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TERTIARY DECOMPOSITION IN GROTHENDIECK CATEGORIES

A. VERSCHOREN, Antwerp*)
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0. INTRODUCTION

The aim of this paper is to strengthen some results proved in [1] in the framework
of commutative Grothendieck categories by generalizing them to arbitrary Grothen-
dieck categories. The main difference between our set-up and that in [1] is that the
categories we consider are a priori locally noetherian, while this restriction is irrelevant
in the commutative situation. General properties of Grothendieck categories may
be found in [3, 4, 7, 13] but, since this note may be viewed as a sequel to [15], we
will briefly recollect some of the main resulis and definitions stated in loc. cit.
Mimicing the commutative situation we will then first be concerned with some
generalities on associated primes in Grothendieck categories, which leads us in natural
way to tertiary decompositions. Our main result states that in a noetherian Grothen-
dieck category each noetherian object yields for its subobjects tertiary decomposi-
tions, which are reduced and essentially unique. This generalizes theorem 2.19 in [1].

1. GENERALITIES

(1.1.) Unless mentioned otherwise C will denote a Grothendieck category and G
is a fixed generator for C. The representable functor Hom¢ (G, —) will be denoted
by g¢ and R will be the ring g4(G). Thus g is a covariant functor from C to R-mod,
the category of left R-modules. The Gabriel-Popescu theorem (cf. [4]) states that g¢
has an exact left adjoint T; possessing some additional properties. In particular,
if o is the idempotent kernel functor associated to Ker T, the localizing subcategory
of R-mod which consists of all left R-modules M such that T;M = o, and if (R, 0)-
mod denotes the corresponding quotient category, then it is well-known that Tg
induces an equivalence between C and (R, o)-mod.

* The author is supported by N.F.W.O. grant A2/35.
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(1.2.) An object C of C is noetherian if the lattice of its subobjects is noetherian,
i.e. if every subobject of C is finitely generated. The category C is locally noetherian
if it has a family of noetherian generators. In the present context it will cause no
confusion to call C a noetherian category if it has a noetherian generator. If C is
noetherian, then we will assume that the generator G, fixed above, is noetherian. In
particular, the category R-mod is noetherian (or even locally noetherian) if and only
if the ring R is left noetherian. If £ is a noetherian sheaf of rings, then %-mod,
the category of sheaves of left Z-modules is locally noetherian; it is noetherian if the
topological space, on which £ is defined, is finite. In a locally noetherian category
every direct sum of injective objects is injective and every injective object is a direct
sum of indecomposable injective objects.

(1.3.) The Krull-Remak-Schmidt-Azumaya theorem (cf. [11]) asserts that in an
arbitrary Grothendieck category the following holds. If A4;, C; are a finite number
of objects of C such that each A4, has a local endomorphism ring and each C; is in-
decomposable, then 4; @ ... ® 4,, and C; @ ... ® C, are isomorphic if and only
if m = n and there exists a permutation 7 of {1, ..., n} such that 4; and C,;, are
isomorphic for each i. Since indecomposable injective objects have local endo-
morphism rings, it follows easily that an object C of C has finite rank if and only if
its injective hull may be decomposed as E(C) = E; @ ... ® E,, into a finite number
of indecomposable injectives.

(1.4.) An object C is irreducible if it cannot be written as the intersection of two
strictly larger objects; a subobject D of an arbitrary object C in C is coirreducible
if C/Disirreducible. One easily verifies that an injective object E in C is decomposable
iff each subobject of E is coirreducible which is exactly the case when E is the in-
jective envelope of a coirreducible object. Furthermore, if C is noetherian, then
each subobject D of C has an irreducible decomposition D = C; n ... n C,. If this
decomposition is irredundant, then E(C/D)= E(C/C,)® ... ® E(C|C,), each
E(C|C;) being indecomposable. It then follows that if D=C, n...nC, =
=Cin...nC,, two irredundant decompositions, then m = n and for some
permutation 7 of {1, ..., n} we have that E(C/C;) and E(C|Cyy;) are isomorphic.

(1.5.) For generalities concerning localization in Grothendieck categories the
reader is referred to [3,4, 5,7, 11, 13]. Let us only recall the following. By £(C; %)
resp. A '(C; ») we denote for each object C in C and each idempotent kernel functor
in C the class of all subobjects C’ of C such that C[C’ is x-torsion resp. x-torsion free.
One usually calls £(G; x) the idempotent filter on G associated to x; A°(C, ») is
a complete modular lattice. If C = R-mod then we write £(x) resp % (x) for £(R; )
resp A (R; x).

With these conventions, an idempotent kernel functor % in C is said to be G-
noetherian if its associated filter #(G; ») has the following property (1.5.1). If,
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I, <I, < ... s an ascending chain of subobjects of G whose union lies in £(G; x),
then there exists an index n such that I, € £(G; x). One easily checks that a kernel
functor x is G-noetherian if and only if the direct sum of »-closed objects (i.e.
faithfully x-injective in the terminology of [6}), is x-closed. This is also equivalent
to asserting that Q,, the localization at », commutes with direct sums. Obviously,
the condition of being G-noetherian is independent of G, allowing us to speak of
a noetherian kernel functor. If C is noetherian, then every idempotent kernel functor
is noetherian.

(1.6.) Let us identify C with (R, 6)-mod by the Gabriel-Popescu theorem applied
to the fixed generator G. We may view (R, ¢)-mod as the full subcategory of R-mod,
consisting of all o-closed R-modules. In this set-up R is o-closed itself and a generator
for (R, a)-mod, since G is a generator for C. If C is a noetherian object in C, then
46(C) is noetherian in (R, ¢)-mod. Now recall that a left R-module M is said to be
o-noetherian iff Q,(M) is noetherian in (R, ¢)-mod. This is equivalent to (M, o)
being a noetherian lattice and also to saying that each non-empty set of submodules
of M possesses a g-maximal element, i.e. an element N of this set such that for each
N’ > N in this set we have N’ € #(N; o). This allows us to prove that if G is a no-
etherian generator for C, then o is a noetherian kernel functor in R-mod. Under
the same condition, every direct sum of g-closed left R-modules is o-closed, i.e. direct
sums of objects of C (or, equivalently, of (R, o)-mod) may be calculated in R-mod.
Note that this is always true for intersections of o-closed left R-modules, i.e. objects
in C.

(1.7.) Let Spec (R, o) stand for the set of all g-closed prime ideals of R and Spec, (R)
the set of all prime ideals in R, lying in #(¢). Then we have:

(1.8.) Lemma. If R is o-closed, then Spec (R, ¢) = Spec, (R).

Proof. If P e Spec, (R), then P is o-closed, hence P € Spec (R, ¢). Indeed, consider
the following exact diagram with I € #(o):

0———)1—-—1—>R—~N—>R/I———>0
) H 4
0 P——>R R/[P——0
J

T

Since R is o-closed, jo factorizes through i, i.e. we may find ¢’ : R — R such that

¢'i = jo. Since ¢’ extends ¢, clearly t@’ factorizes through =, i.e. 7@’ = ¢"zn for

some ¢” : R/l - R/P. But I € £(0) and P € #(c), hence ¢" = o, implying that ¢’

factorizes through the kernel of 7, i.e. through P. This proves that P is o-closed.
Conversely, if P € Spec (R, a), then in the exact sequence

0-—»P—>R—>R/P—>0,
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P is o-closed and R is o-torsion free, which is well-known (cf. [6, 13]) to imply that
R|P is o-torsion free. But this amounts to say that P e #(c), showing that Pe
e Spec, (R). m

(1.9.) Lemma. If R is left o-noetherian and if P € Spec, (R), then R|P is a left
Goldie ring.

Proof. Since P e Spec, (R), it is clear that Q,(R/P) is an essential extension
of R/P, so, to show that R/P is left Goldie, it suffices to check that Q,(R/P) is a left
Goldie ring. First, if S = Q,(R/P) and r € Q,(Ann S), the annihilator being taken
in Q,(R/P), then for some Le (o) we have Lr = Ann S, i.e. Lrs = o, This implies
rS < 6Q,(R/P) = o, thus r € Ann S, proving that Ann S = Q,(Ann S). Since R is
left o-noetherian, we have that Q,,(R) is a noetherian object in (R, a)-mod and since
the sequence

0 - Q,(P) » Q,(R) > Q,(R/P) > 0

is exact in (R, ¢)-mod, Q,(R/P) is noetherian too. In view of the foregoing remarks,
this shows that Q,(R/P) satisfies the ascending chain condition on left annihilators.
Similarly, if I, @ ... ® I, ® ... is a direct sum of left Q,(R/P)-ideals, then so is
o,(I)®...® Q,(I,) ® .... Since Q,(R/P) is noetherian in (R, ¢)-mod we may
find n, such that for all n = n, we have Q,(I,) = o. But then I, is o-torsion and in
view of P € A (o), this yields that I, = o for all n 2 n,. Thus we have shown that
0,(R/P) has finite rank, which finishes the proof. g

(1.10.) Corollary. Let o and t be idempotent kernel functors in R-mod such
that R is left o-noetherian, then a prime ideal P € Spec, (R) lies in A'(z) if and
only if P is not contained in 3(1). '

Proof. If P e #(z), then obviously P ¢ #(z). Conversely, if R/P is not z-torsion
free, we may find a left ideal I which strictly contains P and such that I/P is 7-torsion.
The foregoing lemma now implies that R/P is a left Goldie ring, hence a.left order
in a simple ring, implying that R/P satisfies the descending chain condition on left
annihilators. Since P is prime, the annihilator of I/P in R/P is zero, yielding a finite
set of elements x,, ..., x, € I/P such that (| Ann (x;) = Ann (I/P) = o. But then

R/P = (Rx;/P)® ... ® (Rx,[P) = (I/P)® ... ® (I|P),
i.e. R[P is t-torsion and P e 4(1).

2. ASSOCIATED PRIMES

(2.1.) Let us recall some ideas introduced in [15]. For any object C of C and any
subset 4 = gg(C) we define the annihilator of 4 in G by

Amng (1) = {¢ € 44(G); Va’e A ap = o} .
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In particular we put Anng (C) = Anng (¢6(C)) and call in the external annihilator
of Cin G. Similarly the internal annihilator of C in G is defined by

Anng (C) = N{Ker o; a € g4(C)}
and one easily checks that Anng (C) = g¢(Anng (C)) .

(2.2.) The set Ass; (C) is defined to consist of all those two-sided ideals P of R =
= ¢¢(G) with the property that there is a nonzero R-submodule I' of g4(C) such that
for each nonzero R-submodule A of I' we have P = Anng (A) One may verify
that for each C in C we have Ass; (C) = Spec (R).

(2.3.) Lemma. Let o be an idempotent kernel functor in R-mod such that cM = o
for some left R-module M, then Assp (M) = Spec, (R).

Proof. Let P € Assg (M), then for some m = o we have P = Ann (Rm). If re R
is such that 7 € o(R/P), then for some Le %(c) we find Lr = P = Ann (Rm), hence
LrRm = o. But then *Rm < oM = o, i.e. r € Ann (Rm) = P, thus proving that
F=o0and PeSpec(R). g

(2.4.) Corollary. If R is o-closed and oM = o then Assg (M) = Spec(R,0).

(2.5.) If o is the idempotent kernel functor in R-mod associated to the Gabriel-
Popescu-embedding for C, then the foregoing shows that for each object C in C,
we have Assg (C) < Spec (R, o). Objects in Spec (R, o) correspond to objects in C,
subobjects of G, which form the internal prime spectrum of G, denoted by
Spec (G, C), while to the subset Assg (C) of Spec (R, o) corresponds a subset Assg (C)
of Spec (G, C), the internal associated spectrum of C in G. In order to study the
internal decomposition theory in C in function of Spec (G, C) and internal associated
primes, it thus suffices to study the external situation, i.e. we may work in (R, a)-mod,
where R is noetherian in (R, 0')-m0d, or again: where R is g-noetherian and o-closed.

(2.6.) Lemma. Let ¢ be an idempotent kernel functor in R-mod such that R is
left o-noetherian and torsion free, then for any left R-module M we have
Ass, (M[oM) = Ass, (Q,(M)) = Assg (Q,(M)) = Assg (M[ocM) + 0,
where Ass, (N) = Assg (N) 0 #'(0), for each N € R-mod.
Proof. We may clearly assume M to be o-torsion free. Consider the following set
Q={Am(N); o + N < M} .

We claim that Q possesses a maximal element. If not, we may find a strictly ascending
chain ,
Ann(N,) € Amn(N,) g ... Amn(N,) ¢ ...
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where the N; are nonzero submodules of M. Since R is g-torsion free, this yields
a strictly ascending chain

0,(Ann (N1) & Q,(Ann (N;) & ... & Q(Ann(N,) & .-

of o-closed left ideals of Q,(R). Indeed, if Ann (N') & Ann (N”) then Q,(Ann (N')) &
S 0,(Ann(N")) for any two R-submodules of M, for if the converse holds, then
for any re Ann(N") = Q,(Ann(N")) = Q,(Ann (N')), we may find Le #(o) such
that Lr = Ann(N’), i.e. LrN' = o. This yields *N” < ¢M = o, i.e. re Ann(N’)
contradicting Ann (N’) & Ann (N”). Thus the chain of left ideals defined above is
strictly ascending, contradicting the fact that R is o-noetherian. This proves that Q
possesses a maximal element P, and one may now proceed as in the classical situation
to show that P e Assg (M), hence Assg (M) = 0. It has been pointed out in (2.3)
that under the above conditions Assg (M) < Spec, (R), i.e. Assg (M) = Ass, (M)
and Assg (Q,(M)) = Ass, (Q,(M)). To finish the proof, it thus suffices to prove
that Assg (M) = Assg (Q,(M)), for any M which is assumed to be o-torsion free.
The inclusion Assg (M) < Assg (Q,(M)) being obvious, let us check the converse
inclusion as follows. Take P e Assg (Q,(M)), then we may find o &+ M, < Q,(M)
such that for all 0 + N; < M, we have P = Ann(N,). In particular, if we take
M} = M; n M % o, then for all 0 + N < My, we find P = Ann(N}), showing
that P Assg (M). w

(2.7.) Corollary. If G is a noetherian generator for C, then for each C in C we
have Assg (C) + 0. w

(2.8.) The elementary properties of the associated spectrum may be given as
follows, cf. [15]:

281)if 0> M - M—>M"—->0 is an exact sequence in (R, ¢)-mod then
Ass, (M') = Ass (M) < Ass, (M) U Ass, (M").

(2.8.2.) Ass (®M,;) = Ass (Q,(®M,;)) = Ass (®Q,(M;)) = U Ass (M;) =
= | Ass (Q,(M,)) for each family of o-torsion free left R-modules. :

(2.8.3.) if M is o-torsion free and if E(—) resp E°(—) denote injective hulls in
R-mod resp. (R, 0)-mod, then Ass(M) = Ass (E(M)) = Ass (E°(Q,(M))) =
= Ass (E(Q,(M))).

(2.8.4.) if M is a nonzero coirreducible o-closed R-module, then Ass(M) =
= Ass, (M) consists of exactly one member, which will then be denoted by ass (M).

(2.8.5.) for the foregoing follows easily that for any o-closed R-module M of finite
rank in (R, o)-mod, the associated spectrum Ass (M) is finite.
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3. TERTIARY DECOMPOSITION

(3.1.) Recall that in a lattice K an element x € K is said to be irreducible if x =
=y A z implies x = y or x = z. In a noetherian lattice each element is a finite
infimum of irreducible elements. In particular, we may apply this to %' (M, o),
if M is a o-noetherian left R-module. Let us note the following: if N is an irreducible
element of the lattice (M, ¢), then N is an irreducible submodule of M. Indeed,
if for each submodule T of M we denote by T the unique submodule of M
containing T such that T/T = o(M|T), then for any decomposition N = P n Q
we find N=N=(Pn Q)" =PnQ, and since P,JeH(M,o0), this yields
N =PorN = Q,hence N = P or N = Q, yielding the assertion. For more details,

cf. [1].

(3.2.) Let us call a submodule N of M tertiary if Ass (M|N) consists of precisely
one member. If Ass (M/N) = {P}, then we call N a P-tertiary submodule of M
and we write P = ass (M/N). This definition is in accordance with the ideas intro-
duced in [14, 15]. In particular, for two o-closed left R-modules N = M we know
that N is P-tertiary in M in the sense that Ass, (Q,(M/N)) = {P}, i.e. in (R, ¢)-mod
if and only if N is P-tertiary in M, as just defined, i.e. in R-mod.

(3.3.) Lemma. If R is g-noetherian and o-torsion free and if N is irreducible
in A’ (M, c), then N is a tertiary submodule of M.

Proof. Since N is irreducible in 2’ (M, ¢) the foregoing remarks show that N is
irreducible in M, hence that M|N is coirreducible. This implies that any nonzero
Ly, L, = M/N have nonzero intersection, hence that @ = {Ann (L); 0 + L < M|N}
has at most one maximal member, in view of Ann (L,) + Ann (L,) = Ann (L, n L,).
But since Ass (M/N) consists exactly of the maximal members of Q and is nonempty,
as we have seen in (2.6), this shows that N is tertiary in M. g

(3.4.) Proposition. Let M be a o-noetherian left R-module, where o is a noetherian
idempotent kernel functor such that R is o-torsion free, then every N e A (M, o)
has an essentially unique reduced tertiary decomposition

N=Q;,n...0nQ,
with Q;e A (M, o).

Proof. Since M is o-noetherian, the lattice (M, o) is noetherian, hence N
possesses an essentially unique reduced decomposition, in irreducible elements of
H' (M, o)

N=Q9,n...0nQ,.

The foregoing lemma yields that these Q;, being irreducible in (M , a) are tertiary

submodules of M, proving the assertion. g .
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(3.5.) It is well-known that under the above conditions, we have Ass (M/N) =
= |J Ass (M/Q;) and Ass(Q;/N) = Ass(M|N) — Ass (M/Q;) for each 1 <i<n
exactly as in the usual situation. Moreover, the foregoing proposition also yields.

(3.5.1.) Let M be a o-noetherian left R-module, where ¢ is a noetherian idempotent
kernel functor such that R is g-torsion free, then for every left R-submodule N of M
we may find a finite family of tertiary submodules of M, say {Qi}, with Q; € A (M, a)
such that Ass, (M/N) = ) Ass (M/Q,) and if we denote JQ; by Ny, then N = N,
and Ne Z(Ny, 0

It suffices to take N; = N and to apply the foregoing proposition.

(3.6.) A subobject C’ of an object C of C is called tertiary if Assg(C) or equi-
valently, if Assg (C) contains exactly one member, which will then be denoted by
assq (C) resp. assg (C). In this case we will also say that C’ is p-tertiary resp. P-
tertiary, where p = assg(C) resp. P = assg (C). Similarly, if P e Spec, (R) and
M e (R, 6)-mod, then a submodule N of M issaid to be P-tertiary if Ass(Q,(M[M')) =
= {P}. Tertiary decomposition with respect to these notions is defined as usually.

(3.7.) Theorem. Let C be a noetherian object in the noetherian category C, then
each subobject C' of C possesses an essentially unique, reduced tertiary decomposi-
tion.

Proof. We may as well work in (R, a)—mod, with R closed for the noetherian
idempotent kernel functor o. The objects C and C’ then correspond to o-closed
left R-modules M and N. Let us call i : (R, 6)-mod — R-mod the canonical inclusion.
Since we now have to distinguish between quotients in R-mod and (R, a)-mod, we
should note that i(M|N) = iQ,(iM[iN). Since N = M clearly iN < iM, hence
iM[iN < i(M|N), implying that iN € #'(iM, o). By the foregoing this yields that iN
possesses a tertiary decomposition

iN=Q,n...0nQ,
with Q; e #'(iM, o) and Assg (iM/Q;) = {P;}. Thus

N = 0,(0)n ... 0 0,(0,)

is a decomposition for N. To show that it is a tertiary decomposition, it suffices to
prove that Ass, (M/Q,(Q;)) contains only one member. Now, since Q; € #'(iM, o),
clearly iM[Q, is o-torsion free, hence we may apply (2.6) to derive that Assg (iM/Q;) =
= Ass, (Q,(iM]Q;)) = Ass, (M|Q,(Q;)), proving the assertion. Finally, let us check
that the decomposition is reduced, unicity being obvious. If N = Q,(Q,) N ...
..M Q,(0Q,), then iN = Q,n...n Q, Indeed, since Q,e #(iM,0) and Me
€ (R, o)-mod, it is easy to see that Q, is -closed too. But then the new decomposition
of iN contradicts the fact that the initial tertiary decomposmon was reduced. This
finishes the proof. g
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(3.8.) Corollary. If C' = C; 0 ... n C, is reduced tertiary decomposition of C'
in C then Assg (C/C") = | Assg (C[C)).

Proof. Apply (3.5) and the foregoing.

4. PRIMARY DECOMPOSITION

(4.1.) To each injective object E of C we may associate an idempotent kernel
functor %5 which is maximal in the set of all idempotent kernel functors x in C such
that E is x-torsion free. More precisely, % is defined by putting for each C in C

x5(C) = N {Ker (f); fe Hom¢ (C, E)} .

One easily shows that each idempotent kernel functor in C is of the form %, for some
injective object E in C. In particular, a prime kernel functor in Cis a kernel functor »g
with E = E(S), the injective hull of a support for k. Recall that a support for a kernel
functor p is an object S such that uS = o and u(S/S’) = S/S’ for each nonzero
subobject S’ of S. In [15] we have proved that every prime kernel functor y has an
essentially unique support which is p-injective.

(4.2.) A subobject I of G is said to be critical if G[I is a support for xgg,;). One
may prove that this amounts to say that for some idempotent kernel functor » in C
we have that G/I is x-torsion free and I is maximal as such. In a locally noetherian
category C in which I is a critical subobject of G we know that E(G[I) is an in-
decomposable injective object. The following result is an easy consequence of proper-
ties mentioned in [15].

(4.3.) Proposition. In a locally noetherian Grothendieck category C with
noetherian generator G the set of all prime kernel functors ?(C) and the set of
isomorphism classes of indecomposable injectives £(C) are isomorphic.

Proof. We will mimic a similar result proved for modules in [15]. If E is an in-
decomposable injective object in C, then we will denote by E its isomorphism class.
Define the following map:

4:R(C)— &(C) : p—> E(Sp)"

where Su is a support for u. We will show that it is bijective. Let E be an indecom-
posable injective object in C. Since G is a generator for C, we may find
a nonzero morphism ¢ : G —» E. LetI; = Ker ¢, then G/I; injects into E, and since E
is indecomposable, this implies I, to be irreducible or G/I; to be coirreducible.
Moreover E = E(G[I,)*, by (1.4). Now, if Hom¢ (G/L;, E) % o for some I, = L,,
then we may find ¢ : G/L, » E, ¢ =+ 0. If Ker ¢ = I,|L,, then I, < L, < I,, and
G[I, = (G/Ly)/(I2[L,) injects into E, i.e. E(G[I,)" = E(G/|I,)". Thus we may find an
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ascending chain I; = I, = ... of strict subobjects of G, such that E(G[I,)" =
= E(G|I,)" = ... = E. Since G is noetherian this chain has a maximal element,
say I, such that E = E(G/I). If we take L > I such that Hom¢ (G/L, E(G(I)) # o,
then, as above, we may find o # ¢ : G/L— E(G/I), and if Ker ¢ = K/LwithK 2 L,
then K 2 I and G/K injects into E(G/I). But since then E(G/K)" = E(G[I)" = E,
this contradicts the maximality of I. Let p = 3, then this shows that G/I is x-torsion
free and I is maximal as such, i.e. I is p-critical and u is prime. Let S be a support
for p, then E € E(S)", proving the surjectivity of 4.

On the other hand, if u and u’ are prime kernel functors with supports S and S,
and if E(S)" = E(S')", then xps), = %gs:), i.e. p = p', proving the injectivity of 4.
This finishes the proof. g

(4.4.) It follows that each prime kernel functor in C'is of the form p = % for some
indecomposable injective object of C which is essentially uniquely determined by u.
For an arbitrary object C in C, with injective hull E = E(C), we will write as usually
%c = . This allows us to define an object C to be Goldman-primary, if % is
prime and C is stable, i.e. for each 0 = C’ < C we have ¢, = %.. Mimicing the proof
of a similar result in [10] it is now easy to prove the following.

(4.5.) Proposition. A4 finitely generated object C in a locally noetherian category C
is Goldman-primary if and only if its injective hull is isotypic.

(4.6.) If the injective object E in the locally noetherian category C splits as E =
=E, @ ... ® E, into a finite direct sum of undecomposable injectives, then if we
write ; for »g,, this yields a decomposition

g = Uy A oo A QL

of xy, into prime kernel functors. For E = E(C), this results into Goldmans primary
decomposition, cf. [6] for a precise outline of the module case. In order to link
primary and tertiary decompositions, one has to consider the map @;:&(C) —
— Spec (G, C), which to each class of indecomposable injectives represented by E
associates its associated internal prime assg (E). It is well known in the noetherian
case P is surjective.

(4.7.) Theorem. Let G be a noetherian generator of the Grothendieck category C,
then the following properties of G are equivalent:
(4.7.1.) the map @ : (C) — Spec (G, C) is bijective;
(4.7.2.) every G-tertiary object in C is isotypic;
(4.7.3.) for every peSpec(G,C) and every essential subobject I of G|p there
exists a nonzero subobject I' of I such that qg(I') is a twosided q¢(G)-
module.

Proof. cf. [15]. w
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(4.8.) A generator G satisfying one of the above properties is said to be fully
bounded. Similarly, Cis called a fully beunded category if it possesses a fully bounded
generator. Properties of fully bounded Grothendieck categories have been studied in
[14, 15]. Clearly, if Gisfully bounded, then (4.7.2) implies that every finitely generated
G-tertiary object is Goldman primary, in view of (4.5). More generally we may
prove:

(4.9.) Theorem. For any noetherian generator G of the Grothendieck category C,
the following statements are equivalent:
(4.9.1.) G is fully bounded,
(4.9.2.) every finitely generated G-tertiary object C is Goldman primary.

Proof. (1) = (2) has just been noted, so, let us prove (2) = (1), by showing that
the map &, defined above is bijective. If not, we may find two nonisomorphic in-
decomposable injectives E;, E, in C such that

assg E, = assg E, = peSpec (G, C).

As in the proof of (4.3), we may exhibit critical subobjects I; of G such that E; =
= E(G/I;). But then I, and I, are tertiary subobjects of G with the same associated
internal prime p, hence I; N I, is p-tertiary in G too. But then the assumption says
that G/I 1 N I, is Goldman primary G being noetherian in C. Now, (4.5) states that
E(G[I; nI,) should be isotypic, while on the other hand

E(G[I; n1,) = E(G[I,) ® E(G[I,) ~E, ® E, .

This contradiction proves the result.

(4.10.) This result shows that for fully bounded Grothendieck categories tertiary
and- Goldman primary decompositions are essentially identical. Using this, one
easily generalizes the results of [10] to arbitrary fully bounded categories, while
most properties of Loewy objects stated in [1] for commutative Groethendieck
categories also hold in this situation. Details are left to the reader.
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NEWS AND NOTICES

FIFTH PRAGUE TOPOLOGICAL SYMPOSIUM

Since 1961 every five years a Symposium on General Topology and its Relations to Modern
Analysis and Aigebra has been held in Prague. The fifth symposium should take place in Prague
in 1981 and it is scheduled for August 24 to August 28. Further information may be obtained
by writting to Professor Josef Novadk, Chairman of the Organizing Committee, Matematicky
ustav CSAYV, Zitn4 25, 115 67 Praha 1, Czechoslovakia.
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