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DAVID LOWELL LOVELADY, Tallahassee 

(Received May 8, 1975) 

Let n be an integer, n ^ 2, let ^ be a positive continuous function on [0, oo), 
and let a be a real number, a > 1. It is known (see I. LICKO and M. §VEC [3] and 
G. H. RYDER and D. V. V. WEND [6]) that 

(1) r^"~^ q{t)dt < 00 

is a necessary and sufficient condition for the existence of a nonoscillatory solution of 

(2) u^''\t) + q{t) \u{tf sgn (t/(r)) = 0 . 

The sufficiency of (l) is usually shown by showing the existence of a solution и 
of (2) with 

(3) lim u{t) 
t->oo 

existing and not being zero. On the other hand, I. T. KIGURADZE [2] has shown that 
the nonoscillatory solutions of (2) fall into n distinct classes, and one of these classes 
contains all solutions и for which (3) exists. We shall obtain separate necessary and 
sufficient conditions for each of the n classes. 

Suppose и is an eventually positive solution of (2). Now there is с ^ 0 such that и 
is defined on [c, oo) and none of w, u\ ..., w^̂ "~^̂  has a zero in [c, oo). Let j„ be the 
largest integer such that u^'^ > 0 on [c, oo) if i ^ j„ (where we write и = u^^^). 
Now ju is odd and M^̂ ^W^̂ "̂ ^̂  < 0 on [c, oo) if j^^ ^ /c ^ 2n — 1. Since j \ is odd, 
we see that there are n possible values for the function described by w -> j„, and that 
the eventually positive solutions of (2) fall into n classes. If w is an eventually negative 
solution of (2), then — w is an eventually positive solution, so similar analyses apply. 
(See Kiguradze [2], Ryder and Wend [6], and the present author [4], [5] for details 
on the above construction). 
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Theorem. Suppose к is an odd integer in [0, 2«]. Then 
/'oo 

(4) r^"-^-*-^^^-^>^(r)dr < 00 
J 0 

if and only if there is an eventually positive solution и of (2) with к = j„. 
Note that our Theorem is an improvement of [5, Corollary 2], in which it was 

shown that if /c > 1, a > /c/(/c — 1), and 

£ ^2n-/c + a ( / c - l ) - l ф^^^^ ^ ^ 

then (2) has no eventually positive solution и with к = y„. If m is an odd integer in 
[0, 2n] and m < к then (4) imphes 

f 
J 0 

I 

since a > 1. This gives the following result. 

Corollary 1. / / m and к are odd integers in [0, 2?i], if m < k, and if there is an 
eventually positive solution и of (2) withj,^ = k, then there is an eventually positive 
solution и of (2) with i^^ = m. 

If и is an eventually positive solution of (2) and к = j^^, then u^^^ > 0 and м^̂ ^̂ ^ < 
< 0, eventually, so lim u^^\t) exists. This and к applications of L'Hôpital's Rule 

t->oo 

say that lim u[t)jt^ exists. Thus we have another corollary. 

Corollary 2. Suppose к is an odd integer in [2, 2n]. Then 

(5) fV-^-^^(^-^>^(Odr = 00 
J 0 

if and only if 
(6) l i m ^ 

t-*<x> I 

exists and is finite whenever и is a nonoscillatory solution of (2). 

Proof of the theorem. Suppose there is an eventually positive solution и of (2) 
with к = 7„. Find с ^ 0 such that и is defined on [c, oo) and none of w, u\ ..., м^̂ "~^̂  
has a zero on [c, oo). Now 

(7) u^^\t) г - L _ _ ^ n^ - 0 — q{s) u{sy as 
{2n - /c - 1)! Jo 
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if г ^ с. Also, if s ^ Г ^ с, 

since u^*"'̂  is increasing (recall м<*) > 0). If у = м̂ *"̂ ^ and jß = ((2n ~ к - l)!)~^ . 
. ((fc - 1)!)'"' then (7) and (8) say 

v'{t) ^ ß vit)" Hs - ,)2"-*-i +"(*-!) Ф ) ds , 

/•00 

- ^ « c ) i - - KO'-«) > ßC (Гц - s)^'-*-'-(*-i) q(^) dAds 

if r ^ c. Since lim i?(r)̂ "°' exists, because a > 1, this says 

t-^ao 

(9) Г ( 1°"̂ ^ ~ ,)2n-.-l+»(*-.) g(̂ ) dA d. 
< 00 

But (9) impHes (4), so the first part of the proof is complete. 
Now suppose (4) holds, and let 

/*00 

Jo 
Find positive numbers ß and b such that 

(10) ß-^ ^ < b . 
^ ^ {k- 1)! {2n- k- 1)! ~ 

(Clearly there are such numbers, since a > L) Let ^ be the set to which/ belongs 
if and only if / is a continuous function from [0, oo) to [O, oo), and f{t) ^ bt^~^ 
ift^O. If/is in i^ then (4) says 

Jo 
< 00 

Let Tbe that function on J^, each value of which is a continuous function from [0, oo) 
to [0, oo), such that g = T(/) if and only if 
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whenever t ^ 0. Suppose/is in ^ and g = (Tf). If f ^ 0, 

<̂"="'" " (t-0,(2!"-.-1)11?" (|>-"-*-"*)«)-»= 

<(ß + ^ ^ t'-' < bt'-' , 
~ V {k- 1)! (2n-k- l)lj 

from (10), of of is in #", and Tmaps #" into #". Now routine computations show that T 
is continuous with respect to the topology of locally uniform convergence, and that 
the range of Tis locally equicontinuous. Thus the fixed point theorem of J. SCHAUDER 

[7] (see also W. A. GOPPEL [1, p. 9]) says that there is м in J*̂  with и = T(w), i.e., 

(11) u{t) = ßt^-' + 

^ (,-mL,^>y. I> - '^^' (1> - '>'••'•' '(« "<* «) '' 
if f ^ 0. Now (11) says u{t) ^ ßt^~^ if t ^ 0, so u{t) is positive if f ^ 0. Also, it is 
easily seen that w is a solution of (2), and j \ = k. The proof is complete. 

Corollaries 1 and 2 are now obvious. 
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