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A CHARACTERIZATION OF VERY k-SPACES

A. ARHANGELSKIJ, Moscow
(Received October 4, 1966)

We shall be concerned here only with Hausdorff spaces. In this case the definition
of a k-space runs as follows:

Definition 1. (See [1], [2].) A topological space X is said to be a k-space if and
only if all subsets of X having bicompact intersection with an arbitrary bicompact
subspace of the space X are closed in X.

Thus the topology of a k-space is completely determined by the array of all
bicompact subsets of this space. The class of k-spaces is very wide. Not only metric
spaces and locally bicompact spaces belong to this class, but also all G,-spaces (i.e.
spaces complete in the sense of E. CecH) do.

Unfortunately, a subspace of a k-space need not be a k-space: each completely
regular T;-space can be embedded into a bicompact Hausdorff space, and the latter
is surely a k-space. The purpose of this note is to investigate which spaces are “very
k-spaces”.

Definition 2. A topological space X is said to be a very k-space if and only if each
subspace of the space X is a k-space.

Remark 1. Obviously, each very k-space X must satisfy the following condition:
(ky) If M is a subset of X and x is a point such that x € [M], then there exists
a bicompact subspace @ of the space X such that

xe[®n M].

It seems quite natural to expect that this condition characterizes the k-spaces, but
this is not true. There are k-spaces which do not satisfy this condition (an example
can be found in [3]). For the full treatment of the subject see [4]; a classification of
k-spaces, based on condition k, is given there.

Remark 2. Here is an obvious reformulation of definition 2.
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Proposition 1. A topological space X is a very k-space if and only if for each
subset M = X and for each point x € [M]\ M there exists a bicompact subset
@ = M U {x} such that x e [®\ {x}].

Now we shall state the main theorem.

Theorem 1. A space X is a very k-space if and only if for each subset M = X
and for each point x € [M] there exists a sequence {x, : n = 1,2, ...} of points in M
such that lim x,, = x.

Proof. Let M = X and let x be any point of the set [M]\ M. Evidently we can
find a set L € M such that the two following conditions are fulfilled: 1) x e [L];
2) if L = M and x € [L], then the cardinality of Lis less or equal to the cardinality
of L. Proposition 1 enables us to find a bicompactum & = LU {x} with the property
x € [@\ {x}]. It follows from the choice of the set Lthat the cardinality of @ and the
cardinality of L are equal. We denote it by t. Let us show that © = ¥,. Then the
theorem will follow. The point x is not isolated in @; moreover, the character of
the point x in the space @ is equal to 7. Consider some base {U, : a € A} of x in @,
such that card A = 7. We can suppose that the index set 4 is well ordered as the
smallest ordinal corresponding to the cardinal number t. Now we are in need of
some transfinite construction.

Let O,x be some neighbourhood of the point x such that [0,x] = U, and let x,
be some point from Ox\ {x}. Suppose that we have defined, for all & < f, B € 4,
neighbourhoods O,x of the point x as well as points x, € @ \ {x}. The cardinality of
the set U {x } is less than t, hence [U {x }1# x. Take for Ogx any neighbourhood

of x such that [U {x 110 [0px] = A and [0sx] = U,
Now, N 0,x \ {x} + A. For the proof we need only to mention that the cardinality
asp

of the family {0,x : @ < B} is less than 7 if the character of x in @ is equal 7. For x,
we choose any point from the set ﬂ 0,x\ {x} In such a way we can define x, and O,x

for all & € A. Consider the subspace X* = U {x,} U {x} of the space X. Clearly, x is
not isolated in X*. On the other hand, the set X\ ([ U {x.}] U [0441x]) is a neigh-

bourhood of x; which does not intersect the set X ) N {xﬂ} Hence all points of the
set X*\ {x} are isolated in X*. By Proposition 1 we can find a bicompactum F in X*
such that x is a non-isolated point of this bicompactum. Now, F\ {x} = M. By the
definition of the cardinal number t, the cardinality of F is equal to 7. Let P be an
infinite countable subset of the set F \ {x}. No point of the set F \ {x} is an accumula-
tion point of this subset. It follows from the bicompactness of F that [P] 5 x. Now,
P < M. Hence, © = ¥,. The theorem is proved.

Remark 3. In fact, the following general lemma is established by the argument:
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Lemma. Let X be a bicompact space and let x be any point of X. Denote the
character of x in X by t. We shall call the point x ““J-achievable”, for some cardinal
number 2, iff there exists a set P = X \{x} of the power') A such that x e [P].
If x is not A-achievable for any A < t, we can find the standard subspace X* = X
of the power t, only one point of which is not isolated in X*, such that the neigh-
bourhoods of the point in X are complements to arbitrary subsets of cardinality
less than t.

Remark 4. The topological spaces in which the sequential closure of a set coincides
with the closure of this set are called Frechet-Urysohn spaces (FU-spaces). So the
theorem established may be formulated as follows: The class of all very k-spaces
coincides with the class of all FU-spaces (among Hausdorfl spaces!).

Now we will show how very k-spaces are related to metric spaces.

Definition 3. A map f : X — Y is called pseudoopen if for each point y € Y and for
each open neighbourhood U of the set f !y the interior of the set fU contains y.

In [4] FU-spaces we characterized as pseudoopen continuous images of metric
spaces. So we have

Theorem 2. A topological space X is a very k-space if and only if it is a pseudo-
open continuous image of some (locally bicompact) metric space.

Remark 5. The k,-spaces [4] have an obvious characterization as pseudoopen
continuous images of locally bicompact spaces (see [4]).

From the main result of this paper, together with the main result of [7, § 7], the
following theorem can be deduced.

Theorem 3. Let X be a topological group such that the space of this group
is a p-space®). Then either of the two following conditions is fulfilled:

1) X is metrizable;

2) X contains a subspace, which is not a k-space.

Remark 6. This result is new and non-trivial even in the case when the space of
the group under consideration is bicompact. In fact, a more general result holds:
each dyadic bicompactum in which every subspace is a k-space must be metrizable.

In conclusion we will discuss another phenomena which can occur when dealing
with k-spaces. The fact is that the product of two k-spaces need not be a k-space.
This may happen even with very k-spaces. Theorem 2 enables us to give an indirect
description of a wide class of FU-spaces, which is closed with respect to the product.

1y “The power” means the same as “the cardinality’.

2) For the definition of a p-space see [5] or [7]. In particular, any space which is G in its
bicompactification, as well as any metric space, is a p-space.
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The elements of the class are pseudoopen bicompact continuous images of metric
spaces. It would be fine to know more about the topological structure of these spaces.
I conjecture that all paracompact spaces, belonging to the class, are metrizable. If so,
it would be a considerable generalization of the theorem on metrizability of all
paracompact spaces which are open continuous bicompact images of metric spaces

(see [6]).
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