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QUOTIENT SPACES DEFINED BY LINEAR RELATIONS 

ÂRPÂD SZÂZ, Debrecen, and GEZA SZAZ, Budapest 

(Received October 19, 1979) 

INTRODUCTION 

In the present paper, quotient spaces of vector spaces defined by linear relations 
are introduced and investigated. It is shown that they can be reduced to those defined 
by linear equivalence relations, i.e., to the usual ones. The main tools are the linear 
selections and the inductive vector topologies. Moreover, using quotient spaces, 
a few selection tiieorems for linear relations are proved. Special vector topological 
properties of quotient spaces are to be treated in a subsequent paper. 

Finally, to keept our paper self-contained as possible, we briefly sketch the main 
definitions from [8]. S is a linear relation from X into Yïï X and У are vector spaces 
over a field К and S is a linear subspace of Z x 7such that S{x) = {>' e 7 : (x, y) e S] 
is not empty for all x e X. A function / from X into У is a selection for S if/(x) e S{x) 
for all X G X. Topological vector spaces are always supposed to be defined over 
K = RorC. 

1. QUOTIENT SPACES 

Definition 1.1. If S is a linear relation from X into У, then let 

yj S = {S{X):XEX} , 

and define addition and scalar multiplication in У | 5 by 

S(x) + S(y) = S{x + y) and À • S(x) = S{Àx). 

Moreover, let cps be the mapping defined on X by 

(Ps{x) = S{x). 

Theorem 1.2. Let S be a linear relatfon from X into У Then Y\ S is a vector space, 
and (ps is a linear mapping of X onto У| S. 

Proof. From the hnearity of 5, it follows directly that S is compatible with the 
hnear operations in the sense that S{x) = iS(v) and S{z) == S(\v) imply S{y + z) = 
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= ä[y + w), and S(x) = 5(v) implies S{Àx) = SQ.y). Hence, it is clear that the de­
finition of the algebraic operations in Y\ S is correct, and also that all the axioms of 
a vector space are satisfied. The linearity of (ps follows at once from the corresponding 
definitions. 

Remark 1.3. The vector space Y | 5 and the linear map (ps will be called the quotient 
space of У defined by S and the projection of X onto У | 5, respectively. 

If M is a subspace of a vector space X and jR denotes the unique linear equivalence 
relation on X such that R(0) = M, then the vector space 

X\M = X\R 

is called the quotient space of X modulo M. 

Theorem 1.4. Let S be a linear relation jrот X into Y, f a selection for S, and cp 
the projection of Y onto Y\ S{fS). Then 

Çs ~ ^ °f ^^^ S = (p~^ о (ps -

Proof. By Theorem 3.3 in [8], we have 

cpsix) = S(x) = fix) + S(0) = <p(/(x)) = cp-'{cpif{x))) 
for all X G X. 

Theorem 1.5. Let S be a linear relation from X onto Y. Then the vector spaces 
Y\ S and Y\ S(0) are identical 

Proof. This follows imm.ediately from the first assertion in Theorem 1.4 and from 
the fact that the linear operations in У| S coincide with the usual hnear operations 
for sets with the only exception that 0 • S(x) Ф {0} if S is not a function. 

Theorem 1.6. Let S be a linear relation from X into У Then the vector spaces 
УI S and X \ S~^ are isomorphic. 

Proof. By Corollary 3.10 in [8], it is clear that the mapping S(x) -> S''^(f(x)), 
where / i s a selection for S, is independent of/, and is an isomorphism of У| 5 onto 

Example 1.7. I f / i s a linear function from X onto У then the vector spaces X \f~^ 
and X | /~^(0) are identical, and the vector spaces X | / " ^ and У are isomorphic. 

2. INDUCTIVE VECTOR TOPOLOGIES 

Theorem 2.1. Letf be a linear mapping from a topological vector space X onto У, 
and consider Y to be equipped with the finest topology for which f is continuous. 
Then Y is a topological vector space and f is an open mapping. 
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Proof. A subset Fof Yis open if and only if/~ ^[V) is open inX. Tiierefore, if U 
is an open subset of X, then/ ( l / ) is open in У since/"^(/( t / ) ) = U + /~^(0) is open 
in X. This shows that / is an open mapping. Now, it is easy to see that the vector 
space operations in Y are continuous. (Observe that this requires that / be onto 7.) 

Theorem 2.2. For each осе Г, let f^ be a linear mapping of a topological vector 
space X^ into Y. Then there exists a finest vector topology on Y for which f^ is con­
tinuous for all a G Г. 

Proof. Let ̂  be the family of all pre-semi-norms p on Ffor which pof^is continuous 
Ibr all ae Г. (We use the term 'pre-semi-norm' instead of 'J-semi-norm' [9]. A real 
functional p on У is a pre-semi-norm on Y if (1) p(x -h y) S p{^) + р(у) for all 
X, у e Y; (2) p{Àx) S. p{x) for all |л| ^ 1 and x e 7; and (3) Hm p{Àx) = 0 for all 

:x; e У.) Denote ^ the vector topology on У induced by ^ . (This is the unique vector 
topology on У for which the family of all sets Up(s) = {x e Y : p{x) ^ г), where 
pe0* and 8 > 0, is a subbase of the neighbourhood system of 0.) Then, by the defini­
tion ol ^, it is clear that each 4 is continuous for ^ . 

On the other hand, if , ^ ' is another such vector topology on У, and ^ ' denotes 
the family of all pre-seminorms on У which are continuous for .T\ then p' o/^ is 
continuous for all p' e^' and ae Г. Thus ^ ' <= ̂ , and hence ^' cz вГ since ^ ' 
induces ^', 

Theorem 2.3. For each a G Г, let f^ be a linear mapping of a topological vector 
space X^ into У, and consider Y to be equipped with the finest vector topology for 
which f^ is continuous for all осеГ. Moreover, let cp be a linear mapping from Y 
into a topological vector space Z. Then cp is continuous if and only if (p o/^ is con­
tinuous for all ae Г. 

Proof. If (p is continuous, then it is clear that each cp о f^ is continuous. Suppose 
now that each cp о /^ is continuous. Let ^ be a continuous pre-semi-norm on Z. 
Then (q о (p) of^ = q о (cp o/^) is continuous for all ae Г. Thus, by the definition 
of the topology of y, the pre-semi-norm p = q о (p is continuous. This imphes that cp 
is continuous. 

Theorem 2.4. For each ae Г and ß e F^, let f^ß be a linear mapping from a topo­
logical vector space X^ß into У ,̂ and cp^ be a linear mapping of Y^ into Z. Moreover, 
for each aeF, let У, be equipped with the finest vector topology for which f^ß is 
continuous for all ß e F^, Then the finest vector topology on Z for which (p^ is 
continuous for all aeF coincides with the finest vector topology on Z for which 
Фа °/a/3 Is continuous for all a e F and ß s F^. 

Proof. Let p be a pre-semi-norm on Z. Then, by Theorem 2.3, p о cp^is continuous 
for all a G Г if and only if p о {(p^ of^ß) is continuous for all a G Г and jß G Г^. Hence, 
the theorem is quite obvious. 
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Notes 2.5. Theorem 2.1 seems to have been overlooked in the standard references 
on topological vector spaces, since quotient spaces are directly treated there. 

Theorems 2.2, 2.3 and 2.4 for locally convex topologies can be found in [4]. 
Theorems 2.2 and 2.3 for Hausdroff vector topologies can be found in [1]. Our 
proofs seem to be more simple than those given in [4] and [1]. 

3. QUOTIENT TOPOLOGIES 

Definition 3.1. If 5 is a linear relation from a topological vector space X into 7, 
then consider Y\ S to be equipped with the finest topology for which (p^ is continuous. 

Theorem 3.2. Let S be a linear relation from a topological vector space X into Y. 
Then Y\ S is a topological vector space and (ps ^^ ̂ ^ open mapping. 

Proof. This follows at once from Theorem 2.1. 

Corollary 3.3. Let S be a linear relation from a topological vector space X into 
another topological vector space У, and suppose that there exists a continuous 
(resp. an open) selection f for S. Then S is a lower semi-continuous {resp. an open) 
relation. 

Proof. By Theorem 1.4, we have S — (p~^ о (p of, where cp is the projection of Y 
onto УI S[0). Moreover, by Definition 3.1 and Theorem 3.2, cp is a continuous open 
mapping. Thus, S~^{y) = f~^((p~^((p(V))) is open in Z if F is open in У (resp. 
S{U) = (p~^((p[f(U))) is open in У if U is open in Z) , i.e., S is lower semi-continuous 
(resp. open). 

Corollary 3.4. Let S be a linear relation from a topological vector space X onto 
another topological vector space Y such that there exists a continuous selection f 
for S. Then the topology of Y\ S is finer than that of У| S(0). 

Proof. In this case, by Theorem 1.5, the vector spaces Y\ S and Y\ S(0) are iden­
tical, and moreover by the first assertion in Theorem 1.4, (p^ is a continuous mapping 
of X onto УI 5(0). 

Theorem 3.5. Let S be a linear relation from a topological vector space X onto Y. 
Let ^ be a nonvoid family of linear selections for S, and consider Y to be equipped 
with the finest vector topology for which each f e ^ is continuous. Then the topo­
logical vector spaces У| S and у | S(0) are identical. 

Proof. This follows directly from Theorems 1.4 and 2.4. 

Corollary 3.6. Let S be a linear relation from a topological vector space X onto У, 
and consider Y to be equipped with the coarsest topology for which the projection cp 
of Y onto Y\ S is continuous. Then Y is a topological vector space and S is a lower 
semicontinuous open relation such that every linear selection for S is continuous. 
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Proof. By the assertion proved at the beginning of § 11 in Chapter 2 of [4], it is 
clear that У is a topological vector space. 

Now i f / i s a linear selection for S, then Theorem 3.5 implies that the finest vector 
topology on Y for which / is continuous is finer than the original topology of 7, 
and thus / is continuous. Moreover, by Corollary 3.3, S is lower semi-continuous. 

Finally, if U is an open subset of X, then by Theorem 1.4, S(U) = (р~^((рз{^У), 
whence we can infer that S(U) is open in Y, since (ps is open and (p is continuous. 
This proves that S is open. 

Corollary 3.7. Let S be a linear relation from a topological vector space X onto К 
Let ^ be a nonvoid family of linear selections for S, and consider Y to be equipped 
with the finest vector topology for which eachfe #" is continuous. Then S is a lower 
semi-continuous open relation. 

Proof. Theorem 3.5 implies that the original topology of Fis finer than the coarsest 
topology on 7for which the projection cp of 7on to 7 | S is continuous. Thus, by 
Corollary 3.6, S is open. Finally, again by Corollary 3.3, it is clear that S is lower 
semi-continuous. 

Problems 3.8. Let S be a linear relation from a topological vector space X onto 7, 
and denote # ' be the family of all linear selections for S. (By Theorem 4.1 in [8], 
^ is not empty.) 

Let ^^ be the finest vector topology on 7 for which e a c h / б ^ is continuous; 
and for / 6 J^, let ^f be the finest vector topology on 7 for which / is continuous. 
Moreover, let ^^ be the coarsest topology on 7 for which the projection (p of 7 
onto 71 S is continuous. 

Then, it is clear that ^^r с ^j-. Moreover, by Theorem 3.5, ̂ ^ a ^^, However, 
we do not know when the above inclusions are proper. (If S is a function, then the 
above inclusions are not proper.) 

Notes 3.9. This paper was presented at the Conference on Functional Equations 
and Inequalities in Debrecen (Hungary), August 20 — 25, 1979. 

Corollaries 3.3 and 3.6 give some partial answers to a problem on the existence of 
continuous hnear selections for a linear relation from a topological vector space 
into another posed by the first author at the Symposium on Functional Equations 
in Retzhof (Austria), September 3 - 1 0 , 1978. 
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