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CLOSED AND OPEN SETS IN TOPOLOGIES INDUCED BY LATTICE 
ORDERED VECTOR GROUPS 

FRANTISEK §IK, Brno 

(Received April 19, 1972) 

1Л. The lattice ordered vector group G is an /-subgroup of the complete direct 
sum l{Gx : x e M} of hnearly ordered groups G ,̂ [1] V, § 8. If for each group Ĝ  {x e 
e M) and each element ae G^ there is an element feG with f{x) = a, G is called 
a subdirect sum of linearly ordered groups {G^ixe M} or briefly a realization and 
denoted by G = (G^ : x e M) or (G, M) only, [7] I, 0.5. If G ф 0, the requirement 
Gx + 0 for all X e M represents an unessential loss of generality. We shall assume it 
throughout this paper. 

Let us define two mappings; Z : 2^ -> 2^ by declaring Z(P) = {xe M :/(x) = 0 
for all feP}{P^:G) and ÎF : 2^ -> 2^ as follows: ЦЛ) = {feG :/(x) = 0 for 
all xe A} {A ^ M). The family {Z(f) : / G G} is a base of closed sets of a topology 
on M; this topology is said to be induced on M by the reaHzation (G, M). The 
corresponding topological space will be denoted by (M, G), [7] I, L5. Denote by r(G) 
the complete Boolean algebra of all polars of G. (In [6, 7] we used the term "compo­
nent" instead of "polar".) The family Q{G) = {W{A) : A я M} is a complete lattice 
under inclusion and r(G) is a subset of Q(G), but not necessarily a sublattice. We also 
denote by ЩМ), Ш{М) and D(M) the lattice (under inclusion) of all closed, regular 
closed or closed and open (= clopen) subsets of (M, G), respectively. The mappings Z 
and W are (mutually inverse) antiisomorphisms between the lattices Q(G) and ЩМ) 
as well as between r(G) and Ш{М), [7] I, LI5. Of course, under Z and W the cor­
responding restrictions of so denoted mappings are understood. In this paper we 
study namely the structure of the lattice, which is the ÎF-image of the lattice D(M) 
of all clopen subsets of (M, G) and the structure of the lattice being the Z-image of the 
lattice A(G) of all direct factors of G. 

1.2. The results of the paper are as follows. If an /-group has a realization, it 
always has the so-called completely regular realization, which is useful because of 
its special properties. (The concept is due to P. RIBENBOIM [4]; see definition 2.1). 
Given an arbitrary realization (G, M) the mapping W transforms the family 0(M) 
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on the family Г{0, M) of all ambiguous polars of (G, M); a polar К is called ambi­
guous if К ^ W(x) implies K' ф W(x) (all x e M). If the space (M, G) is compact, 
W maps D ( M ) onto the family of principal polars / ' ' with / completely regular in 
(G, M) (Theorem 2.3; for the completely regular element see definition 2.1). If the 
realization (G, M) is completely regular and the space (M, G) compact, W maps 0 (M) 
onto the family П(С) of all principal polars of G (Corollary 2.3 and Theorem 3.4). 
If (G, M) under discussion is the n'-reahzation (which represents a special type of the 
completely regular one -- see 3.1), the compactness of the space (M, G) is equivalent 
to the fact that W transforms the family of all compact clopen subsets of (M, G) 
onto n(G) (Theorem 3.2). If (G, M) is an /-realization (defined in 4.1 by the requi­
rement Q(G) = /(G) = family of all /-ideals of G), the mapping W is an antiiso-
morphism of the algebra 0 (M) onto A(G) of all direct factors of G (Theorem 4.1). 
Theorem 4.2 gives some equivalent conditions (using the concept of the /-realization) 
that every polar of G is a direct factor of G (i.e. r(G) = A(G)). One of them requires 
that the space (M, G) be extremally disconnected. The realization (G, M) is isomorphic 
to a direct sum of linearly ordered groups if and only if the lattice Ш{М) is a closed 
sublattice of the lattice dl{M). By the method used for constructing a representation 
of an arbitrary Boolean algebra by means of the algebra A of all direct factors of an 
/-group (Theorem 5,2) we are led to consider /-groups of continuous real-valued 
functions (on a completely regular space M). The /-group G of all such functions is 
a realization (that is to say a subdirect sum of copies of the group of real numbers) 
and is the completely regular realization if the space M is extremally disconnected 
(Theorem 5.3). 

2.1. Definition. Let (G, M) be a reahzation. An element /e G is said to be complete-
ly regular in (G, M) if for any x G Z ( / ) there exists ^̂  G G so that xe M\ Z{g) ç Z(f). 

If every element of G is completely regular in (G, M), the realization (G, M) is 
said to be completely regular [7] II, 3. 

Some of the characteristic properties of the completely regular reahzations derived 
in [7] IV, 8.10 can be formulated as characterizations of the completely regular 
elements, as it is shown in the following theorem. (If it is 0 Ф P ^ G by P ' we mean 
the polar {g e G : \f\ л |О |̂ = 0 for a l l /G P}. Forfe G the symbol/ ' stands for {/}' 
and P' 'for (F) ' . ) 

Theorem. Let (G, M) be a realization and feG. The following conditions are 
equivalent: 

(1) / is completely regular in (G, M); 

(2) Z(/) is an open set; 

(3)Z(/ ') = M \ Z ( / ) ; . ' 
(4) it holds i 
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(a) Z{f") n Zif) == Ф 
and one of the following equivalent conditions 

(b)z(/) = z(n 
(c) Z{f)em{My 

Proof. 1=>2: Each point x e Z{f) is an interior point of Z{f) because there exists 
geG with XEM\Z{g) с Z(/). 

2 =̂  4c is evident. 

c=^b: Provided Z(/) e Ш1(М) it follows К = 4'Z{f)er{G) and thus feK; 
hence/" S К. From the evident relation Z(/") ç Z(/) we obtain the reverse inclusion 
/ " = W Z{f") ^ W Z{f) = К and so the statement (b) Z(/") = Z{K) = Z{f), for 
К = ÎF Z(/) => Z(X) = Z!F Z(/) = Z(/). 

b =̂  с is evident. 

2 => 4a: Recall that f = {g e G : Z{f) и Z{g) = M}, Hence we have Z{f) = 
= M T Z ( 7 ) = M \ Z(/) and with regard to 4b it holds Z{f") n Z{f) = Z{f) n 
nZ(/O = Z ( / ) n [ M \ Z ( / ) ] = 0. 

4 => 3: The relations M = Z(/") Vg^Z(/') = Z{f") u Z(/') together with 4a, 
0 == Z(/'0 n Z{f% give Z(/') = M \ Z(/'0 and with respect to 4b we have Z{f) = 
= M\Z{f). 

3 =̂  1: For each xeZ{f) = M\Z{f) there exists g ef so that xeM\Z(g), 
Aho gef => M\Z{g)^Z{f). 

2.2. Lemma. Let (G, M) be a realization. If A is a clopen compact set in (M, G), 
then M\A = Z(f) for a completely regular element f in G and W(M\A) = / " , 

Proof. The set Л' = M \ Л is closed, thus A' = Г\{^{д) : g e W(A')}. The compact 
set Л = M \ Л' = \J{M\Z{g) : g e У^{А')} is covered by the open sets M\Z{g); 
hence there exists a finite number of gi e W(A') such that A = \J[M\Z(g^Ji, Then 

A' = n % / ) = П2:(кФ = 4Vki | ) . The element / = \/\9i\ is completely regular 
i l i i 

in (G, M), for the set Z(/) = Л' is open (2.1). We shall prove ^{A) = f". On the 
one hand Z(/) 3 Z(/'') => W{A') = ï ' Z(/) ç ï̂  Z(/") = /". On the other hand 
A' = Z{f) =>/e W{A') er=>f" я W{A'). Finally {^{Ä)]' = ^'(^O = f" => *Р(Л) = 
= / \ 

2.3. If/is an element of the Z-group G, the polars/'' and/ ' are called principal and 
dual principal, respectively, their families being denoted by n[G) and TI'{G). 
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Theorem. Let (G, M) be a realization and (M, G) compact. Then W and Z are 
(mutually inverse) antiisomorphisms between the set 0(М) of all clopen sets in 
(M, G) and the set n(G) of all principal polars f'\ where f is a completely regular 
element in (G, M). These polars belong to Я(0) n IT(G). 

Proof. Л is clopen => ß = M \ Л is clopen and hence compact => (according to 
2.2) Л = M \ В = Z(f) with / completely regular in (G, M) and W(A) = W Z(f) = 
= W Z(f") = / " . For A is clopen and thus compact, according to 2.2 there exists 
geG with W(A) = g\ Therefore/" e n(G) n Я'(0). 

The Z-image of the polar /", where / is a completely regular element in (G, M), is 
a clopen set because Z(/") = Z(f) is open by Theorem 2.1. 

We have shown WC ^n,Zn Я £>. Moreover, Я ç Г, £) Ç 5Ш is true and by [7] 
I, 1.15, !F and Z are (mutually inverse) antiisomorphisms of the lattices Г and Ш. 
This completes the proof. 

Corollary. / / (G, M) is a completely regular realization and (M, G) compact, 
then W and Z are (mutually inverse) antiisomorphisms between n(G) and the lattice 
D(M) of all clopen sets in (M, G). 

Proof follows immediately from Theorem 2.3 since every element of the group G 
is completely regular in (G, M). 

2.4. The polars К and К' of an Z-grup G are called complementary. K' is the 
complement of К in the Boolean algebra r(G), 

Definition. Let (G, M) be a realization and К e r(G). К will be called an ambiguous 
polar of the reaUzation (G, M) if it holds for any xe M :K я W(x) => K' ф !iP(x). 
The set of all ambiguous polars in (G, M) will be denoted by r(G, M). 

Remarks. 

(1) К e r(G, M)=>K'€ r(G, M). 

(2) The realization (G, M) is completely regular if r(G) = r(G, M). 

Indeed, W(x) (x e M) are minimal prime subgroups. Then the complete regularity 
of (G, M) follows from [7] IV, 8.10. 

(3) r(G, M) contains all direct factors in G. 

In fact, if W(y) contains direct factors К and K\ it contains G = К + K\ too, 
hence Gy = 0, which is a contradiction with our hypothesis of all components G^ 
of the subdirect sum (G^ : x E M) being different from 0. 
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Theorem. Let (G, M) be a realization. The mappings W and Z are (mutually 
inverse) antiisomorphisms between D ( M ) and Г(С, M). Г{С, M) is thus a sub-
algebra of the Boolean algebra Г(С). 

Proof. The condition КеГ(0,М) can be expressed equivalently as follows: 
X E Z(f) for all /ЕК=> there exists g eG such that xeM\ Z{g) я Z{f) for all 
/ e X , or equivalently: XE Z(K) => x e M \Z{g) e Z(K), which means that each 
point of Z(K) is its interior point. Hence the mapping Z maps Г{0, M) into D{M). 
Now, let Ä E 0(M), Ä' = M\A. Then W{A) eГ{0), W(Ä') = [W{Ä)y. If it is 
W{Ä) Ç W(y), ЦЛ') Я W{y) for a point УЕМ, then yl = Z !Р(Л) з Z !F(j;), Л' = 
= Z ^'(Л') ^ Z ^(>;) and hence yEZ W{y) Я A n A' = 0, a. contradiction. Thus W 
maps D ( M ) into Г{0, M). Analogously as in the proof of Theorem 2.3, the proof of 
the first assertion of the theorem can be completed. The second assertion follows 
from the fact that D{M) is a subalgebra of Ш{М). 

Corollary. Let (G, M) be a realization and (M, G) compact. Then Г(С, M) = 
— {/" • / i^ ^ completely regular element in (G, M)} с П{С) пП'(С). 

It follows from Theorems 2.4 and 2.3. 

2.5. Theorem. Let (G, M) be a realization. The following are equivalent: 

(1) The space (M, G) fs extremally disconnected (i.e. closures of open sets are 
open). 

(2) o(M) = m(M). 
(3) r(G, M) = r(G). 
(4) The lattice Ш(М) is a sublattice of the lattice ЩМ). 
(5) The lattice r(G) is a sublattice of the lattice Q(G). 
(6) W maps 0(M) onto r(G). 
(7) Z maps r(G) onto 0(M). 

Proof. 7=>2:Z maps r(G) onto Ш(М) by [7] I, 1.15 and onto 0(M) by sup­
position. Hence 2. 

2 => 6: !F maps Ш(М) onto r(G) by [7] I, 1.15; thus 6 follows from 2. 
6 => 3: !F maps 0(M) onto r(G, M) by Theorem 2.4 and onto r(G) by supposition. 

Hence 3. 
3 => 7: Z maps r(G, M) onto 0(M) by Theorem 2.4. Thus 7 follows from 3. 

The equivalences 1 о 3 о 4 follow from [7] I, 1.21 (2 = 4 = 3), the equivalence 
4 <=> 5 from [7] I, 1.9 and 1.15 (because !F maps antiisomorphically ЩМ) onto Q(G) 
and Ш(М) onto r(G)). 
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Corollary. / / one of the conditions of Theorem 2.5 holds the realization (G, M) 
is completely regular. 

The assertion follows immediately from the condition 3 (see Remark 2.4 (2)). 

2.6. An /-ideal J of an /-group © is said to be a prime ideal of © if the factor-group 
(5/J is linearly ordered under the canonical ordering. The property of being a prime 
ideal is characterized in the class of /-ideals by the requirement of obtaining at least 
one of each pair of complementary polars ([7] II, section 2.2). Evidently, (G, M) 
being a reahzation, all the /-ideals !F(x) are prime. 

Theorem. The realization {G, M) is completely regular if and only г /n (G) Ç 
Ç r{G, M) and Z{f") = Z{f)for all f eG. 

Note . With respect to 2.4 (1) it holds: n{G) ç r{G, M) о П'{С) Ç r{G, M). 

Proof. Let the conditions of Theorem 2.6 be fulfilled. Then f o r / e G and xeM 
it holds: / e Т{х)=>Г' ç Т{х) -^ f ф W{x). The condition: / e 4'{x) =>f' ф W{x) 
for all / e G is sufficient and necessary for the minimality (referred to the set-theoretic 
inclusion) of the prime ideal 4^{x) ([7] III, 7.6). The requirement that W{x) is a minimal 
prime ideal in G for all x e M is a sufficient (and necessary) condition of the complete 
regularity of (G, M) ([7] IV, 8.10). 

If the realization (G, M) is completely regular, it holds Z(f") = Z(f) for a l l / e G 
because of Theorem 2.1. To prove the relation n(G) ^ r(G, M) we use both above 
mentioned theorems of [7]. The second of them verifies the minimality of the prime 
ideal W{x) in G for all xe M and from the first one we obtain for any / e G and 
X e M: f" Ç W{x) = > / e !F(x) -^ f Ф ^'(^:). 

3.1. It is well-known that an /-group (5 is /-isomorphic to a reahzation if and only 
if a system М(ф0) of prime ideals in G exists with Ç\M = 0. In this case © is said 
to be an r-group and the system M a realizator in (5. The mapping a : / e © -> 
- > / ( ) G Z{(6/x : X e M] of the r-group Ш into the complete direct sum of linearly 
ordered groups {©/x : x e M] defined in the following manner/(x) = / + x ( = the 
class of © modulo x containing/), is an /-isomorphism of the r-group © onto a sub-
direct sum of linearly ordered groups {©/x :xeM], thus onto a realization (which 
we shall denote as (G, M)). a is called the canonical /-isomorphism and (G, M) the 
canonical reahzation of the r-group © corresponding to the realizator M. Every 
realization which is /-isomorphic to the r-group © is said to be a realization of this 
r-group ©. The requirement ©/x Ф 0 for all x e M (compare 1.1) is equivalent to 
the following one: x Ф G for all x e M. If the topology induced by a realization 
is Hausdorff, it is said to be reduced ([7] II, 3 and IV, 8) or Hausdorff ([4]). 

The completely regular reahzations of a given r-group © play a significant part 
and among them the so-called Я'-reaИzation ([7] II, 4.16). It is the canonical realiza-

144 



tion of the given r-group © corresponding to the reahzator consisting of all minimal 
prime ideals (5 ([7] II, sect. 4.15 and III, 7.2). Simultaneously, the Я'-realization is 
an example of the reduced reahzation. 

3.2. Theorem. Let (G, M) be the П'-realization of an r-group. The following 
conditions are equivalent: 

(i) The space (M, G) is compact. 
(ii) n'{G) = n{G). 

(iii) W and Z are {mutually inversé) antiisomorphisms between the lattice П(С) 
of all principal polars in G and the lattice D(M) of all compact clopen subsets 
in (M, G). 

Proof, (i) => (iii) follows from Corollary of 2.3 since the Я'-realization is com­
pletely regular. 

(iii) => (ii): For any g e G the set A = Z{g") is clopen and compact in (M, G), 
hence A' = M\A = Z(f) for some / in G and W{A') = f" holds by Lemma 2.2. 
Also W{A) = W Z{g") = g" and thus g' = ЩА)]' = W{A') = f". We conclude with 
ПЩ Ç n{G). Now, one gets easily TT{G) = n{G). 

(ii) => (i): The space (M, G) is compact by [7] II, 4.19 and 4.18. 

3.3. For the purpose of comparing various realizations of the same r-group the 
following concepts are useful ([7] IV, p. 21). 

Let G = (G^ :xeM) and H = (Ну : у e N) Ы reahzations. The reahzation H is 
said to be similar (equivalent) to the realization G if there exist an /-isomorphism 
a : G onto H and a (one-to-one) mapping ß : N onto M such that it holds: f{ßy) == 
= Oo (a/) (y) = 0 for all / G G and all y EN. If we require for every /-isomorphism 
a : G onto H the existence of a mapping ß with the above mentioned property, the 
similarity or equivalence is said to be strong, ß is always a continuous, open and closed 
mapping (in case of equivalence ß is thus a homeomorphism) of N onto M ([7] IV, 
8.2). 

Let G = (G^ : X e M) be a reahzation. For 0 ф Л ^ M denote by G(A) the set of 
restrictions to A of a l l / e G. G{Ä) is a reahzation of the /-group G/!F(^) and (A, G(Ä)) 
is a subspace of the space (M, G) ([7] IV, 8.9). The following theorem holds ([7] IV, 
8.12): 

Let G = (G^ : X e M) be the Я'-realization of an /-group Ш and H = (Ну : у eN) 
an arbitrary reahzation of the /-group ©. The reahzation H is completely regular 
(completely regular and reduced) if and only if there is a suitable set A dense in M 
such that the realization H is similar (equivalent) to the realization G(A). 

Theorem. Let (G, M) be the П'-realization and (H,N) a completely regular 
(a completely regular and reduced) realization of an l-group (5. / / the space (N, H) 
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is compact, the realization (Я, N) is similar (equivalent) to the realization (G, M), 
hence the space (M, G) is compact, too. In both cases, similarity or equivalence, the 
system of all minimal prime ideals in H is equal to { ̂ (y) : y e A^}; / / the realization 
(H,N) is reduced, it holds ^ ( j i ) + ^(^2) whenever y^ Ф j2(ji> У2 ^N). 

Proof. By the above mentioned theorem ([7] IV, 8.12) there exist an /-isomorphism 
a : G onto H and a mapping (a one-to-one mapping) ß : N onto a suitable dense 
subset A of (M, G) so that f{ßy) = 0o(a/) (y) = 0 for a l l / G G and all yeN. The 
mapping ß is continuous, open and closed (a homeomorphism). Since the space N 
is compact, so is the space A. Because M is Hasudorff, the compact subspace A is 
closed in M, thus A = M. To prove the last assertion let us provide the symbol W 
with indices G or Я to distinguish the mappings of M or N, respectively. { WG{^) • 
: X e M] is the system of all minimal prime ideals of G and Ï 'G(-^I) =t= ^ci^i)^ 
whenever x^ ф X2. Then {Ч'д^у) : у eN} is the system of all minimal prime ideals 
of Я , since denoting ßy = xwe h a v e / e !FG(X) of{x) = 0 of{ßy) = 0 о (a/) {у) = 
= Q^afeT^{y). 

If the reahzation (Я, N) is reduced, ß is one-to-one and so Ч^н{У\) + ^н{У2) 
if ^^ Ф j ; ^ . 

From Theorems 3.2 and 3.3 we obtain the following theorem, which verifies 
Corollary 2.3 once again. 

Theorem. Let (G, M) he a completely regular realization and (M, G) compact. 
Then n\G) = n(G) holds and W and Z are (mutually inverse) antiisomorphisms 
between the lattices n(G) of all principal polars in G and £)(M) of all clopen 
subsets in (M, G). 

Proof. By Theorem 3.3 the Я'-realization of the r-group G induces a compact 
space and thus the assertion follows by Theorem 3.2. 

4.1. Let M be a realizator of an r-group Ш with the following property: x Ф (5 
for all X e M and any /-ideal of (5 is an intersection of elements of a subsystem of M. 
The canonical reahzation of the /-group © corresponding to this reahzator will be 
called an /-realization ([7] II, sect. 5.5). 

Lemma. The realization G = (©/x : x e M) of an r-group © Ф 0 /5 anl-realiza-
tion if and only if the family 1(G) of all l-ideals of G is equal to Q(G). 

Proof. Let G = (©/x : X e M) be an /-realization of the r-group © corresponding 
to the reahzator M and a the canonical /-isomorphism. Hence 

{(х(С)х):фяА^М} = Q(G), 
xeA 

since, for 0 £ л Ç M, a( П ^) is the set of all / e G with a''^fex(xeA), thus the 
xeA 
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set of all / e G with f{x) = 0, xeA. This implies a{Ox) = f\ ax = П ^ W = 
xeA xeA xeA 

= 4^{A) e Q{G). Thus /(G) Ç ß(G). The converse inclusion is obvious. 

Let us suppose, conversely, that /(G) = Q(G) holds for the realization G = 
= (©/x : X G M) corresponding to the realizator M of the r-group © ф 0. As per 
agreement (see 1.1) (ö/x ф О for all x e M, thus x Ф ©. Let J be an /-ideal of (5. 
Then 0 ^ Л Ç M exists such that ^(Л) = a J (a is the canonical /-isomorphism of (5 
onto G). This means that the following holds: 

fe J о (a/) (x) = 0 for all xeAofex for all x e Л . 

It follows J = f]x and G = (CS/x : x e M) is an /-reahzation. 
xeA 

The preceding lemma justifies us to define the /-realization as a realization (G, M) 
fulfilling /(G) = ß(G). 

Let us emphasize that any r-group ©(ФО) has an /-realization. An adequate 
family of prime ideals is, e.g., the system of values of all 0 Ф a e ©. (A value of the 
element 0 Ф a e © is an /-ideal of © that is maximal with respect to not containing a.) 

Theorem. Let (G, M) be an I-realization. Then W and Z are {mutually inverse) 
antiisomorphisms of the systems £){M) of all clopen sets in (M, G) and A{G) of all 
direct factors of G. 

Proof. By Remark 2.4 (3) the set r(G, M) contains all direct factors and thus 
by Theorem 2.4, it suffices to prove WD{M) с A{G). Then we have r{G, M) = 
= W£){M) Ç A{G) Ç r{G, M). Let Л be a clopen set. Then the set A' = M\A is 
clopen, too. Since A,A'e% A A ^ ^ A ' = A n A' = 0, A v yiA' = Au A' == M 
holds, it follows W{A) v ^ 4'{A') = G, ЦА) n W{A') = T{A) л ^ W{A') = 0. With 
respect to the equality /(G) = Q{G) it holds G = 4\À) v j ЦА') = W{A) + W(Ay 
Thus it is verified that ^(A) is a direct factor of G. 

The assertion of the previous theorem can be formulated with regard to Theorem 
2.4 as follows: A{G) = r{G, M). 

While the equality /(G) = Q(G) characterizes the /-realization, the equality 
A{G) — r{G, M) does not. An example will be given in 5.4. 

4.2. Theorem. Let (G, M) be an I-realization. Then every polar in G is a direct 
factor of G {i.e. r(G) = A(G)), if and only if any of the conditions of Theorem 2.5 
is satisfied. 

Proof. It follows from Theorem 4.1 that each polar of G is a direct factor of G 
if and only if the condition 2.5 (7) holds. 

Thus Theorem 5.8 of [7] II is verified once again and, moreover, in an extended 
version. 
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4.3. Theorem. Let (G, M) be an I-realization. Then the l-group G is l-isomorphic 
to a direct sum of linearly ordered groups if and only if C\\ ^ ^{M)for arbitrary 
{AO} £ Ш{М) [i.e. i/äR(M) /5 a closed sublattice of the lattice ЩМ)), 

Proof. By Theorem 7 [6] the assertion of our theorem is equivalent to the fact 
that the lattice r(G) is a closed sublattice of the lattice I{G), in our case of the lattice 
Q{G), Since the antiisomorphism Z of Q{G) onto ЩМ) maps r{G) onto Ш{М), Ш{М) 
is a closed sublattice of ЩМ), which is equivalent to П^« ^ Ш(М) for arbitrary 
{AO} ^ Ш{М) (because Ш{М) is a closed sub- v -semilattice of ЩМ) independently 
of the type of realization). 

5.1. The results and methods used in the preceding sections enable us to represent 
Boolean algebras as algebras of direct factors of /-groups. 

The set G of all continuous real-valued functions on a topological space M becomes 
an /-group under usual pointwise addition and ordering. It can be taken for a subdirect 
sum G of copies of the additive (in the natural way ordered) group of real numbers, 
thus for a realization. If the space M is completely regular, this reahzation G induces 
the original topology on M [2] Th. 3.2. It will be denoted as usual by (G, М). 

Theorem. Let G be the group of all continuous real-valued functions defined on 
a completely regular space M. Then it holds for the realization (G, M): 

(1) zl(G) = r(G, M), 

(2) r{0) = A(G) О one of the conditions of Theorem 2.5 holds. 

Proof. (1) A{G) Ç r{G, M) by Remark 2.4 (3). 

Conversely, let К e r(G, M). By Theorem 2.4 Z(K) e D(M). L e t / b e arbitrary in G. 
Let / i , / 2 ^e functions on M defined as follows: fi{x) = 0, /2(x) = f{x) for x e Z(K) 
and fi{x) =/(л:),/2(x) = 0 otherwise. The functions /^ and /2 are continuous on 
M and / = /1 + / 2 . It fo l lows / leX, /2 e X ' because Z(/ i) 2 Z{K), Z(/2) u Z(K) = 
= M. Thus К G 4 G ) . 

(2) Let r{G) = A{G) hold. By Remark 2.4 (3) we have r{G) ^ r{G, M) ^ A{G) 
and hence the condition 3, Theorem 2.5 is fulfilled. This condition and (1) of our 
Theorem imply r{G) = A{G). 

5.2, Theorem. Every Boolean algebra В is isomorphic to the Boolean algebra A(G) 
of all direct factors of the l-group (G, M) of all continuous real-valued functions 
on a topological space M. If the algebra В is complete, it holds r(G) = r(G, M) = 
= A(G) = TT{G) — n{G) = n{G) (= the set of all principal polars f" with com­
pletely regular elements f of (G, M)). Conversely, T(G) = A(G) implies the com­
pleteness of the algebra B. , 
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Proof. The demanded space is the Stone representation space M of the algebra È 
dual to the given Boolean algebra B. The algebra В is isomorphic to the algebra D(M) 
of all clopen subsets of M ([5] I §8). The space M is Hausdorff, compact (and totally 
disconnected), thus completely regular, too. The /-group G of all continuous real-
valued functions on M is a realization and by Theorem 3.2 [2] (already mentioned 
above) it induces the original topology on M. To prove the first assertion it suffices 
to refer to Theorem 5.1 (1) and 2.4 since W D(M) = Г{С, M) = A{G) and W is an 
antiisomorphism. To verify the second assertion of the Theorem recall that the 
Stone representation space of a complete Boolean algebra is extremally disconnected. 
From Theorem 5.1 and Corollary of Theorem 2.4 it follows: Г{0) = Г(6, M) = 
= A(G) = the set П of all principal polars f" with / completely regular in (G, M). 
From this we easily verify that Я = П(в) = П^О) = A{G) = r{G, M) = r{G). 
The converse is immediate. 

K. NEUMANN [3] constructed another representation of Boolean algebras by means 
of direct factors of /-groups. 

5.3. As we have explained in 5.1, the /-group of all continuous real-valued functions 
on a topological space M forms a reahzation. We ask under which conditions this 
realization is completely regular. If the space M is completely regular, the following 
theorem gives the answer: 

Theorem. Let M be a completely regular and extremally disconnected space. 
Then the l-group G of all continuous real-valued functions on M is a completely 
regular realization. 

Proof. In virtue of Theorem 3.2 [2] the realization G induces the original topology 
on M. Then the Theorem follows from Corollary 2.5. 

5.4. By Theorem 5.1 (1) the /-group G of all continuous real-valued functions on 
a completely regular space M fulfils the condition A(G) = r(G, M). The equality 
A(G) = r[G, M) does not characterize /-realizations since we shall construct a com­
pletely regular space M such that (G, M) is not an /-realization. 

The l-group G of all continuous real-valued functions on the interval M = [0, 1) 
is not an I-realization. 

Proof. The /-ideal J generated by the function/(x) = x is the set of all ^̂  e G for 
which a positive integer exists such that nf ^ |^|. Evidently W{0) 3 J, W(x) ф J 
for x Ф 0. If (G, M) were an /-realization, from the condition /(G) = ß(G) it would 
follow J = f] W(x) for some A ^ M, thus J = ?P(0). However, this is not true since 

xeA 
the function ei/<i -X) _ e belongs to Щ but does not belong to J. 
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