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Czechoslovak Mathematical Journal, 19 (94) 1969, Praha 

ON A CLASS OF SEMI-GROUP ALGEBRAS 

ROBERT KAUFMAN, Urbana 

(Received August 25, 1967) 

E. HEWITT and H. S. ZUCKERMAN [1] initiated the study of certain Banach algebras 
based on commutative semigroups. In this note an attempt is made to combine the 
approach of [1] with the functional-analysis approach of [2, 3]; besides this, two 
results are given that properly belong to the theory of Banach algebras; and finally, 
a few results in [1] are obtained by variant methods — the proof of Lemma 1 is 
called to the reader's attention. 

Let Я be an additive semi-group which, in order to avoid certain annoying com­
plications, is reduced in the sense that 

(1) Ix = 2 V , 3x = 3y => X ~ у , X, у E H , 

(This is not quite the standard formulation, cf. [1; 5.8].) Besides this, H is provided 
with a real functional со ^ 0 such that 

(2) , ù)[x + y) S 0){x) <^{у) * X, у E H , 

(3) œ[z) = 0 , for at most one z in Я . 

(4) hm со{пхУ'" = CD^{x) > О if ш(х) > О . 
и->оо 

The algebra А = А{Н; со) is the space of complex functions on Я (or on Я '^ {z}) 
with finite.norm ||a|| ^ X!^W l^WI ^ ^ - Multiplication in convolution is Я, 
that is, ^ 

{a * b) (x) = EZ{^(3^i) КУг) ' >'i + У2 = ^] • 

The axioms for a Banach algebra are verified as in [1; 2.4] and reduce to the latter 
when CO = 1. It will be convenient to write dj{^y) == 0 if у #= x, dj^x) = 1. 

Elements Xi and X2 of Я are called strongly inverse if 

J D ) JiiX-^ "T" X2 ~^ - ^ 1 ? •^•^2 ~T~ - ^ 1 ~~ - ^ 2 > 

and 

(6) CO^Xi)cO^X2) = 1 . 
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Theorem 1. These properties are equivalent, for a e A: 

(i) a vanishes off the set of strongly invertible elements of H. 

(ii) For each homomorphism T of A into the algebra of functions holomorphic 

in a connected domain of complex numbers, T(a) is constant in D. 

Theorem 2. In order that A admit a symmetric involution it is necessary that 
each element ^z of H be strongly invertible and (in (6)) 

(7) a>(xi) œjx,) й M œ{x2) (0^{x^). 

Theorem 3. / / the Gelfand space of A is compact, A contains a unit — to be 
described in the proof, [1 ; 8.14]. 

Lemma 1. If x Ф y in H then 9{x) Ф в{у) for some homomorphism 9 of H into 
the complex disk {Щ ^ l} , [1; 5.6]. 

Proof. For any integer N ^ 2 

A=0 \kj 

so the norm of ((5̂  — ^3,)̂  is an integer; if, then, 3^ - ôy is not nilpotent, its spectral 
radius is at least 1. In that case we have only to take a complex homomorphism with 
Ф{о^) Ф Ф(^у); because ||ф|| ^ 1 we can write ö(w) = Ф{о^), w e H, 

In the contrary case (ô^ - ôyY = О for TV ^ NQ. But if p is a prime ^NQ (and 
p>2) 

{^x - ^УУ = ^px ~ ^py (modulo p) 

so that px = py. It follows that Nx = Ny for all N ^ N^, and then, via (l), x = y. 

Lemma 2. A[H; œ) is semi-simple. 

Proof. Let (p be any homomorphism of H into the complex numbers, subject to 
the inequality \(p\ ^ со. Then a -> ф . a, 0 G Я, is a homomorphism of A into li{H). 
Here (p . a is the ordinary product; note that (p{z) . a{z) = 0 under any convention. 
But li{H) is semi-simple by Lemma 1 and [1; 3.5]. (It may be remarked that Theorem 
3.4 of [1] is a straightforward consequence of Gelfand-Neumark theorem for com­
mutative ^*~algebras, [4; p. 190].) The proof is complete as soon as it is established 
that for each x in Я there is a homomorphism cp, as above, so that |ф(х)| = oj^{x) > 
> 0. But this is an immediate consequence of the fact that œ^{x) is the spectral 
radius of ô^ in the algebra A. 

Lemma 3. Let x^ be an element of H, x^ Ф z, and without a strong inverse, cf. 
(5), (6). Then there is a homomorphism ф of H into [0, 00) such that 

(8) 0 < ф{х,) < co^{x,) , 
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and 

(9) О йФ йо) in Я . 

Proof. Let (р be the homomorphism constructed at the end of the previous proof, 
and 0 any bounded homomorphism of Я, as in Lemma 1. Then we can choose ф == 
= \(p\ . |ö| if 0 < |ö(xi)| < 1. This homomorphism 0 exists unless the equation 

(10) у + {n + \)x^ = nx^, y^H, n ^ l , 

has at least one solution, (and plainly if 0 < \0{xi)\ < 1, 0'"(xi) -^ 0 as m -> oo) [3]. 
Using (1) we find that X2 = 2y + x^ is a solution of (5). Now let ф Ы 3, homomor­
phism of H into [0, со) meeting (9) and ф{х2) = cOaoi^i) > 0- Then lA(xi) ф{х2) = 1 
so ^(xi) = cOoo(̂ 2)~^ < <^oo( î)- This completes the proof. 

P roo f of Theorem 1. If Xi and X2 are strongly inverse, and Ф is any complex homo­
morphism of Л, with Ф{0,^) Ф 0, then Ф{0,;) Ф(о,;) = 1, |Ф((5,Л й о>^(х,), i = 
= 1, 2. For any fixed A in the domain D, a -^ (^(^)) (^) î  ^ homomorphism, and so 
T(<5̂  J and Т(̂ д.2) are constant in D by the maximum principle. 

To prove the reverse let Ф1 and Ф2 be homomorphisms of Я into [0, 00), bounded 
by €0, and 9 any complex homomorphism bounded in modulus by 1. Write 

(T(«)) (X) = Y^e{x) ф',{х) il,,{xy~' a{x), 
H 

for a e A, 0 < Re Д < 1. If T(a) is constant, then as in the proof of Lemma 2, 
ф1/2 ^ ̂ yi ^ ^ _ j^3/4 ^ j^i/4 ^ ^̂  ß^ Lemma 3 a vanishes off the strongly invertible 
elements. 

P r o o f of Theorem 2. Inasmuch as a real function holomorphic in D is constant, 
the first statement follows from Theorem 1. Since any involution of a semi-simple 
algebra is continuous, and œj^x^j'^ д^^ is plainly conjugate to o^J^X2)~^ S^^, the 
inequality (7) is established. 

P roo f of Theorem 3. By assumption there are a number e > 0 and elements y^,.. 
..., 3;̂ , of Я so that for any homomorphism ф, as in (9) 

(11) 0^ф{у^)^^, 1 Ui йт=>ф = 0. 

We suppose that if any of the my^'s is omitted, the implication in (U) becomes false 
for any e > 0 whatever. Thus there is a homomorphism cp ^ œ of H with (p{yi) > e, 
^(3;.) = 0, 2 ^ i ^ m. If, now, (p'{yi) < e^(l + o){yi))~^, then {ср'срУ^ meets all 
the requirements in (U), so cp'cp = 0, (p'(yi) = 0. Thus equation (10) with y^ in 
place of Xi is solvable, and e^ + v̂  = y^ for some idempotent e^. (In the case of (10), 
the idempotent would be x^ + X2.) Plainly ф{е^ < 1 => ф{у1) = 0; by the same 
argument each yi can be replaced in (11) by an idempotent. The unit of A is then the 
circle product [4; p. 16] of the idempotents ^y ,̂ 1 ^ i ^ m, for by what has gone 
before, this "large" idempotent is contained in no modular maximal ideal of A. 
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