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REPRESENTATIONS OF GROUP AND SEMIGROUP ACTIONS 

WALTER S. SIZER, Moorhead 

(Received June 15, 1982) 

An action of a semigroup 5 on a set X is a mapping from S x X io X, denoted 
by juxtaposition ((s, x) -> sx), such that t(sx) = (ts) x for all s, t in S and all x in X. 
A familiar example of a semigroup acting on a set is given by the multiplicative action 
of the semigroup of all n x и matrices over an associative ring on the set of all 
n X 1 matrices over the ring. Since we do not require that S has an identity element, 
even when S does have an identity element 1, we do not assume that 1 x = x for x in Z . 

A representation of a semigroup S is a homomorphism from S to the semigroup of 
n X n matrices over a field. This usual notion can be extended to define a repre­
sentation of a semigroup action: a representation of a semigroup action S x X -^ X 
is a pair of mappings, a homomorphism/mapping S to the semigroup F„ of all n x n 
matrices over a field F and a set mapping g taking X to the n-dimensional column 
vectors F" over F, such that the following diagram commutes: 

S X X -^ X 

F^ X F"" -^ F". 

The commutativity condition can also be written {f{s)){g{^)) = g{sx). 
Given any representation f : S -^ F„ of the semigroup S, and given any action 

S X X -^ X, one representation of the action is given by / together with the zero 
map on X (the map which takes each x in X to the zero vector in F"). More interesting 
representations preserve something of the structure of X. We say that a representation 
of a semigroup action is iS-faithful if the semigroup map is one-to-one; it is X-faithful 
if the set map is one-to-one; and it is faithful if both maps are one-to-one. Represen­
tations of semigroup actions arise naturally from the study of ordinary semigroup 
representations (see [4]). 

This paper considers way of constructing representations of semigroup actions, 
especially various types of faithful representations. 
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I. GENERAL RESULTS 

In a representation of a semigroup action the vector space involved is finite dimen­
sional. The finite dimensionality of F" places some restrictions on those actions which 
can have X-faithful representations. 

Theorem 1, If S x X -^ X is a semigroup action with an X-faithful representa­
tion in F^ X F' -> F'\ then whenever there exist elements 5/, ti in S, Xi, j , - in X, 
i = 1, ..., m, with SiXj — t^yj [i < j), SiXi ф f,-}̂ ,-, then m ^ n^. 

Proof. Using the X-faithful representation, we treat the elements of X as vectors 
in F". And since sx e X for 5 in S, x in X, we treat elements sx as vectors also. 

Suppose m > n^'. Then {xi, yi), ...,(x„,, y„,) is linearly dependent in F" x F", 
so there are coefficients a^, ..., a„„ not all zero, with ^^^(xy, yj) = (0, 0). Let i be 
the index of the first-zero coefficient. Then â Xj = •-J]j>iCiiXj, а̂ у̂  = —Yjj>i<^jyj, 
and aiSiXi = 5,(а^х^ = sl-Y^ajXj) = ~Y.^jSiXj = ~Y.^jtiyj = ^-l-Z^jX/) 
Ui^tyt) ~ ^iUyi- Since ai ф 0, 5̂ х̂  = ,̂у ,̂ a contradiction. Thus m ^ n^. 

There are several consequences of this theorem. Some of them can be proved more 
directly, and in some cases a direct proof gives a better bound. But the fact that they 
are consequences of the previous theorem shows its importance. 

Corollary 1.1. If S X X -^ X has an X-faithful representation, then there is 
a number k so that for all a in S and all x, y in X, if a^x ф a'^y, then a"^x ф a'^y 
for all m. 

Proof. Theorem 1 allows us to verify this result with k = n^ + 1. Suppose 
a" "̂ x̂ Ф a" "̂ V? but a'"x = a^y for some m > n^ + 1. Assume m is minimal, 
and in theorem 1 take x̂  == a'~^x, yi = a'~^y, 5,- = ti = a"'~\ i = 1, ..., m — 1. 
These sequences satisfy the assumptions of theorem 1, yet as m — 1 > n^ we get 
a contradiction. Thus the corollary is estabhshed for к = n^ + 1. 
(A direct proof could be given with к = n, but it is significant that a bound can be 
obtained here as a consequence of theorem 1). 

If X G X , let fix(xj = {s G 5' I 5x = x} be the fixer in /S of x (see [1], p. 54). For 
a set У ^ X, let fix(7) = {s e S \ sy = у for all у in Y] be the fixer of Y. Theorem 1 
then gives rise to the following 

Corollary 1.2. If S X X -> X has an X-faithful representation, then any chain 
of fixers . . . Ф fix(z_ij Ф fix(zo) ф fix(zi) ^ fix(z2) Ф ••• is finite and of bounded 
length. Thus S has both ace and dec on fixers. 

Proof. Suppose the index к appears in the above chain. In theorem 1, let x^ = 
= У1 = z,^_i, and let 5̂  G fix(z;^_f+ij — fix(z^^_j.), ̂^ Gfix(z;t_i). Theorem 1 then says 
that the indices do not go below к ~ n^ ~ 1. Thus there can be at most n^ + 1 
fixers in the chain. \ 
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Since fix({2^ I a e A}) = fjce^ ^Ч^а)» the theorem also gives us 

Corollary 1,3. Suppose S x X -^ X has an Z-faithful representation. 
Then for any set {z^\ a e A] Ç X, there is a finite subset z^, ..., z^ such that 

fix({z^}j = fix({zi, ..., Zf.]), and к -^ n^ + 2. 

Proof. If the corollary is not true, we get an infinite chain fix(zi) ф fix({zi, 22}) ф 
Ф fix({2i, Z2, Z3}) I ... . Taking xi = y^ = V-^+2 . 5̂  e fix({zi, ..., z„2_i+i}) ~ 
— fix({zi,..., z„2_i+2}) ^t^fix({^i' •••' ^n^-i+i})^ we get a contradiction to theorem 
1. Thus the only such chains are finite, and we must be able to write fix({z^}) as the 
fixer of a finite set Zj, ..., ẑ .̂ 

In actual constructions of representations the following two lemmas are quite 
useful. 

Lemma 2, If S x X -^ X has an X-faithful representation and S x Y-^ Y has 
a Y-faithful representation, then S x (^X и Y) -^ (X и Y) has an (X u Yyfaithful 
representation. If one of the original representations was S-faithful, so is the new 
one. 

Proof. Let s -> M .̂, X -^ v^ and 5 -> N^, У -^ ^y be the representations. The 

desired representation of S x (X u У) -^ (Z u 7) is then ^ ^ I r. "" AT )' -̂  "^ I r."̂  )? 

Corollary 2.1. If S x X -^ X has an X-faithful representation and S has a faithful 
representation, then S x X -^ X has a faithful representation. 

Proof. The construction is similar to that of lemma 2. 

Lemma 3. If S x X -^ X has an X-faithful representation and T x Y-^ Y has 
a Y-faithful representation, then (S x T) x (X x Y) -> (X x Y) has an (X x 7)-
faithful representation. 

Proof. The construction parallels that of the previous lemma. 
If we are interested in constructing X-faithful representations, then by theorem 1 

we need only consider actions where all sequences Si, ti, Xi, yi of the sort described 
in the theorem have bounded length. Two situations where such sequences will 
always have bounded length occur when S is finite and when X is finite. To see that 
this is true when S is finite, note that S x S is finite, so in any infinite sequences some 
pair {sj,, tj) must repeat some previous pair (s^, t^. But s^x^ = t„jj„ so Si^Xj, = 
= кУк^ and the sequences are not of the desired type. A similar argument works if Z 
is finite. In case X is finite, it is easy to get X-faithful representations: 

Theorem 4. IfX is finite, any action S x X -^ X has an X-faithful representation. 
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Proof. Let X = {^i,..., X;̂ } and consider the map x,-> ^̂  taking X to the 
standard basis of F^. For 5 in S, let N^ be the matrix with /, 7 entry equal to 1 if 
SX I = Xj, 0 otherwise. It is easily verified that the map s -> N^ gives a (not necessarily 
faithful) representation of 5, which with the given map from X to F^ gives an X-faith-
ful representation of S x Z -> X. 

Corollary 4.1. If S has a faithful representation and X is finite, any action S x 
X X -^ X has a faithful representation. 

The case where S is in finite is not so easily dealt with. The next section deals with 
the nicest possible case, when 5 is a group. 

2. GROUP ACTIONS 

Since groups do have an identity, and the usual definitions of and standard results 
on group actions assume that Ix = x for all x in X, our first result is concerned with 
allowing us to make this assumption. If we have any group action G x X -^ X, 
it is easy to verify that on the subset GX oîX 1 does act as the identity transformation. 
We are able to make this assumption generally because of the following 

Theorem 5. Let G x X -^ X be any action of a group on a set. Then G x X -> X 
has an X-faithful representation if and only G x GX -^ GX has a GX-faithful 
representation. 

Proof, only if: clear, 
if: Assume that g -^ Ng, x -> f̂  is a GX-faithful representation of G x GX -> GX. 

Assume the field F has cardinality greater than that of X, and let x -> a^ be a set 
injection of Z — GX into F — {0}. If x e GX, let a^ be 0. Then the maps 

' - ( » « , ) • ' - ( : , : ) 

give an X-faithful representation of G x X -> X, 

In view of theorem 5, from here on we assume for group actions that 1 acts as the 
identity transformation on the set, and so standard results on group actions are 
applicable. 

If G is a group then the existence of inverses gives a nice structure to X. For x in X, 
the orbit of x is defined to be the set 0^ = {gx \ g eG}. The relationship x '^ 3; if x 
is in the orbit of y is then an equivalence relation, so the orbits partition X. This 
is not the case for more general semigroups. A group action G x X -^ X where X 
consists of just one orbit is said to be transitive. 

Two group actions G x X -^ X and G x Y-^ Y are isomorphic if there is a bijec-
tion g from X to У such that the diagram below commutes: 
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G X X - > X 

г 
G X Y-^Y. 

A general case where X-faithful representations exist is given by the following 

Theorem 6. / / the group action G x X -^ X has only finitely many nonisomorphic 
orbits, each of which is finite, then the action has an X-faithful representation. 

Proof. By lemma 2 we need only consider the case where all orbits are isomorphic. 
We assume our field F is chosen to have cardinality greater than that of Z , and con­
struct a representation of the action on one orbit as in theorem 4, with x -^ e^. 
If the other orbits are Gx^, a in A, where the isomorphisms take x to the elements x^, 
we extend the representation by mapping each x^ to e^fa^fa in F — {O, 1}, /^ Ф /ь 
for a Ф b. This mapping extends naturally to an Z-faithful representation of the 
action G X X -^ X. 

Theorem 6 covers the case where G is finite, but to show this we must look at orbit 
structure a bit more closely. 

An important example of a group acting on a set is the following: 

Example 7. Let G be a group and H a subgroup of G. Then G acts on left cosets 
of H by multiplication g{g'H) = (gg') H. 

The universal nature of this example is given by the following well-known theorem. 

Theorem 8. / / G x Z -> Z is any transitive group action, this action is iso­
morphic to an action of G on left cosets of some subgroup of G. 

Proof. See [1], p. 59. 

Corollary 8.1. / / G is a finite group, any action G x X -^ X has a faithful repre­
sentation. 

Proof. By theorem 8, there can be only as many non-isomorphic orbits as there 
are subgroups of G, a finite number, and each orbit has a finite number of elements 
in it (G : H for some subgroup H of G). Thus if G is finite the conditions of theorem 6 
are satisfied and any action G x X -^ X has an Z-faithful representation. But 
since G is finite G itself also has a faithful representation, so by corollary 2.1 G x 
X X -> X has a faithful representation. 

A converse to the corollary is true, namely 

Theorem 9. / / G /5 a group such that all possible actions G x X -^ X have Z -
faithful representations, then G is finite. 



Proof. G acts on Z = {all left cosets of all subgroups of G}. For this action every 
subgroup of G is a fixer (of itself). By corollary 1.2, G must have ace and dec on 
subgroups. Also, since the representation of G x {cosets of {l}} -> {cosets of {l}} 
is Z-faithful, G itself has a faithful representation. Thus G is a linear group. By [5], 
pp. 146, 114, any linear group with ace and dec on subgroups must be finite. 

For some other cases we can determine whether an action has an X-faithful 
representation. This is true of some actions of abelian groups of finite rank. Fol­
lowing [3], p. 49, we say an abelian group has rank n if every finitely generated 
subgroup has a set of n or fewer generators, and n is minimal with respect to this 
property. It follows from [3] that if G is an abelian group of finite rank then G ^ 
^ Z , ^ ® Z , ^ © , . . 0 2 , ^ 0 2̂ ,̂ 00 0 . . . e Z ^ ^ . ® Ô1 e . . . e Or. where the QJs 
are subgroups of the rational numbers. We get 

Theorem 10. Let G be an abelian group of finite rank. If the action G x X -^ X 
has only finitely many fixers, then the action has an X-faithful representation. 

Proof. By lemma 2 and the proof of theorem 6 it suffices to assume G has just one 
orbit Gx. Let H be the fixer of x. GlH is also an abelian group of finite rank, so we 
assume GJH = Z^^ @ ... @ Q^ (as above). The action of G on Gx is isomorphic to 
the action of G on cosets of H. This latter action can be identified naturally with 
multiplication in GlH, and GlH has a faithful representation g -^ N^hy [5], p. 17. 
The maps g -> N^, x -^ e^ then give an X-faithful representation of G x X -> Z . 

Corollary 10.1. Let G be an abelian group of finite rank, and assume that only 
finitely many subgroups of G occur as fixers in the action G x X -> X. Then this 
action has a faithful representation. 

Proof. A faithful representation for G can be constructed by the construction 
indicated above. Thus, by corollary 2.1, the action has a faithful representation. 

The converse of the theorem above is not true. Some abelian linear groups of finite 
rank have infinitely many fixers, as in the following example. 

Example 11. of an abehan group of finite rank G and a group action G x X -^ X 
with infinitely many fixers, but having a faithful representation: 

c, d rational ; a, b rationale , and let X = 

Then G ^ ß 0 6, so has finite rank, and the fixer of 
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is easily seen to be 

Thus as d ranges over Q we get infinitely many distinct fixers in G. 
In the last theorem the condition on the rank of G is essential. If G does not have 

finite rank the action of G on a single orbit may not have an X-faithful representation, 
as seen by the following example. 

Example 12. of an abelian group of infinite rank G and a transitive action G x 
X X -^ X without an X-faithful representation: Let G = @Z„ (n in N), and take the 

action of G on itself by left multiplication (G acting on leit cosets of the identity). 
It is easily verified that if the mappings .̂  -> Mg, g -^ Vg give an Z-faithful representa­
tion, then G ^ {Mg I g in G}. But by [5], pp. 17—18, a torsion abelian group has 
a faithful representation over a field only if it is of finite rank. Thus G x G -^ G 
has no X-faithful representations. 

For general group actions we get the following two results. 

Theorem 13, Let G x Gx -> Gx be a transitive group action. Suppose H is 
a subgroup of G of finite index and the fixer of x is contained in H. Then G x 
X Gx -^ Gx has an X-faithful representation if and only if H x Hx ~* Hx does. 

Proof. The only if statement is clear. For the other direction, assume H x Hx -> 
-> Hx has an X-faithful representation h -^ M„, hx -^ v^^. In the event that Я is the 
fixer of X and t;/,̂  = 0 for all hx, we modify our representation and take instead the 
mappings 

("'?)• - 4 0 
for all /ix, so we assume that in our original representation v^ Ф 0. Suppose M^ has 
dimension к x k. We use the given representation of Я to induce a representation 
of G in the usual manner (cf. [2], p. 75): if G = [JgiH (i = 1 , . . . , n), where g^ = 1, 
then we map of to the/<n x kw matrix iV^ which consists of blocks of dimension fc x /c, 
the i,j block being Mg^-igg. if gj^ggi is in Я, 0 otherwise. This representation 
of G, together with the map 

induces an X-faithful representation of G x Gx -> Gx. 
Let ]Уе(Ах(х)) denote the normalizer in G of the fixer of x, that is, 

{of e G I of"̂  fix(x) g = fix(x)}. We then get 
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Theorem 14.1/Мс(их(х)) is of finite index in G âf/iJNG(fix(x))/fix(x) has a faithful 
representation [as a group), then G x Gx -^ Gx has an X-faithful representation. 

Proof. Let N denote N^ifix^x)). By the previous theorem we need only concern 
ourselves with giving an Z-faithful representation of N x Nx -» Nx. This action 
is isomorphic to the action of Л'̂  on left cosets of H = fix(x). The action of iV on left 
cosets of Я factors through NJH, in the sense that the diagram below commutes: 

N X {left cosets of H} -> {left cosets of H} 

multiplication 
NJH X {left cosets of Я) -> {left cosets of Я} . 

Let g -^ NghQ the faithful representation of NjH. The к x к matrices N^ are them­
selves vectors in a /c^-dimensional vector space (with basis { г̂у}), and the action of 
the matrices Ng on these vectors is linear. We map the matrices Ng to their images Vg 
as /c^-dimensional vectors, and also map the matrices Ng to the k^ x /ĉ  matrices Pg, 
which permute the vectors Vg in the same way the matrices Ng act on themselves. The 
maps h -^ Рй, hx -> v^, is then an X-faithful representation of the action N x Nx -^ 
-^Nx. 

The last two results can be exptended in an obvious way to the case where one is 
interested in representations of group actions that are not necessarily X-faithful. 
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