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FINITE ABELIAN SEMIGROUPS REPRESENTED INTO 
THE POWER SET OF FINITE GROUPS 

AUGUST LAU, Denton*) 

(Received December 7, 1977) 

Finite abehan groups have very well-defined structures and are direct sums of 
cyclic groups. If 2^ is the collection of nonempty subsets of a semigroup G, then 
AB = {ab \ a e A, b e в} defines a semigroup for 2^. Although finite abelian groups 
have been investigated, 2^ is a relatively new object for research. BYRD, LLOYD, 
PEDERSON, and STEPP studied the automorphisms of 2^ (see [2]) and have made 
contributions to the understanding of 2^. 

If one allows G to be any abelian group and not just finite then TRNKOVÄ in [5] 
proved that every abehan semigroup is embeddable (one-to-one homomorphism) 
into 2^ for some abelian group G. But 2^ for an arbitrary abehan group is rather 
untractable. So further restriction was needed. In [1], BILYEU and LAU studied the 
collection (hyperspace) of compact subsets of a compact group and certain topolo­
gical embeddings were derived. 

But underlying all the general studies, a very basic question has not been settled: 

Problem. If S is a finite abelian semigroup, then is S embeddable in 2^ for some 
finite abehan group G? 

A finite abehan semigroup is said to be representable (in this paper) if it is embed­
dable in 2^ for some finite abehan group G. A z-semigroup is a semigroup having 
a unique idempotent which is a zero for the semigroup (see YAMADA [6] and [7]). 
If S is a finite semigroup, then it has a minimal ideal denoted by M(S) and iS/M(5) is 
the Rees quotient. If S has an identity 1, then Я(1) is the group of units. 

We were not able to solve the general problem but were able to prove that if finite 
abelian z-semigroups are representable, then finite abehan semigroups are repre­
sentable. The following lemmas are helpful to establish this fact. 

*) The research was supported by North Texas State University Faculty Research Grant 
(1977). 
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Lemma 1. / / G^, ..., G„ are finite groups, then Y[ 2^* is embeddable in 2^^'. 

Proof. Use the function which sends (A^, ..., Л„) to Л^ x .. . x A„. 

Lemma 2. / / S is a finite abelian semigroup and for each pair x ф y in S, there 
is a homomorphism f from S into 2^ for some finite abelian group G so that f(x) ф 
+ f{y)^ then S is representable. 

Proof. Since there are finitely many homomorphisms from S into 2^\ ..., 2^" to 
separate points, then S is embeddable in 0 2 ^ ' , hence in 2^^' by Lemma 1. 

Lemma 3. / / 5, T are semigroups and i : S -> T is a one-to-one homomorphism^ 
then Ï* : 2^ -> 2^ /5 a one-to-one homomorphism where /*(Л) = i{Ä). 

Lemma 4. If S is a semigroup and G : l}^ -> 1? is defined by o-fj/) = U { ^ | Л e j / } , 
then Ü is a homomorphism. 

Theorem. / / each finite abelian z-semigroup is representable, then every finite 
abelian semigroup is representable. 

Proof. Induct on the order of S where iS is a finite abehan semigroup. Suppose 
M(S) has more than one element. Let e = e^' e M(S). Note that M(S) is a group 
since S is abelian. Then / : S -> M{S) by f(x) = xe and p : S -^ S/Af(S) would 
separate points. But S ' /M(S) has an order less than that of S. By induction, S/M(5') 
is representable. 

We can now assume that S has a zero. Choose e = e^ Ф 0 so that it is minimal with 
respect to the idempotent ordering of all nonzero idempotents. Again f : S -^ Se 
Ьу/(х) = xe and S -> SJSe separate points. Hence we can assume that S = Se, i.e., 
S has an identity 1 and has only two idempotents 0 and 1. 

Suppose Я(1) = {l}. Then / = S\H(l) is a finite abelian z-semigroup. Let / 
be an embedding of I into 2^ for some finite abelian group G. Let Я be a finite abelian 
group having more than one element. Then J : S -^ 2^^^ defined by: 

rix) = |-
{(1,1)} if x = l. 

_ (j{x) X Я if X + 1, 

is an embedding. 
Assume that the set of idempotents of S is {0, 1} and Я(1) Ф {l}. 
Let Я = Я(1). Since |/ -̂̂  {l}| < \S\, then by induction, we have j : / u {1} 

an embedding for some finite abelian group G. Let 

L J : Я X (/ u {!}) -^ Я X 2^ be defined by J{h, x) = {h,j{x)l 
2. K:H X 2^ -^ 2^^^ be defined by К{К A) = {h} x A, 
3. m : H X (I и {!}) -̂  S be defined by m{h, x) = hx. 
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Then 
- 1 / ч {{(h,h~^x)\ he H] if x e / , 

{(x,l)} if Х Е Я ( 1 ) . 

Claim. M : S -^ 2̂ ^̂ ^̂ ^̂ >̂ is a homomorphism where M(x) = m"^(x). 
Let X, y e S. Then M(x) М(з;) ç М(ху) since m is a homomorphism. 
Case A. Suppose x e H and y el. Then x>̂  e/ . Let (/?, z) G М(ХЗ;). Then hz= xy, 

m-\x) = (x, 1) and (/?, z) = (x, l) {hx-\ z) e M(x) M{y). 
Case B. Suppose xeH and 3; e Я. Then М(хз;) = (xĵ , 1) = (x, 1) {y, 1) = 

= М{хУм{у). 
Case С Suppose x,yel. Let (/?, z) G M(xj). Then /7z = xy. Hence (/?, z) = 

= (/i, /z-^x) (1, y) G M(x) M(j). 
Consider i : S -^ 2^^^ defined by composing these four functions: 

We shall prove that i = aK^J'^M is an embedding. It is clear that it is a homo­
morphism. 

Case 1. Let x, y el. 

i{x) = (7K*J*M(x) = (TX*J*{(/Î, /Z-'X) I /I G Я } = ö-X*{(/i, j(/z"^x)) I h e H} = 

= a{{h} X Д/z-^x) I /2 G Я} = и {/î} X X/z-^x) . 
heH 

i{y) = ö{h} xj{h-'y). 
heH 

Suppose /(x) = i{y). Then {1} x X^) Ç U {h} x X^~ V). Hence {1} x X^) ç 
heH 

ç {1} X j{y). Conversely, {1} x j[y) ç (1} x X^)- But X :̂) = j(y) implies x = y. 

Case 2. Let x, y e H. 

i{x) = aK^J^M{x) = ö-K*J*{(x, 1)} = (TK*{{X,J{1))} = 

= a{{x} xXl)} = W x X l ) . 

i{y) = {y}xj{^)> 

Hence i(x) = i{y) implies x = y. 

Case 3. Let хеН, y el. Then 

i{x) = {x} X XI) 
and 

i{y) = \J{h] xj{h-'y). 
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Hence г(х) Ф i[y) since H has more than one element. 

Remark. Left zero semigroups (xy = x for all x, y) are not embeddable in 2^ for 
any finite group G. Hence the commutative property of the semigroup is important 
to the problem. 

Remark. The structure of finite abelian z-semigroups was thoroughly discussed 
in [6] and [7] but we are still unable to solve the general problem. 
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