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SUBSPACES OF L^{G) WITH UNIQUE TOPOLOGICAL 
LEFT INVARIANT MEAN 

G. CROMBEZ, Gent 

(Received October 1, 1981) 

I. INTRODUCTION 

In what follows we denote by G always a locally compact Hausdorff group with 
left invariant Haar measure. Let Л be an Ii(G)-suhmodule of L^(G) which is left 
invariant and containing the constant functions. A mean on A is a hnear functional m 
on A such that m(g) = m(^g) for all ^ G Л (the bar denoting complex conjugation), 
w(l) = 1, and m(g) ^ 0 if ̂ f ^ 0 locally almost everyv/here. A mean m on A is called 
left Invariant (LIM) if m(^g) = пг(д) for all a in G and all g in A. A topologically 
left invariant mean (TLIM) on Л is a mean m such that m[(p ̂  g) = m{g) for ail 
geAemd all ç E P(G) = [cp e L^{G): cp ^ 0, ||(p||i = 1]. 

It is well known (see e.g. [ l ] , [6] and [8]) that on each of the spaces AP{G) and 
If(G), being respectively the sets of almost periodic and weakly almost periodic 
functions in L^[G) there exists a unique LIM; and it is also the unique TLIM. In 
section 2 we construct two new subspaces of L^{G), one of them containing properly 
AP[G) and the other W(G), such that on each of these new spaces there exists a unique 
TLIM. For Abelian G with dual G the first space coincides precisely with the space 
of those functions which are almost periodic at every point of G, as introduced by 
Loomis in [7]. 

All of these results are shown by use of the so-called r^- and т^-topologies, which 
have been introduced in [2] and [3]. For convenience we repeat here their definitions. 
The space L^{G) may be embedded into B(L^{G), L^{G)) by the operator Ф 
such that Ф(д) ( /) = f ^ g ( / e Li(G), g e L^(G), * the convolution product). Since 
B(Li{G), L^{G)) carries naturally the strong and the weak operator topology, Ф 
allows us to consider their induced topologies on L^{G), which we denote by т̂  
and T̂ , respectively. These topologies may also be introduced in another manner; 
indeed, each f e L^^G) induces by convolution an operator Cf on L^{G) which 
is continuous when L^{G) carries its norm topology || \\^; the weak topology 
on L^{G) under the convolution operators Cj : Loo(G) -> {L^{G), \\ \\ oo) then co­
incides with T̂ , while т^ is the weak topology on L^{G) under the same set of opera­
tors Cf : L^{G) -^ [L^(G), w), where w denotes the weak topology on lool^)- ^^ we 
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immediately obtain vv* S ^w й т^с è \\ ||, and vv* ^ т,̂  ^ w ^ || Ц̂о- Moreover, 
T̂  =11 11̂  iff G is discrete. 

All other nonexplained notations and definitions are taken from [8]. 

2. SUBSPACES OF L^XG) WITH UNIQUE TLIM 

We start with the following lemma. 

Lemma 2.1. Let A be an L^{GysubmoduIe of L^{G), A LIM m on A is a TLIM 
iff ni is continuous for the induced z^-topology. 

Proof. Let m be a TLIM on A. If ^ is a fixed function in A and (б̂ д)ябл is a net in A 
that vconverges to g, then the net {cp * g})xeA is || ||oo-convergent to (/? * g, for each 
(p E P{G). 

Since m is always continuous for the || j] ^-topology, the result follows from the 
fact that /?7.(ф ^ h) =^ m{h) for all (p e P(G) and all h e A. 

Conversely, let m be a LIM on A which is r^-continuous. Using the left invariance 
of m we obtain that m{J^ g) = m(f * g) for all a e G,fe Li{G), g e A.ln particular, 
the functional / -> m ( / * g) on L^(G) is linear, bounded, and left invariant, and so 
there exists a constant (depending on g), say c[g), such that m( / * g) = c[g) lof{t) ^^ 
for all / e Li^{G); this leads to m{(p ^ g) = c{g) for cp e P{G). Let then (ея)ябЛ be an 
approximate identity in L^[G) such that each ê  belongs to P{G). For g in A, the net 
i^A * ^)AG4 is T^-convergent to g. So, due to the ^continuity of m we obtain c(g) — 
= m{e;^ ^ g) -^ m(g), while due to the || || ̂ -continuity of m we also have c[g) = 
= m({(p * в;) '^ g) -> m((p * g), for all cp e P{G). Hence m is a TLIM on A. щ 

We now construct Banach subspaces of L^{G) on which there exists a unique 
TLIM. 

To this end, call a function g in L^{G) right almost periodic with respect to т^ 
(r — Tc ~ ^-P-) iff t^^ set {̂ д : a e G] of right translates of g is relatively compact 
with respect to т .̂ We denote the set of these functions by JR — т̂  — АР. Analogously, 
using the T^rtopology we may define the set R ~ г^, — АР. Since the spaces {L^{G), т )̂ 
and {L^{G), T )̂ are Hausdorff topological vector spaces, it may be verified that both 
sets дге right invariant linear subspaces of Loo(^)-

Lemma 2.2. 
geR-x,- kPof^geAP{G), \ffeL,{G), 
geR-^x^- kPof^ge W{G), V/e L,{G). 

Proof. We only give the proof of the first equivalence. Since for a n y / G L I ( G ) , 
each operator Cf : (L^[G), т^) -> (L^(G), || Ц̂ )̂ with Cf(g) = f* g is continuous, 
one implication is quickly verified using the fact that {f ^ g)a = / * Qa-

To prove the inverse implication, let Ф : L^{G) -^ B{Ljfi), Lj^G)) be the operator 
defined in the introduction, and put A = {{Ф{д))а : a e G], where we define 
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{Ф{д)%{/) = {f^g\ = Ф{да){/У Then А cz Б(Ь^(0), L^(G)), and an adaptation 
of exercise VL9.2 in [4] shows that A is relatively compact in the strong operator 
topology. The result then follows from the definition of т .̂ 

The proof of the second equivalence is analogous. ^ 

From lemma 2.2 we derive that both sets R — т^ — АР and R — т^ — АР are 
T^-closed. Indeed, if{g^)xeA is a net in one of these sets such that (о'я)/бл V^onverges 
to g, then the net {f * дл)лел^ which is in either AP(G) or W(G), is || || oo-convergent 
to f * g, for e a c h / i n Ь^^{С). Since both sets AP(G) and W(G) are || ||o^-closed, the 
limit function g also belongs to either i^ — т̂  — AP or Я — т^ — АР. 

Of course R ~ T^ — АР and i^ — т^ — AP are also ]| || ̂ -closed (hence the}' are 
Banach subspaces) since т̂  ^ || |[oo; being convex sets, they are also r^-closed. 

In order to obtain our next result, we state [2, corolL 3 and 4] in the form of the 
following lemma; d^B denotes the closure of a set A in the topology т. 

Lemma 2.3. Let S be a x^-dosed L^^G) submodule of L^(G). Then S — 
= clj^Li(G) * S), and S is left translation invariant. 

Since AP{G) с Я - т̂  - AP, and due to the fact that L^{G) * AP{G) = AP{G), 
we have from lemma 2.2 AP{G) = Li{G) * AP{G) c: L^{G) * JR - т̂  - AP с 
с AP[G). Hence Li(G) ^ R — t^ — AP = AP(G), and from lemma 2.2 we derive 
that R - T, - AP = C\,XÄP{G)). Analogously, L^G) * i? - т^ - AP = W{G), 
and R - T^ - AP = cl,^,(lf(G)). Moreover, both sets R - т^ - АР and R - т^ -
— АР are left invariant. 

Theorem 2.4. There exists a unique TLIM on R — т^ — АР. 

Proof. There exists a unique LIM m on AP{G), and it is also a TLIM; hence m 
is also continuous for the induced r^-topology. Since jR — т̂  — АР = с1Ц/1Р(С)), 
there exists an extension of m to a linear functional M on Я — т̂  ~ AP which is 
T^-continuous; this extension is then necessarily unique. It remains to show that this 
extension M is a left invariant mean on i^ — т̂  - АР. That M(l) = 1, M(g) = M[g), 
and M(^g) = M(g) for g e R — т^ — АР is readily verified using the definition of 
the T^-topology and the properties of m. If ^ e JR — т̂  — AP and g ^ 0 locally 
almost everywhere, choose an approximate identity {ех)хел in L^G) consisting of 
positive functions, and put о̂ я = ^я * 9- Then each О'Я belongs to AP(G), g^ ^ 0, 
and [g^ vconverges to g. Hence M{g) ^ 0. Due to lemma 2.1, M is a TLIM on 
R - T̂  - AP. и 

Completely analogous to theorem 2.4 we may prove 

Theorem 2.5. There exists a unique TLIM on R — т^ — АР. 

Corollary 2.6. / / G is compact, there exists a unique TLIM on L^{G). 

Proof. Since for given g in L^{G) the function s -^ g^ from G to L^{G) is con-
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tinuous for the vtopology on L^(G), any g e L^{G) is r — v a . p . when G is compact, 
i.e. R — T^ — AP = L^(G), The result then follows from theorem 2.4. щ 

Remark 1. Since the LIM on AP(G) or W(G) is also right invariant, the same is 
ture for the TLIM on i^ - т, - AP and R ~ т,, -- АР. 

Let G be an Abehan group with dual G. A bounded measurable function 6̂  on G 
is called almost periodic at the point y^e G iïï there exists a function / in Li{G) 
such that f* g is (|| Ц̂^ —)almost periodic and ДУо) + ^ (see Loomis [7], p. 364). 

Theorem 2.7. For Abelian G and g e L^{G) we have 
g E R — T^ — AP iff g is almost periodic at each point of ô. 

Proof. By lemma 2.2 it is clear that any ^ in î  — т̂  — АР is almost periodic at 
each point of G. 

To prove the converse implication we have to show that, given g in Lao{G) which is 
almost periodic at each point of G, the function f =^ g belongs to AP[G) for each / 
in Li{G). We use the notation of [7]; in particular, we denote by spg the spectrum 
of a bounded function g. Given s > 0 and / in Li(G), there exists a function v in 
Li{G) such that v has compact support, and ||/— Î ^ * / | | I < e; also sp(f * / ) с 
с: spt; = supp i). This means that there exists a net (/1я)дбЛ in Li(G) such that (h^) || || i-
converges t o / , while each /ẑ  has compact spectrum. 

Since (h;^ * g) is | Ц^^-convergent to f ^ g, this function will belong to ÄP(G) as 
soon as each h;^ * g is almost periodic. So it suffices to prove : given / in Lj^{G) with 
compact spectrum, then the function h = / * ^ is almost periodic. By [7] theorem 1, 
this will be the case iff h is almost periodic at each point of G. Given Уо ^ ö, there exists 
a function/o in Li(G) such that/o * g is almost periodic and/0(70) + ^l ^hen/o * /t = 
= / * (/0 * g), and this is almost periodic since L^ (G) * AP{G) = AP{G), Щ 

3. THE EXTENT OF i ^ - T ^ - A P 

Theorem 3.1. Let G be a non-compact a-compact amenable group. Then the 
quotient space LOO(<J)/R-TVV,-AP ^̂  nonseparable. 

Proof. Put î  - T^ - AP = Л for short, and suppose that L^{G)j^ is separable. 
Then there exists a countable dense subset {[о^п]}Г=1 in L^{G)l,^, where [g,^ = 
= g^ + A, and g^ e L^(G). Let В be the linear span in L^{G) of the sequence 
{9n}n= 1 ; then A + Bis dense in L^{G). Let m be a TLIM on L^{G), and put m{g„) = 
= oc„. If M is also a TLIM on L^(G) such that M(g„) = a„, then M = m; indeed, 
M = m on Б by assumption, and M = m on A since A has a unique TLIM; the 
result then follows from the denseness of A + В in L^{G). Putting С = cl^ * P(^G) n 
n {J/ ETLIM : ̂ (g„) = a„}, we derive that С is norm separable. According to 
[5, theorem 5], this is sufficient to conclude that G would be compact, в 

Corollary. / / G is a-compact and R - т^ - A? = I-ao{^), then G is compact. 

181 



Remark . The result of this last corollary is also true without the assumption that G 
is (T-compact. Indeed, if /^ — т̂ , — AP = L^{G), then W(G) = Li{G) * jR — т̂ , — 
- АР = L^{G) * L^{G) = C,XG), where CjG) denotes the set of right uniformly 
continuous functions on G; hence W{G) contains the set of functions on G which are 
both left and right uniformly continuous. This is known to be a sufficient condition 
for the compactness of G. 
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