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TORSION THEORY FOR LATTICE-ORDERED GROUPS 
PART II: HOMOGENEOUS /-GROUPS 

JORGE MARTINEZ, Gainesville 

(Received April 8, 1974) 

Introduction. This note pursues in greater detail some of the discussion initiated 
in [6]; we use the same terminology and notation of[6].We shall assume that the reader 
is familiar with CONRAD [3], and FUCHS [4]. and we shall systematically treat such 
material as standard theory of lattice-ordered groups (henceforth: /-groups). At 
the risk of sounding pretentious, we will also assume the reader has the good sense 
to read [6] before taking this on, although it is by no means a prerequisite. 

We write all /-groups additively without regard to commutativity or the lack of it. 
If A and Б are subsets of a set X, we denote (proper) containment by (A cz B) A ^ B; 
A\ В stands for the complement of В in A. 

Let us start by reviewing the notion of a torsion class from [6]. A class ^ of 
/-groups will be called a torsion class if it is closed with respect to taking 1) convex 
/-subgroups, 2) /-homomorphic images and 3) joins of convex /-subgroups in ^. 
With each torsion class we associate a radical (also denoted by ̂ ), so that if G 
is an /-group then ^{G) is the join of all the convex /-subgroups of G belonging 
to ̂ . If ̂  is a torsion class then: a) ̂ {A) = A n ^{G) for each convex /-subgroup A 
of G, b) [^(G)] Ф Ç ̂ {ti) for each /-epimorphism Ф : G --^ H (proposition 1.1 
in [6]). Conversely, any radical satisfying a) and b) gives rise to a torsion class of 
which it is the associated torsion radical (proposition 1.2 in [6]). Finally, we say 
that a torsion class is complete if it closed under extensions. 

In § 4 of [6] we introduced the notion of a homogeneous /-group: G is homogeneous 
if for each torsion class ^ either G e ^ or else ^(G) = 0. Since torsion radicals 
are characteristic /-ideals it follows that all characteristically simple /-groups are 
homogeneous. In this category fall the free abelian /-groups, cardinal sums of reals, 
rationals or integers, periodic real sequences, etc. 

We also developed two criteria for telling when an /-group G is homogeneous. 
Let ^Q and ^^ denote respectively the torsion class generated by G, and the largest 
torsion class relative to having ^(G) = 0. The two criteria are as follows: 
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Theorem (4.1 in [6]): / / G is homogeneous then ^^ is complete and meet irre­
ducible in the lattice of all torsion classes. Conversely, if Ж^ is meet irreducible 
then G has a nontrivial homogeneous l-ideal. On the other hand, if ^ is any com­
plete, meet irreducible torsion class, there is a homogeneous l-group H such that 
^ _ ^ я 

Theorem (4.2 in [6]). / / G is homogeneous ^Q is join irreducible in the lattice 
of all torsion classes. Conversely, if % is a join irreducible torsion class and it 
covers % , and there is an l-group H e ^ so that ^ (Я) = 0, then H is homoge­
neous, ^fj = ^ and Ж'^ is the largest torsion class satisfying ^ n ^ = ^ . 

N o t e . We use meet and join irreducibility relative to arbitrary meets and joins 
respectively. 

We conclude this introduction with some additional basic facts about homogeneous 
/-groups: 

1. If G is homogeneous so is every convex /-subgroup. 
2. If G = ffl{Gy I y 6 г], a cardinal sum of /-groups G^ and Gy o^ G^ for y, S e Г 

and each Gy is homogeneous, then G is homogeneous. 
3. If G is homogeneous and Л is a non-trivial convex /-subgroup of G then 

or — or 

The above are easy to prove and the reader is invited to try them. 

1. FINITE VALUED, HOMOGENEOUS /-GROUPS 

Before launching ahead we need a general lemma concerning the principal torsion 
classes ^Q. 

1.1 Lemma. Let G and H be two l-groups; H G^Q if and only if H = V/e^^p 
where each Hi is a convex l-subgroup of H, and for each i el there exist convex 
l-subgroups Ni ^ D^ of G with N^ normal in Di, such that DiJN^ ^ Н^. 

Proof. It is clear that if Я is a join of convex /-subgroups as described in the lemma 
then H e ^^ So all that's needed is to show that the class ^ = {H \ H = Vi^iHi, H-, 
a convex /-subgroup of Я and a quotient of a convex /-subgroup of G} is a torsion 
class. Obviously, ^ is closed under joins of convex /-subgroups in ЗГ. Next, suppose 
H e £Г and К is a convex /-subgroup of Я , write Я = \/ieiHi, each Hi a convex /-
subgroup of Я isomorphic to DiJNi, where Ni Ç Di are convex /-subgroups of G 
and Ni is normal in D,-. Now К = Vie/^ гл Hi and К n HiC^ DfJNi, where D* ç Di 
is a convex /-subgroup of G; thus Ke ^ . 

Finally, suppose ф : Я -> L is an /-homomorphism oï H e ЗГ onto the /-group L. 
If Я = VieiHi as before, then L = УшН1ф and Н1Ф is a quotient of a quotient of 
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a convex /-subgroup of G. Thus Я,(/) is itself a quotient of a convex /-subgroup of G, 
and we are able to conclude that Le ЗГ. Hence ^ is a torsion class, ЗГ = ^ç, and 
the lemma is proved. 

It will be useful to make the following definition now: if G is an /-group, N ^ D 
are convex /-subgroups of G with N normal in Z), we call DJN a subquotient of G. 
If Г is a well ordered set and {G, | f e T} is a family of convex /-subgroups of G, 
so that G^ ^ Gfif s < t, and \JGt = G, we call G an inductive limit of the G .̂ 

1.2 Lemma. Let H be a finite valued l-group; H e SCQ if and only if H is a cardinal 
sum of inductive limits of subquotients of G. 

(Note . Here and for the remainder of the section we assume G is a finite valued 
/-group.) 

Proof. Every finite valued /-group Я is a cardinal sum of cardinally indecom­
posable /-groups. (This can be seen as follows: the root system of regular subgroups 
is a disjoint union of indecomposable — and hence directed — root systems. The 
indecomposable summands of H are then obtained by considering the /-ideals 
generated by the special elements "living on" a fixed root system component. It 
should be clear of course, that if the root system of regular subgroups of H is in­
decomposable to start with, then H is cardinally indecomposable.) 

So we will lose no generahty if we prove that whenever H e SCQ and cardinally 
indecomposable, then H is isomorphic to an inductive limit of subquotients of G. 

Assuming this, the proof from here on breaks down into two parts: a) if 0 < x e H 
is special then H{x) is isomorphic to a subquotient of G; b) Я = \J{H{X^ \j ^ A 
where J is a well ordered set, and each 0 < Xj e Я is special, so that H(xj) с H{xi) 

a) If 0 < X e Я is special then H{x) is a lexicographic extension of an /-ideal M 
of Я(х) so that H(X)\M is a subgroup of R, the additive real with the usual order. 
Я(х) G SCQ and join irreducible in the lattice of convex /-subgroups of Я , and must 
therefore be a subquotient of G. 

b) We select a root (root = maximal chain) out of the root system of regular 
subgroups of Я ; since Я is indecomposable we can state that if we pick for each 
regular subgroup M on that root, a special element Xj^ > 0 having its value at M, 
then Я = UXM>O^(^M)-ßy choosing a suitable cofinal, well ordered subset of the 
root, we obtain the desired well ordered chain of principal convex /-subgroups. 

The referee of this note has provided the author with an example to show that the 
words "inductive limit of" cannot be deleted in lemma 1.2. Consider the o-group A^ 
of the lexicographic product of n copies of the additive reals, ordered from left to 
right. Let G be the cardinal sum of the Л„ (n = 1,2,...). Let Я be the direct sum of 
copies of the additive reals î „ (n = 1, 2, . . . ) , lexicographically ordered from left 
to right. Then Я is the inductive Hmit of convex subgroups which are quotients of G, 

But Я has infinite sequences a^ > ^2 > О̂З > ... (where a P b 
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means that a ^ kb for each positive integer /c), and no totally ordered subquotient 
of G has this property. Thus H is not a subquotient of G. (Note also that Я is inde­
composable, as it is an o-group.) 

We are now ready for the main theorem of this section; we give it in two stages. 

1.3 Theorem. Suppose G is an indecomposable Ugroup; G is homogeneous if 
and only if for each 0 < a e G, G is isomorphic to an inductive limit of sub-
quotients of G(a). 

Proof. If G is isomorphic to an inductive limit of subquotients of G(a) for each 
0 < a e G, then G is clearly homogeneous. 

Conversely, suppose 0 < x e G and G is homogeneous. G(x) and G generate the 
same torsion class ^ . As G e ^ , by lemma 1.2, G is isomorphic to an inductive hmit 
of subquotients of G(x), and we're done. 

1.4 Proposition. G /5 homogeneous if and only if it is a cardinal sum of in­
decomposable, homogeneous l-groups, each one being an inductive limit of sub-
quotients of any other in the decomposition. 

Proof. Sufficiency. Suppose G = ffllG^lyeT} where each Gy is indecom­
posable and homogeneous, and further Gy is an inductive limit of subquotients of G ,̂ 
for y, ОЕГ. If ^ is Si torsion class and ^ ( G ) Ф 0, then ^(Gy) ф 0 for some у e Г, 
since ^ ( G ) = E^(Gy) ; (proposition 1.3 in [6]). Thus GyG^ and hence each G^e^r 
since Ĝ  is an inductive limit of subquotients of Gy. It follows that G e ^ and G is 
homogeneous. 

Necess i ty . If G is homogeneous, write G = Шуег^у, where each Gy is indecom­
posable. Each Gy is homogeneous, and ^Q = ^Q^ for each 7 e Г. By lemma 1.2 Gy is 
an inductive limit of subquotients of Ĝ  for all y, ô e Г. 

Recall that an /-group G has property ( F ) if each 0 < g E G exceeds at most finitely 
many pairwise disjoint elements. 

1.4.1 Corollary. Suppose G has property (F); G is homogeneous if and only if G 
is a cardinal sum of homogeneous o-groups, any two of which are inductive limits 
of subquotients of eachother. 

Before going on to the non-finite valued case we should point out the following 
offshoot of lemma 1.2. 

1.5 Proposition. Let ^ be a class of finite valued l-groups closed under taking 
convex l-subgroups and quotients. Then ^ is a torsion class if and only if вГ is 
closed under cardinal sums and unions of chains of convex l-subgroups in ^ . 

Proof. Necessity is obvious, so we move right on to the sufficiency. Let Я = 
= Vie/^i» where each Я,- is a convex /-subgroup of Я belonging to ^ . In the spirit 
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of lemma 1.2 we may assume without loss of generality that H is indecomposable, 
and write H = \j{H(xj) \j e J}, where / is well ordered, each Xj > 0 is special, 
and H(xj) cz H(x^) for j < k. Clearly, each H(xj) ç Я,(у), for a suitable i{j) e I. So 
each H(xj) e ^ and hence H e ЗГ, which shows that ^ is a torsion class. 

2. NOW^ INFINITELY MANY VALUES 

Before saying anything really intelligent about homogeneous /-groups which are 
not finite valued, we must present some new torsion classes; let a be an infinite cardinal 
number, and V^ be the class of all /-groups in which all non-zero elements have at 
most a values. 

2.1 Lemma. V^ is a torsion class for each infinite cardinal number a. 

Proof. Suppose G e V^ and С is a convex /-subgroup of G; if 0 < с e С and N 
is a value of с in С then there is a regular subgroup M of G so that M n С = N, 
and of course M is a value of с in G. This suffices to show that с has at most a values 
in C, V^ is therefore closed relative to convex /-subgroups. 

Next, suppose G e V^ and К is an /-ideal of G. If 0 ф Ö̂  -i- К its values in GJX are 
in one to one correspondence with the values of 6̂  in G that exceed K. Hence g + К 
has at most a values, and G\K e V^. 

Finally, suppose G = \/ieiGi, where each G,- is a convex /-subgroup of G belonging 
to V^. G is the subgroup generated by the G ,̂ and if 0 < ^̂  e G then g = gt^ + ... 
••• + Gin^ where 0 < gi^ and gi^ e G,-̂  (Я = 1, 2, ..., n). If M is a value of ^̂  in G 
then M is a value of at least one of the gi^. The values of gi^ in G are in one to one 
correspondence with its values in G^, whence g has at most a values in G. (Note: 
it is here that we need the assumption that a be an infinite cardinal number.) 

This completes the proof of the lemma. 

2.2 Theorem. Suppose G is a homogeneous, hyper-archimedean l-group. Then 
either G is finite valued, in which case it is a cardinal sum of copies of a fixed 
subgroup of R, or else there is an infinite cardinal number a so that each non-zero 
element of G has precisely oc values. 

Proof. Since G is hyper-archimedean all regular subgroups are maximal, and so 
it follows that if 0 < g e G has at most ß values, then any positive element below g 
has the same property. We ignore the finite valued case, the conclusion being obvious 
by now. Thus we assume there is an infinite cardinal number a, and an element 
0 < a e G having a values. By our remark here, and because G is homogeneous 
GeV^. 

If some h e G has fewer values, say y of them, with y < oc, then Vy{G) ф 0, which 
implies that G e Vy, a contradiction. We must conclude then that each non-zero 
element of G has precisely a values. 
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For each infinite cardinal number a we can construct a homogeneous, hyper-
archimedean Z-groups B^ in which each non-zero element has precisely a values. 
Let / be a set of cardinality a, and let В be the Z-group of bounded, integer valued 
functions on / . Let J be the /-ideal of functions whose supports have cardinality 
less than a; finally, set B^ = J5/J. 

Since В is hyper-archimedean so is B^; in fact В is an S-group; that is, it is generated 
by its singular elements. (Recall that an element 0 < s is singular if 0 ^ g ^ s 
implies that g A (s — g) = 0.) The iS-groups form a torsion class, so B^ is also 
an S-group. Define м G Б to be the con;.tant function 1; w is a strong order unit for J5, 
so that w + / is a strong order unit for B^. 

Suppose 0 < g e B\ J and let Ig be the support of g. Since / and Ig have the same 
cardinality there is a bijection between them; it extends to an isomorphism ф from В 
onto B(^g) so that иф = g and J is mapped onto the /-ideal J g of all functions in Bi^g) 
whose supports have cardinaHty less than a. Noting that Jg = J n B{g) we have, 
B^ = BjJ c^ B{g)lJg = B{g)lB{g) n J ^ B{g) + J/J, and the last one is the /-ideal 
of B^ generated by f̂ + J. 

We've shown then that every principal convex /-subgroup of B^ is isomorphic 
to B^. This clearly suffices to establish that B^ is homogeneous. Next, partition / 
into a subsets of cardinality a each. This gives rise to a pairwise disjoint singular 
elements whose supports all have cardinality a, by passing to the appropriate 
characteristic functions. This should convince the reader that и + J has a values, 
and hence that all non-zero elements of B^ have a values. 

We give two examples in closing this section: 
1. First, theorem 2.2 only gives a necessary condition for homogeneity. For 

example let G be the /-group of periodic real sequences with integers in all odd 
components; G is not homogeneous, it is hyper-archimedean, and each non-zero 
element of G has countably many values. 

2. An /-group may be homogeneous, not finite valued, yet contain some finite 
valued elements. Consider the f-group V = У{Л, R) over the root system Л pictured 
below. Fis not finite valued; for example there is the function / e F defined by 

/w = 1 if « = 2* 
0 otherwise . 
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Yet V is homogeneous, because each 0 < x eV exceeds a special element 0 < y eV 
such that V(y) ^ V. 

3. VOIDS AND CLOSING COMMENTS 

Obviously this note fails to answer certain basic questions about homogeneous 
/-groups. Unquestionably, a defining condition is needed that circumvents torsion 
classes; we have it only in the finite valued case. 

One interesting question involves homogeneous ö-groups: we know now that they 
are characterized by saying that each positive element ^'dominates" a subquotient 
isomorphic to the given group. The question is whether subquotient may be replaced 
by convex subgroup. The author has tried in vain to concoct a Hahn group whose 
skeletal chain Л is such that for each Я e Л there is a convex subset Гд of Л, satisfying 
/z ^ Я for each fi e Г^, whose corresponding Hahn group is isomorphic to the original 
o-group, yet r^ cannot always be chosen to be an order ideal of A. The author 
bhthely believes that such examples exist. 

We conclude with two examples; the first answers a conjecture of [6], the second 
raises some new intriguing questions. 

a) Let G = C([0, 1]); it is shown in [1], corollary 6.11 that К = {feG\f 
vanishes off an open interval in [0, 1]}, is the smallest non-trivial characteristic 
/-ideal of G. We proved in [6], §4, that К could not be a torsion radical, and 
wondered whether G is not actually homogeneous. 

Let us see that it is homogeneous: suppose 0 < / e G ; then there exist a, be 
e (0, 1), a < b, so that f(t) > 0 for each t e (a, b). Pick two points с and d so that 
a < с < d < b, and let L be the /-ideal of functions that vanish off (a, b). We can 
define an /-homomorphism ф from Lonto C([c, df]) by restriction; (it is reasonably 
obvious that ф is indeed onto.) What we've proved is that for each 0 < fe G there 
is a subquotient of G(/) isomorphic to G ; it follows that G is homogeneous. 

b) Let G = ZY[Z, the free product as abelian /-groups of the additive integers 
with themselves; it can be seen from the discussion of [5] that G is the /-subgroup 
of C([0, 1]) generated by f{t) = t and g{t) = 1 - t. This says that G is the full 
group of piecewise linear and continuous functions on [0, 1], (finitely many pieces), 
with integral slopes everywhere. From here one can develop an argument very similar 
to — but more delicate than — the one in a) to show that G is homogeneous. 

The free abelian /-group on any number of generators is a free product of copies 
of Z Ш Z, and is homogeneous. In view of this and b) above one ought to wonder 
whether the free (abelian) product of any number of copies of a (homogeneous) 
abelian /-group is homogeneous. 
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