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We shall consider a real Hilbert space H, a closed convex cone K in H with its
vertex at the origin and a linear symmetric completely continuous operator 4 : H —
— H. The inner product in H is denoted by (-, -> and the corresponding norm
by ||*||. The following eigenvalue problem for a variational inequality will be studied:

@ uek,
(1) (Au — Au, v — ud> = 0 for all veKk.

We shall say that a real number A is an eigenvalue of the variational inequality (I), (II)
if there exists a corresponding eigenvector of (I), (I1), i.e. a nontrivial u € H satisfying
the conditions (I), (II). Analogously as in the papers [3], [4], we shall prove the
existence of an eigenvalue of the variational inequality lying between given eigen-
values A1, 19 of a certain type of A.

More precisely, it was proved in [4] that if AV, 1 (0 < AV < 29) are siimple
eigenvalues of 4 and each of them has an eigenvector in the interior of K, then there
exists an eigenvalue of (I), (IT) in (A", A?) having the corresponding eigenvector
on the boundary of K. Moreover, it was proved that there exists a closed connected
(in a certain sense) and unbounded in & set of triplets [4, u, 6] € R x H x R satisfying
the penalty equation Au — Au + ¢fu = 0, starting with ¢ = 0 at 1©) in the direction
of the corresponding eigenvector u(® ¢ K of 4. The mentioned eigenvalue and eigen-
vector of (I), (II) were obtained by the limiting process ¢ — +oo along this set.
The theory was further developed in [5] in order to obtain bifurcation points of
a more general problem.

The aim of this paper is to extend these results to the case of eigenvalues A9, A1)
of arbitrary multiplicities. For a given couple of eigenvalues A", A(® (0 < A®) <
< A9) such that each of them has at least one corresponding eigenvector in the
interior of K, we shall approximate the operator 4 by operators 4, such that A A(®
are simple eigenvalues of A4,. The existence of branches of solutions of the equation
with the penalty with the mentioned properties for 4, will follow from [4] and we
shall show that the analogous branch for 4 can be defined by a suitable limiting
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process. Under certain assumptions, the theory ensures the existence of infinitely
many eigenvalues of the variational inequality having the corresponding eigenvectors
on the boundary of K.

The branch of solutions of the penalty equations in [4] was in fact obtained as
a global bifurcation branch for a certain equation in R x H (an extension of the
penalty equation) and the present result can be viewed also as a global bifurcation
result for a special equation.

In the connection with the eigenvalue problem for variational inequalities, we must
mention the results of E. Miersemann [7], [8], who has proved by another method
the existence of a finite number (depending of the character of the problem) of
bifurcation points of a more general variational inequality. Further references are
given in [4].

Some definitions and modifications of the results from [4] are recalled in Section
1. Particularly, a small correction to [4] is given in Remark 1.2. Main results of the
present paper are contained in Theorems 2.1, 2.2 (Section 2).

" 1. TERMINOLOGY AND REMARKS TO SOME FORMER RESULTS

In the whole paper, K will be a closed convex cone in H with its vertex at the
origin and A will be a linear completely continuous symmetric operator in H. We
shall denote by K° and 8K the interior and the boundary of K, respectively. The set
of all eigenvalues and the set of all eigenvectors of the operator 4 will be denoted
by A4, and E,, respectively. The set of all eigenvalues and eigenvectors of the varia-
tional inequality (I), (II) will be denoted by A, and E,, respectively. Moreover,
E 4(%) will be the set of all eigenvectors of A corresponding to a given eigenvalue 1 e
e A, and Ey(2) will be the set of all eigenvectors of (I), (II) corresponding to a given
eigenvalue 1€ A,. Analogously, we shall write A4, E,, Ay, Ey,, E4(2), Ey,(3)
if the operator A is replaced by A4, and (I), (I1) is replaced by (I),

(IL,) ’ (Au — Au,v—u) =20 forall vekK.
The strong and the weak convergence is denoted by — and —, respectively.

Definition 1.1. We shall write
ied; if Aed, and E A)nK°=*0;
red, if de(d,NA;) and E (A)n oK * 0;
iedy, if Aled, and E, (1) < dK;
led, if led, and E,(A)nK=20.
The elements of A;, A4, and A, are called the interior eigenvalues, boundary eigen-

values and external eigenvalues, respectively, of the operator A. The elements of 4, ,
are called the boundary eigenvalues of the variational inequality (I),' (II).
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Remark 1.1. The basic properties of and relations between the sets 4;, 4,, Ay ,, A,
are explained and illustrated by examples in [4, Section 1]. Let us mention only
that A€ A, if and only if A€ 4, with E,(41) n K° + 0. Thus, we can also speak
about interior eigenvalues of (I), (II) but they coincide w1th interior eigenvalues of A.
Moreover, the following assertion si true:” ~

Lemma 1.1. (see [4, Lemma 1.1]). If A€ A; then E (1) n K = E,(}).

In the sequel we shall consider a nonlinear completely continuous operator
B : H - H satisfying the following assumptions:

(P) Bu = 0if and only if u e K, {Bu, u) > 0 for all u ¢ K (1 e. B is the penalty
operator corresponding to K); , ; .

(H) ﬂ(tu) tpu for allt > 0,ue H (1 e. B is positive homogeneous)

(M) {Pu — v, u — vy = 0 for all u, ve H (i.e. B is monotone);

(B, K) if ueK® v¢K, then (fv,u) < 0;

(B, 9K) if u € 0K, then there exists a neighborhood U of u , such that (Bv, u) =0
forallveU.

Remark 1.2. The assumptions (P), (H), (M) were used also in [4], (B, K) is a slight
modification of (B, K°) from [4] (where =0 was writen instead of <0). These as-
sumptions are fulfilled in all examples discussed in [4]. In [4], additional assumptions
(CC), (SC’) were introduced, but they were not necessary as we shall explain in
Remarks 1.3, 1.4. There is a mistake in [4, Remark 2.1] where it is stated that (CC)
is fulfilled in the case of the penalty operator

(1.1) {Bu,v) = —J. u”(x)v(x)dx forall u,veH
I

(the penalty operator corresponding to the cones of the type K = {ue H; u = 0
on I}, where H is a subspace of W;(0,1), I is a subinterval of <0,1}). ThlS assumptlon
is satisfied for the operators of the type

(1.2) {Bu,v) = — Z u”(x;)v(x;) forall u,veH
i=1

only (the penalty operators corresponding to the cones of the type {u € H; u(x;) = 0,
i =1,...,n}, where H is as above, x;€(0,1), i = 1, ..., n are given points). Non-
etheles all the assertions concerning the examples in [4, Section 4] are true because
it is possible to use Theorem 1.1 formulated below instead of Theorem 2.3 from [4].

The last assumption (B, 0K) was not considered in [4] but will be used in the study
of multiple eigenvalues in Section 2. Unfortunately, (B, 0K) is fulfilled for the penalty
operators of the type (1.2) only. :

Definition 1.2. We shall denote by Z the closure (in ® x H x R) of the set of all
[4,v,e]e R x H x R satisfying the conditions & + 0 and
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(b) Av— Av +efv=0.
If A is replaced by A, then we shall write Z, instead of Z.

Remark 1.3. The assumption (CC) in [4] was used in the proof of the following
implication only:
(1.3) if [4,, u,, &,] satisfy (b), u, ¢ K (n = 1,2,...), 4, > 4 > 0, u, = u, &, - +0,
then u, — u.

This implication follows directly from (P), (B, K) (without using (CC)) in the fol-
lowing way. We have

A'n(”m u,y — (Au,, un> + 5,.<Bu,,, u,y = 0,

ln(“m u> - <Aum u> + £n<ﬁum u> =0
and this gives

Alim sup |u,]|? — Al|u|?* = lim sup &,{Bu,, u) — lim inf s,,(,Bu,,,‘ u, .

But fu, — 0 (because {e,fu,} is bounded by (b)) and it follows from here by the
standard procedure that u € K (for details see [4], proof of Lemma 2.4 or [5, Remark
3.3]). The assumptions (P), (B, K) imply {Bu,, 4> = 0, {Bu,, u) < 0 and therefore
we obtain

im sup 1] < ]

This implies u, — u and (1.3) is proved. Hence, the assumption (CC) in [4] can be
omitted.

Remark 1.4. The assumption (SC’) in [4] was necessary in Lemma 2.2. But

" Lemma 2.2 was used for the special sequences {[4,, u,, &,]} With ¢, — 0 only. In fact,

Lemma 2.2 in [4] can be replaced by the following weaker Lemma 1.2 in which
(SC’) is not assumed. Hence, the assumption (SC’) in [4] can be omitted.

Lemma 1.2 (cf. [4, Lemma 2.2]). Let [A,, u,, &> [40 4o, 0] satisfy (b), |ue| + 0
(n=1,2,...), [A tys &] = [A0> 0, 0] in R x H x R and let (P), (M) be fulfilled.
Then

lim 2 =t (Prote)
neo &, Juol>

If ug ¢ K, then the last expression is negative.

Proof. We have
: Aty — Au, + g,fu, =0,

louo - Auo =0
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and it follows from here (using the symmetry of A) that
(;[n - }0) <M,,, u0> + 3n<ﬁum u0> =0.
This together with (M), (P) implies the assertion.

Remark 1.5. The condition (a) cannot be fulfilled with ¢ € (—1, 0). Hence, if Z,
is a connected subset of Z containing a point of the type [4,0, 0], then ¢ = 0
for all [4, v, €] € Z,.

Remark 1.6. If [4, 0, 0] € Z, then 1 € A ,. Moreover, if [4,, v,, &, € Z, [4,, ¥,, &,] =
—[2,0,0], v,/[[v,]| = u, then u € E,(2) and v,[||v,| — u. Indeed, we have

A, — Au, + &,fu, =0

and Au — Au = 0.

Remark 1.7. It follows from Remark 1.6 and the assumption (P) that for each
o € A, there exists 6 > 0 such that ¢ > 0 and v ¢ K for all [, v, e] € Z with A # 1,
2e (A — 8, 2o + ). (We have used the fact that the eigenvalues of 4 are isolated.)

Remark 1.8. In the following, we shall investigate connected subsets Z, of Z
starting at a given point [, 0, 0], ‘2 € A, and such that the following conditions
are fulfilled for all [4, v, ] € Z:

(c) if [4,v,e] + [4,0,0] forall 1e A,, then v¢K;

(d) if [4, v, ¢] * [4?,0,0], then Ae (A1), ),

Let us remark that the sets Z and Z, can be obtained from the sets S and S, con-
sidered in [4] by the transformation [4, u, €] — [4, v, £] with v = &/(1 + &) u. The
conditions (c), (d) are natural modifications of (c), (d) considered in [4] for the
set S,. The set Z seems to be more advantageous than S from [4] because we can
consider connected subsets Z, of Z, while the corresponding sets S, in [4] had a dis-
connectedness at the points of the type [4, u, 0], € 4, (see [4], Remark 2.2) and
the description of this situation was formally complicated (see [4, Theorem 2.3]). The
mentioned disconnectedness vanishes by the transformation of S, onto Z,,.

The following theorem represents a slight modification of Theorem 2.3 from [4]
and will be of basic importance for the proof of the main result of the present paper.

Theorem 1.1 (cf. [4, Theorem 2.3]). Let AV, A9 € 4; be simple, 0 < 1M < A,
(A1, 29 A (4, U 4;) = 0. Assume that there exists a completely continuous
operator B satisfying the conditions (P),(H),(M), (B, K). Then there exists an
unbounded closed connected subset Z, = Z containing the point [2®,0,0] and
such that the implications (c), (d) hold for all [% v, €] € Zo. If {[An 0w &,]} = Zo,
g, = + 00 *), then there exists a subsequence of indices {r} such that r, - + o0,
Apy = A Uy, = U, Where A, € Ay, 0 (AD, 1), v, € 0K 0 Ep(A) N EA(/lw),

*) It follows from (d) that Z is unbounded in e.
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Proof. Let S, be the set from [4, Theorem 2.3]. (All the assumptions are fulfilled
with the exception of (CC), (SC’), but these can be omitted by Remarks 1.3, 1.4).
Define

g
1+e¢

ZO-—-{[Z,U,F,]ERXHXR; v = u,[l,u,a]eso}.
It follows from the assertion of [4, Theorem 2.3] that Z, has all the properties
mentioned in Theorem 1.1.

The following Lemmas give information about the properties of the equation
with the penalty and will be useful for the proof of the main result. Analogous
assertions were used also in [4].

Lemma 1.3 (see [4, Lemma 2.1]). If 2 € A; and the condition (B, K) is fulfilled,
then
Au— Au + efu £+ 0
forall u¢K, ¢ > 0.

Lemma 1.4 (cf. [4, Lemma 2.4]). Let A", A e A,, 0 < AV < A9 and et the
assumptions (P), (M), (B, K) and (B, 9K) be fulfilled. Suppose that there exist
s Ups €, (n = 1,2, ...) satisfying the conditions

€
’ n = “ 2 =1’27"'7 n + b
@) Jul = o o +o0

(b)) A, — Au, + &,fu, =0, n=1,2,..,

(¢) u,¢K° n=1,2,...,

(d) 2,e(2M,29), n=1,2,...,

and such that 4, - 1, u, = u,, & — +oo for some A, u,. Then 1,e Ay, N
N (4D, 29), u, > u, and u, € Ey(2,) n oK.

Proof. The assertion of Lemma 1.4 is the same as that of Lemma 2.4 in [4],
but the assumption (CC) is omitted, (B, K°) is replaced by (formally) stronger (B, K)
and the simplicity of A, i) is replaced by the assumption (B, K). We have ex-
plained in Remark 1.3 how Lemma 2.4 from [4] can be proved without the as-
sumption (CC). Realizing this, we can prove A, € Ay ,, u, = u, u, € E,(2,) n K
in Lemma 1.4 analogously as in Lemma 2.4 from [4]. It was clear in [4] that 1, €
€ (AW, A9) because neither 4 = A nor 2 = A(©) was possible as a consequence of
the assumption that A", 1 e A; are simple. In the case of the present Lemma 1.4,
the assertion 2, € (A, 2() follows from (B, 6K). Indeed, if 2 = A, then Lemma
1.1 implies that u,, € E,(2") and therefore

Iy, — Au, =0.
This together with (b’) and the symmetry of 4 implies
(= AD) Cty uy + e, By, > = 0,
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(B, 9K) gives {Bu,, u,> = 0 for n sufficiently large and this is not possible by (d’).
Analogously, 4 = A cannot occur.

Remark 1.9. If 4 is replaced by A, in Theorem 1.1, then we write Z, , instead
of Z,.

2. EIGENVALUES OF THE VARIATIONAL INEQUALITY CORRESPONDING
TO MULTIPLE EIGENVALUES OF THE OPERATOR

Theorem 2.1. Let 2@, 1M e, 0 <i® < 2@, D, 1)~ A; = 0. Assume
that there exists a completely continuous operator B satisfying the conditions (P),
(H), (M), (B, K), (B, K). Then there exists )., € Ay, 0 (A1), 1)

Remark 2.1. We have 4, = A, , and therefore the assertion of Theorem 2.1 is
trivial if (A, A%) A 4, + 0. In the case (AV, A®) A 4, = 0 it follows from the
following theorem.

Theorem 2.2. Let all the assumptions of Theorem 2.1 be fulfilled and let (A",
29) A, = 0. Then there exists an unbounded closed connected subset Z, of Z
containing the point [A(%), 0, 0] and such that the implications (c), (d) from Remark
1.8 hold for all [4,v, €] € Zy. If {[A Vs> €]} = Zo, &, = +00 *), then there exists
a sequence of indices {r,,} such thatr, — +00,4, — Ay, 0, — v, whered e Ay, 0
N (A0, 29) and v,, € 0K N Ey (2 ,) N Eg(2), [[vo] = 1.

Remark 2.2. Let the assumptions of Theorem 2.2 be fulfilled. We shall choose
orthonormal bases {u{", ..., u"} and {u{”, ..., u{®} of E(A")) and E,(A‘*’), respec-
tively, such that u{”, u{" € K°. Introduce operators 4, (n = 1,2,...) by

1 18

(2.1) Au = Au — = Y P uyu + = Y <, uyu®.
ni=2 nj=2

It is easy to see that

(2.2) A, — A in the operator norm .

Further, A", A9 are simple interior eigenvalues of 4,, A,, N (A", AY) =4,
N (AN, 29),E, (1) = E (A)forall 2 e A4 n (A", 2*) and therefore the assumptions
of Theorem 1.1 are fulfilled for A, (with an arbitrary fixed n = 1,2, ...).

Remark 2.3. Let Z, , denote the set from Theorem 1.1 for the operator A4, from
Remark 2.2 (see Remark 1.9). Introduce the set Z, as the set of all [4,v,e]e R x
x H x R such that there exist a sequence {r,} of indices (r, - o0) and a sequence
{[An vus &,]} such that [4,, v, &,] € Zy ., [Ay Ups €] = [A 0, 6] in B x H x RB. We

have
(bl) AUy — Ar,,vn + SmBU,, =0

‘n~n

*) It follows from (d) that Z, is unbounded in &.
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for such points and thus it follows by (2.2) that [4, v, ¢] € Z, i.e. Z, = Z. The set Z,
is not connected in general. We shall denote by Z, the component of Z; containing
the point [A(®, 0, 0]. Our aim is to prove that Z, has all the properties described
in Theorem 2.2.

-

Lemma 2.1 (see [9]). Let K be a compact metric space and A, B disjoint closed
subsets of K. Then either
(2.3) there exists a closed connected subset of K meeting both A and B
or

(24) K = K, U Ky, where K4, Ky are disjoint compact subsets of K, A < K,
B < K,.

Lemma 2.2. The set Z, from Remark 2.3 is unbounded.

Proof. The sets Z, , from Remark 2.3 are unbounded (in ¢) by Theorem 1.1 and
it follows from here that also Z; is unbounded. Let us suppose that Z, is bounded.
Then there exists R > 0 such that Z, < By, (Z,\ Z,) 0 By * 0, where By denotes
the open ballin R x H x R with the centre at the origin and with the radius R, 0By
denotes its boundary. It is easy to see that Z; is locally compact in R x H x R and
therefore K = By N Z; is a compact metric space under the induced topology from
R x H x R.If we set A = Z,, B = (Z,\Z,) " 0By, then A, B are disjoint closed
subsets of K. The case (2.3) from Lemma 2.1 cannot occur because 4 = Z, is a com-
ponent of K. Hence, Lemma 2.1 implies that there exist disjoint compact sets K ,, Ky
such that Z, < K, (Z.\Z,) n 0By = Ky, Z; n By = K, U Kj. Denote the dis-
tance between K ,, Kz by . We have # > 0 and it follows from the definition of Z,
(Remark 2.3) and from the connectedness of Z, , that there exists a bounded sequence
{[An vns 8]} = Bg such that [4,, v, ¢,]€Z,,, r, > +o and

dist ([A, v, &), Zo) = Z dist ([An vy, 8], Z O BaNZo) = Z

We can assume that 4, - 4, v, — v, ¢, — & The condition (b’), the complete conti-
nuity of B and (2.2) imply v, — v and therefore [4, v, ¢] € Z,. But simultaneously
we obtain

dist ([4, v, €], Zo) = =, dist ([4, v, €], Z,\Z,) 2

n n
4 4
and this a contradiction.

Lemma 2.3. The conditions (c), (d) from Remark 1.8 are fulfilled for all [, v, ¢] €
€ Z,, where Z, is the set from Remark 2.3.

Proof. It follows from Theorem 1.1 and from the definition of Z, that for all
[4 v, €] € Z, we have

(2.5) v¢K°,
(2.6) de G, Oy

204



Hence, if (c) is pot fulfilled then there exists [4, v, e] € Z, with ve dK, [ > 0.
The equation (b) together with (P) implies

(2.7) Av— Av=0.

The case 1€ (A0, 2) is impossible due to the assumption (A, 2®) n 4, = 0.
The definition of Z, ensures the existence of [4,, v,, €,] € Zo.,, (r, 2 suitable sequence
of indices, r, — c0) such that [1,, v,, &,] = [4, v, ¢]. The points [4,, v,, &,] satisfy (b’)
and this together with (2.7) and the symmetry of A implies

(A = A) (Vg > — <A, 0,5 0) + (Av,, 0) + £,{PBv, v) = 0.

But {fv,, v> = 0 for n sufficiently large by (B, dK) and using (2.1) we obtain

(2.8)
('ln - ;‘) <U,,, D> + _1" Z <u§1)s U,,> <u(i1)7 U> - l Z <u§'0)s vn> <u$‘0)’ U> =0 s
i=2

Ty i= Fpi=2

where u{", u{” were introduced in Remark 2.2. If 1 = A®, then <(u{",v) =0

(i=1,..,7r) and (v, v) - [o* >0, Y u®, v, < v) > Y W, v)? >0
j=2 Jj=2

because v € E (A?), v + cul® for all ¢ € R. Further, 4, < A and therefore the left
hand side in (2.8) is negative, which is a contradiction. Analogously the case 1 = A(")
leads to the contradiction and (c) for all [, v, €] € Z,, is proved.

Now, let us suppose that (d) is not fulfilled. Then there exists [4, v, ¢] € Z, such that
[4, v, €] + [49,0,0] and either 4 = A© or 2 = A", Let [4,0,¢] = [4",0,0].
Then it follows from the connectedness of Z, and Remark 1.7 that there exist
[Zs Vs €] € Zo such that 4, > AV, g, > 0 (n=1,2,...), [4, v, &] = [A?,0,0].
This is not possible by Lemma 1.2 and therefore [4, v, e] + [, 0, 0]. Hence,
v¢ K, & > 0 by (c), (a) and this contradicts Lemma 1.3.

Proof of Theorem 2.2 follows directly from Remark 2.3 and Lemmas 2.2, 2.3,
1.4.

Theorem 2.3. Assume that there exists a completely continuous operator f§ satis-
fying the conditions (P), (H), (M), (B, K), (B, dK). If A; is an infinite sequence,
then Ay, contains an infinite sequence converging to zero. If, moreover, A; contains
an infinite sequence of couples AV, A such that M, 2N A, =0(k=1,2,..),
then the set Ay , contains an infinite sequence of eigenvalues of (I), (II) converging
to zero such that the corresponding eigenvectors are not eigenvectors of the opera-
tor A. -

Proof follows immediately from Theorems 2.1, 2.2 and Remark 2.1.
Example 2.1. Let Q be a bounded domain in R? with the lipschitzian boundary
0Q. The points from Q will be denoted by x = [x,, x,]. Let H be the Sobolev space
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w2 (2) with the inner product defined by

(u,v)zJ-AuAvdx forall u,veH.
2

Consider the cone
K={ueH;u(x)=0i=1,...,n},

where x(? € Q (i = 1, ..., n) are given points, and the operator A defined by

2
{(Au, v) = Zéﬁgﬂdx forall u,veH.

oi=10x; 0x;
Then K is a closed convex cone in H and A4 is a linear symmetric completely conti-
nuous operator in H. (We use the fact that the space W5 (Q) is continuously imbedded
into the space of functions continuous on @ and into the space W, (Q).) Let us remark
that the eigenvalues and eigenvectors of A are eigenvalues and eigenvectors of the
boundary value problem

(2.9 JANu +Au=0 on Q,
(2.10) w=2 0 on 09,
on

and the variational inequality (I), (II) in our case corresponds to the problem with
fixed obstacles from below at the points x¥ (cf. [4, Section 4]). We can use the penalty
operator defined by

{Bu,vy) = — Z"u"(xi) u(x;) forall u,veH,
i=1

where u~ denotes the negative part of u. All the assumptions of our theory are
fulfilled. Let us remark that 1 € A; if and only if there exists a corresponding eigen-
vector u of (2.9), (2.10) satisfying u(x’) > 0 for all j = 1, ..., n; A e A, if and only
~if A¢ A; and there exists a corresponding eigenvector u of (2.9), (2.10) satisfying
u(x) 2 0 for j = 1,...,n, u(x®) = 0 for at least one k; A€ A, if and only if for
each corresponding eigenvector of (2.9), (2.10), we have u(x) > 0 for at least one j
and u(x*) < O for at least one k; 1€ Ay, if and only if for each corresponding
eigenvector of (I), (II), we have u(x?) = 0, j = 1,...,n and u(x®) = 0 for at least
one k. '
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