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CHARACTERIZATIONS OF GRAPHS HAVING 
ORIENTATIONS SATISFYING LOCAL DEGREE RESTRICTIONS 

R. С ENTRINGER, Albuquerque and L. K. TOLMAN, Provo 
(Received January 16, 1976) 

Î. INTRODUCTION 

Throughout the short history of graph theory several authors have discussed 
problems concerning orientations of undirected graphs. These have included, for 
example, enumeration of the number of orientations of given undirected graphs as 
dealt with in the monograph of F. HARARY and E. M. PALMER [14] (some of these 
results also appear in [13]). However the type of problems most frequently considered 
are all special instances of the following. 

Problem. Given a property P that oriented [antisymmetric) graphs may possess, 
characterize those undirected [symmetric) graphs having an orientation with 
property P. 

Our purpose in this article is twofold; we first wish to provide a convenient reference 
to and show the interdependence between the many results and open questions con­
cerning graph orientation problems and secondly, we wish to add to this body of 
information through consideration of a specific orientation problem. The problem is 
that of characterizing those graphs having an orientation D in which the outdegree 
and indegree of each point pj of D satisfy rj ^ od{pj) ^ 5̂  and Uj ^ id(py) й Vj 
respectively for a specified collection {(гр Sj, Uj, Vj)} of 4-tuples of non-negative 
integers. 

2. TERMINOLOGY 

In this section we make precise some of the terminology we will use throughout 
the remainder of the paper. Any term used later without definition will have the 
meaning given in [ U ] or [12]. 

A walk of an undirected (directed) graph is a sequence of points Pi, .-, Pn in which 
each PiPi+i, i = 1, ...,n — 1, is a line (arc) of the graph. If pi == p„ the walk is 
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closed. A path is a walk in which no point appears twice. A cycle C„ is a closed walk 
in which pi = p„, n ^ 3, and no other point appears twice. The girth of a graph 
is the number of points in a smallest cycle (if such exists). K„, the complete graph on n 
points, has any two distinct points adjacent. A semicylce of a diagraph is a sequence 
of points Pi, ..., Pn^ " ^ 3 in which p^ = p„, no point distinct from p^ appears 
twice, and either PtPt+i or Pt+iPi is an arc of the digraph for i = 1,..., n — 1. 
The converse of an oriented graph is obtained by replacing each arc pq by the arc qp. 
A strong orientation is an orientation in which there is a path from any point p to 
any distinct point q. A digraph has an n-arc strong orientation if after the deletion 
of any n — 1 arcs there is still a path from any point p to any distinct point q. We 
will use od(p) and id(p) to represent the outdegree and indegree respectively of 
a point p of a digraph. A digraph is transitive if it contains the arc ac whenever it 
contains the arcs ab and be. At the other extreme, a digraph is a basis digraph if 
the deletion of any arc pq results in a graph having no path from point p to point q. 
The relation between basis digraphs and partial orders is discussed in chapters 9 
and 10 of [23]. 

3. A BRIEF SURVEY OF ORIENTATION PROBLEMS 

We believe the following list covers most publications deahng with the general 
problem with which we are concerned; however, we hold no hope that the list is 
complete and will welcome any missing items being brought to our attention. 

Perhaps one of the most attractive results is that of T. GALLAI [6] who settled 
ä conjecture of P. ERDÖS by showing that a graph G has an orientation containing no 
path of length к if and only if G is /c-colorable. 

FRANK HARARY, EDGAR PALMER and CEDRIC SMITH [15] proved that a graph has 
an orientation that is not self-converse if and only if G is not one of K^, K2, C3, C4 
or C5. 

In an article by P. ERDÖS, L. GERENCSER and A. MATÉ [2] it is shown that for 
each partition of the point set of a graph G into two sets A and В there is an orienta­
tion D of G such that for any two points a in A and Ь in Б there is a point с of A 
for which the distance in D from с to Ь is at most the distance in G between a and b. 

In [3, p. 99] P. ERDÖS mentions the following open problem due to OYSTEIN ORE. 
Characterize those graphs having an orientation containing no cycle and further 
containing no semicycle which becomes a cycle if one of its arcs is reversed. 

According to a theorem of P. W. KASTELEYN [16] a planar representation G of 
a planar graph may be oriented so that for every cycle С of G, the number of arcs 
that are oriented in the clockwise sense is of opposite parity to the number of points 
enclosed by С CHARLES H. C. LITTLE [18] has extended Kasteleyn's theorem to 
non-planar graphs. 

H. E. RoBBiNS [24] has shown that a graph G has a strong orientation if and only 
if G is connected and bridgeless. OYSTEIN ORE [23, p. 148] asked for a characterization 
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of those graphs having an orietation in which any two points (arcs) lie in a cycle. 
C. ST. J. A. NASH-WILLIAMS [21] generalized Robbins' result by showing that 
a graph G has an n-arc strong orientation if and only if G is 2«-line connected. He 
then generahzed this result to the following [22]. Every graph has an orientation D 
such that for each pair of distinct points p and q the minimum number of arcs in D 
whose deletion eliminates all paths from ptoq in D is at least the greatest integer in 
half the minimum number of lines whose deletion from G eliminates all paths from p 
to g in G. 

OYSTEIN ORE [23, p. 155] has asked for a characterization of graphs having an 
orientation which is a basis digraph. C. E. HAFF, U . S. R . MURTY, and R. C. WILTON 
[9] showed that any graph with girth larger than its chromatic number can be so 
oriented. More importantly they also gave an example of a graph with girth 4 having 
no such orientation. They subsequently found but did not publish a simpler example 
of such a graph. They further remarked that they knew of no solution for the ana­
logous problem of characterizing graphs having an orientation corresponding to 
a lattice. LAURENCE R . ALVAREZ [1] has, however, characterized graphs having an 
orientation which is the basis of a modular lattice of finite length and then extended 
this characterization to cover distributive lattices of finite length. 

OYSTEIN ORE [23, p. 163] has posed the further problem of determining, in the 
class of graphs without triangles, those graphs, with the smallest number of lines, 
that do not have an orientation which is the basis graph of a partial order. K. M. 
MOSESJAN [19] has shown this to be a Myclelski graph [20]. 

A. GHOUILA-HOURI [7] and later P. С GILMORE and A. J. HOFFMAN [8] showed 
that a graph has a transitive orientation if and only if every closed walk pi, jP2, ••• 
•••> Рш = Pi of G in which m is odd and Pi = pj implies Pi + i ф pj + i for / Ф j , 
contains a point Pk^or which the line PkPk+i is in G. T. GALLAI [5] then studied this 
characterization in depth. E. S. WÖLK [25] has characterized graphs having a transi­
tive orientation D satisfying the further property that whenever uw and vw are distinct 
arcs of D then D also contains uv or vu. 

S. L. HAKIMI [10] has shown that a graph G whose points are labeled Pi, P2, »", Pn 
and with whose points are associated non-negative integers d^, d2,.-., d„ respectively 
has an orientation in which od{pi) = di, г = 1, 2, ..., w if and only if for each 
subgraph Я of G, J^ndt ^ ЩН) with equahty holding when H = G. Here J^ndt 
is the sum of all those di for which Pi is in H and N(H) is the number of lines of H. 
He further showed the orientation is unique if and only if G is acychc. A. LEMPEL 
[17] has shown that every graph G has an orientation in which every point has out-
degree at most [ i ( J + 1)] where d is the maximum average degree of induced 
subgraphs of G. 

A further motivation for our investigation is the foHowing result of BOHDAN 
ZELINKA [26] independently discovered later by G. SIMMONS [4]. They showed that 
if a (connected) graph had at least as many lines as it had points then it was possible 
to assign each point to an incident line so that no two points were assigned to the 
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same line. In our terminology we could then say that a graph G had an orientation 
in which the outdegree of each point is at least one if and only if G had at least as 
many lines as points. We will see that this is a special case of one of the corollaries 
to our main theorem. 

4. ORIENTATIONS WITH LOCAL DEGREE BOUNDS 

The results discussed in the last paragraphs suggested consideration of the fol­
lowing problem: "Given the collection of 4-tuples of non-negative integers {(гу, Sj, 
" j ' ^j)}' (O = ^J ^^^ ^J = ^y)' characterize those graphs having an orientation in 
which rj g od[pj) S Sj and Uj S ^<^{Pj) S ^j for each point pj in G." We obtain 
this characterization in the Main Theorem. 

We will have a need for more terminology than that introduced in section 2, it and 
new notation will be introduced when needed. 

Given a graph G the set of all nonempty subsets of the point set of G will be denoted 
by ^ and Gl will designate an arbitrary member of ^ . As usual JSJ will denote the 
cardinality of the set S, The number of lines in the subgraph <G,) induced on Ĝ  by G 
is denoted by iC(G,) while L{Gi) is the total number of lines of G incident to at least 
one point of Gi. The collection of lines of G incident to exactly one point of Gi is 
called the boundary of Ĝ  and is denoted by ^(G,). Obviously we have the following. 

Property i. 
L{G,) = K{G,) + |ß(G,)| 

and 

X d e g ^ = 2K(G,.) + |ß(CO| = K{G;) + L{G,). 

This and further properties will be used in the sequel without specific reference. 
Also all graphs will be assumed to be connected. 

Suppose now that G has been oriented. The sum of od(p), (id(j7)), over all points p 
in Gl will be designated by od(Gj), (id(Gf)) respectively. On the other hand od(<Gj>) 
and id(<G,>) will denote the sum of the outdegrees and indegrees in <G,> of all 
points of Gj. The number of lines in the boundary of Gi that are lines from some point 
of Gl will be denoted by od(ß(G,)). The notation id(5(Gj)) is defined analogously in 
terms of lines to some point of G,-. The following equalities are obvious conse­
quences of these definitions. 

Property ii. 

oà{Gi) = o d « G , » + od(B(G,)) 

and 
. id(G,) = id«G,.» + id(B(G,.)). 
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Property ili. 

Property iv. 

Property V. 

and 

|ß(G,.)| = od(ß(G,.)) + id(ß(G,)). 

o d « G , » = i d « G , » = ^(G,.). 

L{Gi) ^ od(GO ^ K(G,) 

L{Gi) è id(G,.) ^ K{G,). 

For purposes which become clear in some of the proofs it is convenient to introduce 
further notation. 

GQ[GI) == [p in G: there is a path from a point in Giio p} 

Gj(Gi) = {p in G: there is a path from p to a point in G J . 

Since a point p is a path we trivially have the following. 

Property vi. 

G,- g Go(G,) and G, g Gj{G,). 

If Gl is the singleton {p} we may use the notation GQ(P) and Gj{p). 
We observe that Go(Gj) and Gj[Gi) depend not only on Gj but also on the particular 

orientation ot G. Since there will be no equivocation concerning the orientation in 
question when the sets are used, we do not encumber the notation with an orientation 
index. 

We conclude our list of properties with the following, none of which is difficult 
to prove. 

Property vii. 

od(Go(G,)) =- K(Go(GO) . id(Go(G,)) = L(GO(G,)) , 

od(G,(G,)) = b(G,(G,)) . id(G,(G,)) = K{G,{G,)) . 

The following additional notation is needed for the statements and proofs of the 
ensuing results. 

Gt = Gt{{xj, yj)} = {pj in G, : deg(jp,.) ^ Xj + yj} , 

G7 = G7{{xj, yj)} = {pj in G, : deg{pj) й Xj + yj} 

where G^ r\ G[ = 0 . Note that those points where equahty is satisfied must be chosen 
to fall in just one of the two sets, just which set will depend on what is needed in 
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a particular instance. The seam on G,- with respect to {{xj, jy)}, denoted by Si = 
= Si{(xj, Vj)} is the collection of all lines have one endpoint in G'^ {{xj, yj)} and the 
other in G;{{xj,yj)}, 

Main Theorem. Let {(r^, Sj, Uj, Vj)} be a given collection oj 4-tuples of non-
negative integers (r^ ^ 5̂  and Uj ^ Vj). There exists an orientation of a given 
graph G such that rj ^ od(pj) S Sj and Uj ^ id(/7y) ^ Vj for each point pj in G 
if and only if 

(i) rj + Uj й deg(jDj) ^ Sj + Vj for each Pj in G , 

(ii) X ^e-K{Gt{{rj,v,)}),-L{GT{{rj,v;)})- X r,^\S,{{r,,Vj)}\ 

for each Gi in ^ , and 

(iii) y s^-K{Gt{isj,u,)}) + L{G;{{sj,u^)})- Z « e ^ 
PeeGi + {isj,uj)} PeeGj {(sj,Uj)} 

^\Si{{sj,Uj)}\ 
for each Gi in ^. 

Proof. The degree inequality is easily seen to be necessary since deg(py) = 
= od(pj) 4- id(jPy). Also, by the directional duality principle [11], showing either of 
the remaining inequalities suffices. Suppose G has such an orientation; let us show 
that for any Gf in ^ the last inequality is satisfied. Now 

K{Gt{{sj,Uj)})uod{Gt{{sj,Uj)})-ocu Z 5 , - a 
Pe^Gj 

and 
L{G7{{Sj, Uj)}) ^ ïd{G7{{Sj, M,)}) + ß^ Y ^e + ß 

where a is the number of lines of Si{(sj, Uj)} oriented outward from points in G^ 
and ß is the same for G^. Consequently we find that 

5: s, - K{GÎ{isj, UJ)}) + L{G:{isj, UJ)}) - E u,^a + ß = |S,{(s,, и,Щ . 
PeeGi'^ PeeGi~ 

Thus the given conditions are necessary. 
To show sufficiency we choose an orientation h so that 

F{h) = X! "^ax {0, r^ - od{p,), od(p^) - 5 ,̂ u, ~ id{p,), id{p,) - v,} 
PeeG 

is minimal. We show that F ( / Î ) = 0, that is, the graph admits the desired orientation. 
If F{h) > 0 then for some point Pj one of the entries in F[h) will be positive. 

Suppose rj > od(pj) for some point Pj in G and consider Gj = Gj{pj). If p^ is 
in G/ = Gi{pj) {{rj, Vj)} thendeg(p^) ^ r^ + v„ so if id (p,) < v, then od{p,) > r^ 
and replacing SL p^ — Pj path with its converse reduces F(/i), a contradiction. Thus 
id(pg) ^ v^ and we find that 

K(G;) = id (G; ) -aè X v^-o^, 
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where a is the number of seamhnes oriented as inlines to points in G^. If the point pj 
is in G^ then id(pj) > Vj and the above inequality is strict. 

Similarly, if p^ is in GJ{pj) {(гу, Vj)} then deg(p^) ^ r̂  + v^, so that od(p ,̂) > r,, 
implies id(pe) < î^ and replacing a ]?̂  — Ру path with its converse reduces F{h), 
again a contradiction. Thus od(/7g) ^ r̂  and we find that L(G7) = od {GJ) Л- ß S 
й J] r^ + ß where ß is the number of seamlines oriented as inlines to points in G]^. 

Ир J is in G J then, since od(py) < o, the above inequality is strict. Now pj is in either 
G J or G7, thus at least one of the inequalities is strict so we find 

\Sj{pj)\ = a + ß> I r. - X ( G ; ) + L{G:) " Z r, 

contrary to the hypothesis. Thus od{pj) ^ rj for each point pj in G. By the dual 
argument we also find that id(py) ^ Uj for each /7̂  in G. 

Thus if F(/z) > 0, for some point pj in G either od(/7y) > .ŝ  or \d{pj) > Vj. Suppose 
od{pj) > Sj and consider Go = ^o{Pj)' 

If p, is in Go = GÖXPJ) {{SJ, UJ)} then deg(p,) й s, + и, and id(p,) ^ w,. If 
id(;7 )̂ > u^ then od(i7e) < 5̂  and replacing a J7y - Pe path by its converse reduces 
F{h), a contradiction. So id{p,) = u, and L(Gö) = id(Gö) + ß = Z «̂  + /i 

Pe^Go 

where j5 is the number of seamlines oriented as outlines from points in Go . 
Now pj is in Go for if it were in Go this would require that id{pj) < Uj contrary 

to the dual of the prior case. If p, is in Go = Go{Pj) {{sp Uj)}, then deg(jp̂ ) ^ 
^ 5̂  + We and od(pe) à s^. Since od{p^) < s^ implies id{p^) > u^ and replacing 
a Pj - Pe path with its converse reduces F{h), again a contradiction. We now have 

i^(G^) = od(G^) - a > Z ^ e - a 

where a is the number of seamlines oriented as outlines to points in GQ, Note that 
the inequality is strict because Pj is in G^. Consequently we find that 

\S,{pj)\ = a + iS > Z ^e- K{Gt) + L(Go-) - Z ^e 

contrary to hypothesis. Thus for each pj in G, od{pj) ^ Sj and by the dual argument 
id(py) ^ î y. That is, F(/i) = 0 and the proof of the theorem is complete. 

Since conditions (ii) and (iii) of the Main Theorem simplify considerably when one 
or more of the four indegree-outdegree conditions is eliminated we list some of these 
cases to facihtate use of the theorem. It should be noted that the directional duals of 
these results are, of course, also vahd. For the sake of brevity we list only the essential 
changes in the hypothesis and (ii) and (iii) of the conclusion. 

Corollary 1. 

i) od{pj) à rj iff L{G,) è Z Ге. 
P.eGi 4, 
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PeeGi 

iii) rj ^ od{pj) è sj iff L{G,) ^ £ r, and X(G,) й Z s,. 
Pe^G i PeeG i 

iv) od{pj) è rj and id{pj) è uj iff L{Gi) ^ max { ^ r„ X "Л-

v) od(p,) ^ 5, and id(/7,) ^ . , ,J^ X(G,.) ^ min { X s., I <̂ Л-
PeeG i Pe^G i 

vi) od(pj) ^ Sj and id{pj) è Uj iff I s, - K{Gt) + ДСГ) - I "e ^ \Si\. 
PeeGi^ PeeGi 

vii) r,. й od{pj} й SJ and id{pj) ^ Uj iff X s. - 4GÎ) + ЦСГ) -
P.eGi* 

- S "e ^ l^il, L(Gf) ^ X '•.' «"^ deg(/)y) è о + Mj.. 
PeeGi~ PeeGi 

viii) r̂  ^ od(p,) й Sj and id{pj) й vj iff X '^e - 4GÎ) + LiGT) -
PeeG i + 

- Y. Ге^ |S,|, K{G,) ^Y^s, and dcg{pj) й Sj + Vj. 
PeeGi- PeeGi 

Proof. Rather than give a detailed proof of each part we simply point out that 
they may be obtained from the Main Theorem by assigning rj and Uj the value 0 
when appropriate and assigning Sj and Vj sufficiently large values when appropriate 
so that, after propert choice of the Gf, and Gf, the appropriate Gf and G,~ are 
empty. 

Another special case of interest is that in which Vj = Sj for each j ; here we have 
the following resuh. 

Corollary 2. Let G be a given graph and {(гу, Up Vj)] be a given collection of trip­
les of non-negative integers. The following are equivalent: 

(i) There is an orientation of G where od{pj) = 0 ^^^ ^j ^ ЩР]) = ^jf^r each 
point Pj in G. 

(ii) G has Y, r^ lines, L{G) ^ ^ rJorallGiin^andrj + Uj S àQg{pj) S Vj + Vj 
PeeG PeeGi 

for each Pj in G. 

(iii) G has Y^r^ lines, K{Gi) й Y ^e for all G,- in ^ and rj + Uj S deg(py) ^ 
PeeG PeeGi 

= О "̂  V̂ for each Pj in G. 

(iv) K{Gi) S Y^eu b(G,) for all G, in ^ and rj + Uj й àQg{pj) й Vj + Vj 
PeeGi 

for each pj in G. 

Proof. Set Gi = G in (iv). Then since K{G) = L(G) and K{G) is the number of 
lines in G, we see that (iv) implies both (ii) and (iii)-
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We next show that (i) impHes (iv). We first note that the restrictions in (iv) on the 
number of lines of G and the degrees of the points of G follows immediately from (i). 
Now, using parts i) and ii) of Corollary 1 we obtain the inequalities K[Gi) S YJ ^e ~ 

PeeGi 

Finally we show that (ii) (and therefore (iii) by a similar argument), impHes (i). 
Now, (ii) and part i) of Corollary 1 imply there is an orientation of G such that 
od(pj) ^ rj for each pj in G. If, in such an orientation, od{pj) > rj for some point pj, 
then G has more than ^ r^ lines, contrary to (ii). Thus, od{pj) = rj for each point pj. 

PeeG 

Also, from rj + Uj S àQg{pj) = od(pj) + id{pj) = rj + id{pj) й rj + Vj it follows 
that Uj S id{pj) ^ Vj and the proof of the Corollary is complete. 

Corollary 2 can be used, for example, to show that any regular graph of even 
degree has a regular orientation. 

Corollary 3. There is an orientation of a graph G such that id{pj) ~ od{Pj) — r 
for each point Pj in G if and only if dtg{pj) = 2r for each pj in G. 

Proof. The condition is clearly necessary. The identities 

^[K{G,) + Lie;)] = i X deg(p,) = X '• 
PeeGi PeeGi 

yield the result 
K(G,) й ^ г й L{G,) 

PeeGi 

for all Gi in ^ and so, by Corollary 2, there is an orientation of G such that od(pi) = r 
(and consequently id(pj) = r) for each pj in G. 

The assertion "there is an orientation on G such that od^pj) = rj and id{pj) = Uj 
if and only if deg(pj) = rj + u/' suggested by Corollary 3 is not in general true. 
For example let G = X4, r^ = Г2 = W3 = W4 = 3 and Г3 = Г4 = ŵ  = ^2 = 0. 
The degree conditions are met but K^ has no such orientation because the "G^ con­
ditions" of Corollary 3 are not satisfied. 

Our discussion up to now has dealt only with the situation in which the indegrees 
and outdegrees of an orientation are restricted to lie in certain intervals. We now 
discuss the types of theorems that arise when each point may satisfy any one condition 
from a given collection of given conditions. The foregoing analysis provides all the 
required tools to express and prove necessary and sufficient conditions for such 
theorems. We illustrate with the following two examples. 

Theorem. Suppose {(^j, Wj)} ^̂  ^ given collection of non-negative integer pairs 
and G is a given graph. There is an orientation of G where either rj ^ od(py) or 
Uj S ^à(pj) for each point Pj in G if and only if there is a partitioning {G% G"} 
of the points of G such that L{Gi) ^ Y. ^e M all Gi c: G' and L{Gi) ^ ^ u.for 

PeeGi PeeGi 

allGtC G". * 
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Note . G'' or G" may be empty. 

Proof. The conditions are easily seen to be necessary. To show sufficiency choose 
an orientation h so that 

F{h) = X max {O, rf, - оа{р^)} + X max {0, u,, - \â{pk)} 

is minimal. From this point on the proof continues in the same manner as the proof 
of the Main Theorem. 

For the last example set G^ = G"" n G,- and let S^ be the set of lines with one end 
point in G^ and the other in G\. 

Theorem. Let G be a given graph and {(r^, t;̂ )} be a given collection of non-
negative integer pairs. There is an orientation of G such that either rj ^ od(py) 
or id{pj) S ^j for each point pj in G if and only if there is a partitioning {G**, G^} 
of the points of G for which 

Y, V,- K{G4) + L{G--i) - E r, ^ | s r | for all G, in ^ . 

Proof. To show necessity, suppose we are given such an orientation and any Ĝ  
in ^ ; we see that X(G-) = id G" - a ^ X ^k - oc and L{G'i) = od (G^) + ß ^ 

PkeGi^ 

^ YJ f̂e + Д where a is the number of lines in 5^ oriented to a point in G] and ß 
PueG i'' 

the number oriented into G]. Consequently 

X % - K{G4) + L{G-'^ - Y.r,^a + ß= \S-\ . 
Pk^Gi^ PkeGi"-

To show sufficiency choose an orientation h so that 

F{h) = Y niax{0, r, - od(p,)} + Y i^ax {O, id(p,) - v^ 
PeeG^ Pe^G^ 

is minimal and proceed as in the proof of the Main Theorem. 

5. CONCLUSION 

The proofs of the results of the last section were constructive in that the desired 
orientation was obtainable by first giving a graph G any orientation and then, in 
a systematic way, replacing paths by their converses until the required orientation 
was obtained. This suggests the following simple algorithm for obtaining an orienta­
tion satisfying given degree conditions if such exists. 

Given an undirected graph G and a set S of indegree and outdegree restrictions such 
as specified in any of the preceding theorems or corollaries, an orientation D of G 
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satisfying the restrictions of S may be found, if such exists, using the following 

algorithm. 

Algorithm, i) Assign an arbitrary orientation h to G. 

ii) Evaluate the appropriate function F{h) as defined in Section 4. 

iii) If F(/i) = 0 the required orientation D has been obtained. 

iv) If F(h) > 0 choose a p^ —, pj path such that when this path is replaced by its 

converse to form a new orientation h\ F{h') < F{h). (If no such path exists the desired 

orientation does not exist.) 

v) Repeat ii). 

Since F is never negative, the algorithm must terminate. 
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