Verb) and (V) are
not sufficiently distinguished and determined. Therefore {Prt) can be in “is a”-
relation to {VP) directly instead of to {(Verb).

Another pair of corresponding phrase-markers was shown in Fig. 2a) and 4b).
Here too, some modifications as in the previous case would be necessary. We shall
not analyse this case in detail because a possible handling with active— passive
transformation is given in Example 1 and we do not believe that the shown phrase-
markers have a definite and correct form. What we want to stress here is that again
a convention concerning the rooted tree is silently assumed which must be added to
the transformation rule in order to determine fully the new phrase-marker.

For this reason, in the underlying context-free grammar it would be more useful
to use the rule {S).::= (NP) (VP) {NP) (if we have in mind the transitive verbs)
expressing that {VP) denotes a binary relation between the subject and the object,
than the traditional rules <S) ::= (NP} (VP) and (VP) .:.= (Verb) (NP>.
Similarly in the case of double transitive verbs the first rule should be {S) ::= (NP>
{VP) (NP) (NP) etc. It must be considered why these oldest grammatical and logical
concepts and schemas are to be used today when the logical analysis of language and
the logic itself are developed more in detail.

Example 3. Let us consider two context-free grammars G; = {V, Vy, R;, S) and
G; = (V% Vi, R, S*) (from the point of view of canonical grammars we suppose
V, = Vr, Vp = 0). We shall say that G, is well (or decompositionally) and permuta-
tionally transformable onto G if there exists a well (or decomposition) transforma-
tion T of G, onto Gf which is determined by a non permutational (or permutational)
homomorphism of R; onto R}.

If R, = {S::=Sa, S::=b} and R} = {S*:: aS*b, S* ;.= c} where a, b, c
are terminal symbols then G, is well transformable onto G7.

In Fig. 9 two corresponding phrase-markers are shown which are eyidently not
isomorphic as the rooted trees (but the corresponding markers are isomorphic).
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If R, ={S::=AB, A::=aA, A::=b, B::=c} and R} = {S* .= BA,
A::aA, A::=Db, B::=c} where A, B are nonterminal and a, b, ¢ are terminal
symbols then G, is not well transformable onto G but G, is well permutationally
transformable onto G%. In Fig. 10 the two corresponding phrase-markers are shown.
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If Ry = {S* .= S*a, S* ;.= S*c, S* .. = b} where a, b, ¢ are terminal symbols
then G, is not well transformable onto G, (because the cardinal number of R; is
greater than that of ®,) but G, is decompositionally transformable onto G;. The
corresponding decomposition procedure & can be described as follows: the roots of the
submarkers of (M) are all the vertices of M which are labelled by the rule S :: = Sa
and in the known ordering of them the odd or even vertices will correspond to the
rules S* [ .= S*a or S* ;= S*c respectively.
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If R, = {S* ..= S*aR, S* ..=S*c, S*..=Db, R::=DbR, R:.:=c} where R
is nonterminal and a, b, ¢ are terminal symbols then R, is not decompositionally and
permutationally transformable onto R, (because in R, there is a rule having canonical
length two but in R, each rule has canonical length at most one).

It is clear that with respect to the homomorphisms of the sets of context-free
rules a classification of all context-free grammars is determined because a set R of
rules can be called simple if each homomorphism @ of R onto R* implies that @ is
an isomorphism. Thus to the same class belong the sets having the same homo-
morphism image. This classification induces a classification of context-free languages
if we define that a context-free language L is well (or decompositionally) (and
permutationally) transformable onto L¥ if there are context-free grammars G and G*
generating L and L* respectively such that G is well (or decompositionally) (and
permutationally) transformable onto G*.
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Then G4(S) = {ba"; n = 0} is well transformable onto G}(S*) = {a"cb"; n = 0},
but G,(S) is a regular event and G7(S*) is not. Therefore the class of regular events
is not preserved by the well transformations and to the same class of the mentioned
classification the regular and also some nonregular languages will belong.

On the other hand, it is clear how to generalize the notion of homomorphism and
then the notion of well transformation to the context-sensitive or quite general
grammars and languages. Especially by the context-sensitive grammars the situation
is very simple. Here it can be expected that these generalized transformations will
transfer context-sensitive grammars on the context-free ones and that therefore they
could be a suitable tool for study of context-sensitive grammars and languages.

Finally it is interesting to note that if we put Rs = {S .. = SaS, S ::= b} wherea, b
are terminal symbols then G, can not be well transformable onto G5 but G,(S) =
= {ba"; n = 0} is well transformable onto Gs(S) = {b(ab)"; n = 0} because this
last language is generated by the following grammar G4 : R = {S .= Sab, S .. =
= b}, where a, b are terminal symbols. Now it is clear that one of the two occurrences
of the symbol S in the rule S ; ;= SaS in R is not important.
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Pes3rome

O HEKOTOPbIX TPAHCO®OPMALINAX
KOHTEKCTHO-CBOBOHBIX SA3BIKOB

KAPEJI UVJIMK (Karel Culik), IIpara

B crarbe BBOAUTCS M M3YYaeTCSI C YYCeTOM TPCOOBAHMH JIMHI'BUCTOB, OCOOEHHO
H. Yomckoro (N. Chomsky), HPEeIBsBIAEMbIX K CHHIYJISAPHBIM IPAMMATHYECKUM
TpaHchOpMaIHsIM — JOBOJIBHO OOIIHIA KJIace 0TOOPaKEeHUI, HA3BIBACMBIX ,,XOPOLIM~
mu Tpaachopmanuamu. TTocrefHIe CONOCTABIIIOT (Ppa30BEIM TOKA3ATEILIM JIFO00if
rpaMMATHKY THIA 2 OIATh (hpa3oBbIe MOKA3ATEN JPYroif TaKoi IpaMMAaTHKH, OIpe-~
JIeJICHHBIE OJHO3HAYHO HEKOTOPHIM roMoMophr3MaM NeBpoOif rpaMMAaTHKA BO BTO-
pyro. ITox roMoMophu3MOM CJIeyeT IOHUMATh OTOOPAXCHHE COMOCTSBIISIOIIEES
MpaBwIaM rPaMMATUKH OILITh IPAaBIIA, CJIEIOBATEILHO HE OTOOpaKeH e aI(aBUTOB
(xax ero BBogur M. P. Schiitzenberger).).

CreruasbHble, CTPOTHE YCJIOBUS, Hajaraemple Ha roMoMopdusMm, Kacarorcs
Ppa30UeHSI MHOXXECTBA TEPMUHAILHBIX CUMBOJIOB Ha COOCTBEHHBIE ¥ BCIIOMOTATE b~
Hble ¥ OTHOLICHUS IPUMSHUMOCTH OJHOTO IpaBuia K ApyroMy. ®pa3oBblid mOKa-
3aresib ONpeleliieTcs MaTeMaTHYeCKM KaK HEKOTOPHIi IBoifHOH rpad; B cTaThe
VCITOJIb3YeTCSL PAaBHOCWIbHOE MOHSTHE IToKaszaresd. Ilokasaresib 3TO KOpPHEBOE
[IePeBO, Y3JIbI KOTOPOTO IMOM2Y2HBI NPABWIAMHU M peOs HATYpaJbHBIMU YHCIAMHY.
EcTecTBeHHBIM 00pa30M BBOJUTCS IOHATHE IIEPBOrO U MOCAEIHETO CIOBA IO OTHO-
IICHUIO K JAHHOMY ITOKa3aTesto. ECM BBIIOJIHEHBI HEKOTOPBIE JOIOJIHUTEIbHBIC
YCIIOBYS, MHAYIMPYeTCst TpaHcHOopManus sS3bIKa, MOPOXKAECHHOTO B S3BIK, ITOPOXKICH-
HBII BTOpoit. Ocobyro BaXHOCTh MPHOOPETAIOT MEPECTAHOBOYHBIE TOMOMOPGA3MEL
U C WX IOMOUIBIO onpe/iesicHHbIe TpaHchopmanuu. OHA TO3BOJISIOT IIPOBO/IUTH HEKO-
TOphle (DMKCUPOBAHHBIE MEPECTAHOBKM COOCTBEHHBIX, TEPMHUHAIBHBIX U BCIOMOTIa-
TEJILHBIX CMMBOJIOB B IpaBwiax. Ha mpumMepe mokazaHa BO3MOXHOCTB OTOOPAa3uTh
€ IOMOMLIBIO XopouIel TpaHCPOpMaLUU PETYIIPHOE COOBITHE HA HEPETYJISIPHBIM S3bIK.
M3yyaroTcst HEKOTOPBIE JOMOJIHUTEIbHBIE IPOOJIEMBI.
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