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INTRODUCTION

In this paper, we shall work exclusively with objects of class C®. All manifolds
are supposed to be paracompact and Hausdorff, and the terms Lie group and Lie
subgroup are used in the sense of [9, chap. 1, § 4]. When working with sheaves we
keep the terminology and notation of [3] preferring, however, to define a sheaf as
a presheaf satisfying certain axioms [3, pp. 5—6].

Let M be a manifold with dim M = m, let & be the sheaf of all real functions
on M, and let & be a topological Lie algebra sheaf on M, i.e. a topological Lie
algebra subsheaf of the topological Lie algebra sheaf 2 of all vector fields on M.
(The topology on each Lie algebra #(U), where U is an open subset of M, ist thus the
C*®-topology.) Considering . as a topological vector space sheaf, let us denote by
117 % the direct product of p copies of & and define C?(; &) to be the vector space
of all alternating multilinear maps o: II?# — & of topological vector space sheafs.
As usual, the formula

p . ~
(do) (Xo, ..., X}) ='_ZO(—1)'Xioc(X0, n X n X))+

+ Y (=) [ X0 X, Xor oo Koy X0 X)L

i<y
where o € CP(L; %), X, ..., X, € £(U), U an open subset of M, defines a differential

d:C/(&; 7)) > PP (& ),
and the formula
(o A ﬁ) (X4, ...,Xp+q) =

1
= ;’7{' ;sgn T o X1y s Xnipy) - BXnpr 1y s Xn(pra) »

where o€ C/(Z; &), Be CH(L; S), X4, ..., Xpiq€ L(U), U an open subset of M,
and 7 runs over all permutations of the set {1, 2, ..., p + ¢}, defines a multiplication

AN CHZ; &) x C{ZL; F) > CPH L5 F).
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If we set

& 9) =@ /(L %),
p=0

then together with the differential d and the multiplication A the graded vector space
C(i" ; &) becomes a commutative (in the graded sense) associative differential graded
algebra (over R) with a unit.

Let C(£(M), &(M)) be the differential graded algebra of continuous cochains of
the topological Lie algebra #(M) with coefficients in the topological #(M)-module
y(M) There is a canonical homomorphism

C(2: %)~ c(2(M). ()

of differential graded algebras, and it is easy to see that the image of this homo-
morphism is contained in the diagonal differential graded subalgebra CA(Z(M),
&(M)) consisting in degree p of all cochains a satisfying the support condition

p
supp (X, ..., X,) = (\supp X; forall X,,... X,eZ(M).
i=1

In the special case when ¥ = Z one can easily verify that this homomorphism is
an isomorphism onto C,(Z(M), #(M)). In this sense the differential graded algebra
C(Z; &) can be considered a natural generalization of the diagonal differential
graded algebra C,(Z(M), #(M)) to the case when there are not sufficiently many
globally defined sections of #. Of course, the term “sufficiently many” can be given
many various meanings. Probably the most natural one is that the sheaf % is fine
in the sense that the sheaf Hompg (&; £) of germs of endomorphisms of the topo-
logical vector space sheaf .# is soft. For such a sheaf % one can easily verify that
C(&; &) ~ CA(Z(M), #(M)).

Under a certain hypothesis on . there is a differential graded subalgebra of
C(Q; &) that can be considered a generalization of the diagonal algebra CA(%'(M),
&(M)), too. Let r = 0 be an integer. An element o € C?(£; %) will be called a p-
cochain of order <r if it satisfies the following condition: For any open subset
UcM and aby X, ..., X,€ Z(U), the value of the function (X, ..., X,) at a point
x € U depends only on the r-jets of the vector fields X, ..., X, at the point x. Let
C(Z; &) be the graded vector subspace of C(Z; &) generated by all cochains of
order <r. Clearly, C,(&; &) is a graded subalgebra of C(&; &), but in general
it need not be invariant under the differential of C(%; 5”). If, however, the function
dyy: M = R, dg\(x) = dimg J*Z(x), where J"#(x) denotes the vector space of
r-jets ji(X) of germs X e #(x), is locally constant, then one can show (compare
with Proposition 1.2) that C,(&; ) is a differential graded subalgebra of C(&; ).
We can also introduce the graded subalgebra C(w)(.ﬁf ; y) of all cochains which are
logally of finite order. To this end let us define a differential graded algebra sheaf
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%(&; &) and its graded algebra subsheaves €,,(Z; #), 0 < r < oo, putting
“(¢;9)(U)=C(Z|U, 7|U),
(& 7)) = Cp(2 | U, 7| V)

for each open subset U of M. Further, let us denote by ©,,,(Z; ) the least graded
vector space subsheaf of ¢(£; &) containing all the subsheaves (6(,)(3; &), 0 <
=< r < o0, and, finally, let us set

Coo)(Z: F) = C L3 S)(M).

Again C(,(Z; ) is a differential graded subalgebra of C(&; &), if the function d, is
locally constant for all sufficiently large r. If & = &, then by virtue of J. Peetre’s theo-
rem [11, Theorem 3.3.3] we have C(,(&; &) = C(Z; &) ~ C\(Z(M), #(M)) =
= C, where C is the M. V. Losik’s differential graded algebra introduced in [10].
Consequently, in general case of a sheaf % such that the function d,, is locally con-
stant for all sufficiently large r, the differential graded algebra C,,(<£; &) can also
be considered a generalization of the diagonal algebra C,(Z (M), #(M)) or, equi-
valently, of Losik’s algebra C.

The main aim of this paper is to calculate the cohomology algebra H,(Z; &)
of the differential graded algebra C,(&; &) for r = 1 in the special case when %
is the sheaf of all infinitesimal automorphisms of a G-structure on M. Of course,
the class of G-structures under consideration is subject to certain restrictions which
ensure especially that the differential graded algebras C, (&; &) are defined, and
which will be specified in Section 1. Our main theorem is Theorem 1.5, which gen-
eralizes the first part of a result by M. V. Losik [10], who calculated the cohomology
algebra H;(%; &) and proved that H(2; &) & H(,\(Z; &). (Let us recall that
Ciy(%; &) and Ciooy(%; &) are canonically isomorphic to Losik’s algebras B and C,
respectively.) The case 1 < r < oo will be studied in a subsequent paper. Let us
remark-that the main theorem of the present paper was announced in [1].

1. MAIN RESULTS

Throughout this section, let M be a manifold with dim M = m, let G be a Lie
subgroup of GL(m, R), let & = (P, p, M, G) be a G-structure on M, i.e. a reduction
in the sense of [9] of the principal GL(m, R)-bundle B = (By, py, M, GL(m, R))
of all frames on M to the subgroup G, and let %, be the sheaf of all infinitesimal
automorphisms of the G-structure £. It is clear that £, can be considered a topo-
logical Lie algebra subsheaf of the topological Lie algebra sheaf ¥, = ' of all
vector fields on M.

1.1. Definition. Let r be a non-negative integer, and let J*#(x) be the vector space
of r-jets ji(X) of all germs X from the stalk Z,(x) of the sheaf &, at the point x.
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A G-structure ¢ will be called r-regular if the function x — dim J"Z(x) is locally
constant on M.

The following proposition can be proved by using special forms and computations
of [10].

1.2. Proposition. If a G-structure ¢ is r-regular, then C,(ZLy; &) is a differential
graded subalgebra of C(ZLy; &).

1.3. Defirition. A G-structure & will be called 1-transitive if dim J'.Z(x) =
= m + dim G for all xe M.

1.4. Remarks. (a) Clearly any I-transitive G-structure is 1-regular.

(b) If a G-structure ¢ is transitive in the sense of [12], then it is r-regular for any
r = 0. If, moreover, M is connected, then a transitive G-structure & is 1-transitive
if and only if dim J'Z«(x) = m + dim G for at least one point x € M.

(¢) It is not difficult to see that all locally flat G-structures are 1-transitive. More-
over, it can be easily proved that almost complex and almost symplectic structures
are 1-transitive if and only if they are locally flat, and that riemannian and pseudo-
riemannian structures are 1-transitive if and only if they have constant sectional
curvature.

For the sake of formulation of our main result we remark that by the complexifica-
tion of a Lie subgroup G of GL(m, R) we mean the integral subgroup G = GL(m, C)
of the complexification of the Lie algebra of G in gl(m, C). By definition, G is a com-
plex Lie subgroup of the complex Lie group GL(m, C), and dimg G = 2 dim; G =
= 2dimg G.

1.5. Theorem. Let us suppose that the Lie group G is connected and reductive,
and that the G-structure ¢ is 1-transitive. Let G be the complexification of G, and
let & =(P, p, M, G) be an extension of ¢ to the group G. Finally, let K be a maximal
compact subgroup of G, lety = (Q, 4, M, K) be a reduction of & to the subgroup K,
and let d = dim G — dim K. Then there exists an isomorphism of graded algebras
over R '

Hy(Zg &) ~ H{(Q; R) ®@r A(RY),

where HY(Q; R) denotes the singular cohomology algebra of Q with real coefficients.
If G is semisimple, then d = 0.

1.6. Remark. The conclusion of Theorem 1.5 holds also in a more general case
when the assumption that G is connected is replaced by the assumption that G is
a regular real form in the sense of Definition 2.13 of its complexification G. This will
be clear from the proof of Theorem 1.5.

1.7. Remark. In fact, we shall prove, see Remark 5.4, that under the assumptions
of Theorem 1.5 (or of the preceding remark) there is a commutative diagram of graded
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algebras over R
de Rham

Hpp(M; R) =—— H}(M; R)
a*®1
Hy(Zs &) ~ H(Q; R) @ A(RY)

where the vertical arrow on the left denotes a canonical homomorphism.

2. REAL FORMS OF COMPLEX LIE GROUPS
AND PRINCIPAL BUNDLES WITH COMPLEX LIE STRUCTURE GROUPS

2.1. If G is a (real) Lie group we denote by L(G) its Lie algebra, and if f: G - H
is a homomorphism of Lie groups we denote by.L(f): L(G) — L(H) the corresponding
homomorphism of their Lie algebras. For a complex Lie group G, we mean by L(G)
the Lie algebra of G considered as a real Lie group. In this case, however, L(G) has
a canonical complex Lie algebra structure, and if f: G — A is a homomorphism of
complex Lie groups then L( f) is a homomorphism of complex Lie algebras.

As usual, the Lie algebras of the linear groups GL(n, R) and GL(n, C) are denoted
by gl(n, R) and gl(n, C), respectively. Let us remark that GL(n, C) is a complex Lie
group, and that the complex Lie algebra gl(n, C) can be canonically identified with
gl(n, R) ®g C.

2.2. Definition. Let g be a complex Lie algebra. An involution of g is an auto-
morphism ¢ of g considered as a real Lie algebra such that ¢ = id and o(ix) =
= —io(x) for all xeg. A real form of g is a real Lie subalgebra g of the real Lie
algebra g such that g = g @ ig in the category of real vector spages.

It is easy to see that there is a one-to-one correspondence between the involutions
of g and the real forms of g. For an involution ¢ of § the corresponding real
form g° of g is given by g° = {x € g: o(x) = x}.

2.3. Definition. Let G be a connected complex Lie group. An involution of G
is an automorphism o of the real Lie group G such that L(c) is an involution of the
complex Lie algebra L(G).

2.4. Let G and o be as in Definition 2.3. It is easy to see that G = {ge G: o(g) = g}
is a closed Lie subgroup of the real Lie group G and L(G?) = L(G)*”. Moreover,
it is clear that two involutions o, t of G coincide if and only if L(G") = L(G"), which
in turn is equivalent to the assertion that the connected components of the unit
element in the groups G° and G* coincide.

2.5. Definition. Let G be a connected complex Lie group. A real form of G is
a closed real Lie subgroup G of G for which there exists an involution ¢ of G such that
G = G° and L(G) = L(G").
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A real form G of G will be called quasicompact, if G = G° and if G is the direct
product (both in algebraic and topological sense) of a maximal compact subgroup K
of G and a closed central subgroup R of G isomorphic to R®.

2.6. Remarks. (a) Let G be a real form of a connected complex Lie group G.
According to 2.4, there exists exactly one involution ¢ of G satisfying L(G) = L(G°).
We shall say that the involution o is associated with the real form G of G, and also
that the real form G is associated with the involution o, even if G is not determined
by o uniquely.

(b) Let G be a quasicompact real form of G, and let K, R and d be as in Definition
2.5. 1t is well known, see e.g. [8], that the maximal compact subgroups of a connected
Lie group are connected and mutually conjugate. Consequently, G is connected.
Since clearly d = dimg G — dimg K, it also follows that d depends only on G.

It follows easily from the definition that a connected complex Lie group G having
a quasicompact real form is necessarily reductive (in the sense that the Lie algebra
L(G) is reductive) and contains no non-discrete compact complex Lie subgroups.
The aim of the next part of this section is to prove the converse assertion. We shall
also prove that, under the conditions just mentioned, for any connected real form G
of G there is a quasicompact real form of G which is in a “nice” position with respect
to G. Our results may be considered a generalization of E. Cartan’s results on semi-
simple Lie groups, see e.g. [7, Chap. 3 and 6].

2.7. Lemma. Let G be a connected commutative complex Lie group without
non-discrete compact complex Lie subgroups, ¢ an involution of G, and G a con-
nected component of the unit element in G°. Then there is an involution t of G
such that 6 o T = 7o 0, G* is the direct product (both in algebraic and topological
sense) of a (unique) maximal compact subgroup K of G and a closed subgroup
R = G isomorphic to R®, and G n K is a (unique) maximal compact subgroup of G.

Proof. First let us remark that according to the definition of the involution, the
complex Lie algebra L(G) can be identified canonically with L(G) ®g C and that
then L(o) (x ® ¢) = x ® ¢ for x€ L(G) and ce C.

Now let K be a maximal compact subgroup of G. Since G clearly contains exactly
one maximal compact subgroup, the subalgebras L(K) and L(K) = L(K) + iL(K)
of L(G) are L(c)-invariant, and hence L(K) = (I(K) n L(G)) @g C. This implies
that for any subalgebra r = L(G) satisfying L(G) = r @& (L(K) n L(G)) we have
also L(G) = (r ® C) ® L(K). Using the o-invariance of K and the assumption
that G does not contain non-discrete compact complex subgroups we further find
that L(K) n iL(K) = 0, and consequently L(K) = L(K) @ iL(K). These direct decom-
positions of L(G) and L(K) imply that G is the direct product of the integral sub-
group R of r ® C and the integral subgroup K of 1:(K), with R being simultaneously
the direct product of the integral subgroup R of r and the integral subgroup R;
of ir, and K being the direct product of K and the integral subgroup K; of iL(K).
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It follows that we can define an automorphism t of the real Lie group G by putting
Wr.ri k.k)=r.ri'. k.k;' for reR, r;eR;, keK and k;eK,, and one
easily shows that 7 is an involution of G having all the required properties.

2.8. Remark. As is clear from the proof of Lemma 2.7, we have proved at the same
time that a connected commutative complex Lie group without non-discrete compact
complex Lie subgroups has quasicompact real forms.

2.9. Proposition. Let G be a connected reductive Lie group without any nondiscrete
compact complex Lie subgroup, ¢ an involution of G, and G the connected com-
ponent of the unit element in G°. Then there is an involution © of G such that
60T =100 and G° is the direct product (both in algebraic and topological sense)
of a maximal compact subgroup K of G and a closed central subgroup R of G
isomorphic to R%. Moreover, R = G, and G ~ K is a maximal compact subgroup
of G.If G is semisimple, then d = 0.

Proof. The proposition is true for G commutative by Lemma 2.7 and represents
a classical result of E. Cartan for G semisimple — see e.g. [7, Chaps. 3 and 6].

In the general case, let G, = G be the integral subgroup of the centre of the Lie
algebra L(G) and G; = G the integral subgroup of the derived subalgebra [ L(G), L(G)]
of L(G). By the reductivity of L(G), L(G) = L(G.) & L(G) and L(G,) is a maximal
commutative ideal in L(G) It follows that the subgroup G, < G is closed, and that
the canonical homomorphism p: G, x G, — G is a covering map with multiplicity
card (G, n G,). We remark that p is really a homomorphism because G, is a central
subgroup of G. Now G, n G, is a closed central subgroup of the semisimple complex
Lie group G,, and hence it is not only discrete but even finite. Consequently, the
multiplicity of p is finite, which easily yields that G, is closed in G, and that every
maximal compact subgroup K of G is of the form K = K, . K, where K, = G,
and K, c G, are maximal compact subgroups. Moreover, as one easily shows,
K,=KnG, and K, = K n G,.

Similarly, let G. = G be the integral subgroup of the centre of the Lie algebra
L(G) and G, = G the integral subgroup of the derived subalgebra [L(G), L(G)] of
L(G). Since the reductivity of L(G) = L(G) ®g C is equivalent to the reductivity
of L(G) the same argument as above yields that G, is a closed subgroup of G, and
that the canonical homomorphism p: G, x G, — G is a covering map with multi-
plicity card (G, n G,). The inclusion G, n G, = G, n G, further implies that this
multiplicity is finite, and hence G is closed in G and the maximal compact subgroups
of G are related to those of G, and G, in the same way as the maximal compact
subgroups of G are related to those of G, and G..

Let o, and o, denote the restrictions of the involution ¢ to the subgroups G,
and G,, respectively. By Lemma 2.7 there exists an involution 7, of G, such that
O.0T, = To o 0., G is the direct product of a maximal compact subgroup K, of G,
and of a closed subgroup R = G, isomorphic to R, and K,n G, is a maximal compact
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subgroup of G,. By the first paragraph of this proof there also exists an involution 7
of the group G, such that o, . 7, = 7, - 0, K, = G is a maximal compact subgroup
of G,, and K, n G, is a maximal compaot subgroup of G,. Let us consider the auto-
morphism 7, x 7, of the group G, x G,. The kernel of p consists of all pairs (g, g )
where g € G, n G,. We have seen, however, that G, G, is a finite central subgroup
of G, and hence it is contained in K, n K. This immediately implies that the auto-
morphism 1, X 7, restricts to identity on ker p, and hence it induces an automorphism
©: G — G satisfying p o (1, x 1,) = 7o p. Using the fact that L(p) is an isomorphism
of complex Lie algebras we easily deduce that 7 is an involution of the complex Lie
group G. It remains to show that the subgroups R and K = K, . K and the involu-
tion 7 have all the desired properties.

The properties of R are obvious, and the assertion that K « Gand K n G = G
are maximal compact subgroups is a consequence of what has been said in the
second and third paragraphs of the proof. The equality ¢ o T = 7 - ¢ is an immediate
consequence of the definition of 7, as well as the inclusion R . K = G°. We now show
that, in fact, R . K = G°. To this aim it suffices to prove that the equality g, . 9s) =
= g..ds where g.€ G, and g, e G,, implies (g,) = g,.. If, however, (g, . g,) =
=g,.ds then g;'.7(g,) = g,.7(9,) ' € G, NG, =K.nK,, and hence g *.7(g,) =
=1(9;" . ©(g.)) = ©(9.)"" - g., which further yields g2 = 1(g?). Since the kernel of
the exponential homomorphism exp: L(G,) — G, is clearly contained in L(K,),
this equality easily implies that g, = 7(g,). It remains to show that the decomposition
R.K = G is direct both in algebraic and topological sense. But this is an easy
consequence of the equality R " K = R n K, = {1}, the compactness of K and the
closedness of R in G.

2.10. Remark. Similar arguments prove that every connected reductive complex
Lie group without non-discrete compact complex Lie subgroups has quasicompact
real forms.

2.11. Corollary. Let G < GL(n, R) be a reductive integral subgroup, and let
G = GL(n, C) be the integral subgroup of the complex Lie subalgebra L(G) =
= L(G) ®g C of gl(n, C). Then the following assertions hold:

(a) G is a complex Lie group containing together with a matrix g also its complex
conjugate matrix g, the map o: G — G defined by a(g) = g is an involution of G,
and G is a connected component of the unit element 1 of G°.

(b) There exists an involution T of G such that o - © = t o ¢, and the subgroup G*
is the direct product (both in algebraic and topological sense) of a maximal
compact subgroup K of G and a closed central subgroup R of G isomorphic to R%.
Moreover, R < G, and G n K is a maximal compact subgroup of G. If G is semi-
simple, then d = 0.

Proof. The assertion (a) is obvious, and (b) follows from Proposition 2.9 since
it is an easy consequence of the Jordan canonical form of a matrix that GL(n, C)
does not contain non-discrete compact complex Lie subgroups.
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2.12. Let us keep the notation of Proposition 2.9. The generalization of this
proposition to principal bundles given below (see Proposition 2.18) uses the well
known fact (see e.g. [8]) that the homogeneous space G/G N K is diffeomorphic
to R’ for some s. If G, is a real form of G having G as the connected component
of its unit element then the space G/G n K imbeds canonically in G,/G; n K as
a closed-open subspace. It follows that G,/G, n K is diffeomorphic to R® if and
only if G/G n K = G,/G, n K, which is, however, equivalent to the assertion that K
intersects all the connected components of G,.

It is therefore natural to ask whether for G, as above there is an involution 7 of G
having all the properties listed in Proposition 2.9 and such that K intersects all the
connected components of G,. Such an involution exists, for example, if G = GL(n,C),
G, = GL(n, R) and G = GL"(n, R), as shown in Remark 2.14 below. Unfortunately,
we do not know any simple conditions ensuring the existence of such an involution 7
in general. This fact and the effort to cover also this important special case motivate
the following definition.

2.13. Definition. Let G be a connected complex Lie group, G a real form of G
associated with an involution ¢ of G, and G, = G the connected component of the
unit element of G. We shall say that G is a regular real form of the group G if tiere
exists an involution t of G such that ¢ o7 = 7.0, G* is a quasicompact real form
of G, the maximal compact subgroup K of G* intersects all the connected components
of G, and G, N K is a maximal compact subgroup of G,.

- 2.14. Remark. Let G be a connected reductive complex Lie group without non-
discrete compaoct complex Lie subgroups. Proposition 2.9 says that every con-
nected real form of G is regular.

An example of a non-connected regular real form is the subgroup GL(n, R) of
GL(n, C). In fact, let ¢ be the involution of GL(n, C) defined by o(g) = g, where g
denotes the complex conjugate matrix to g, and let © be the involution of GL(n, C)
defined by 7(g) = (9*)~ ', where g* denotes the hermitian conjugate matrix to g.
Clearly GL(n, C)" = GL(n, R), GL(n,Cy’=U(n) and oot =1.06. Moreover,
U(n) is a maximal compact subgroup of GL(n, C) having a non-empty intersection
with each of the both connected components of GL(n, R), and U(n) n GL"(n, R) =
= 0%(n) is a maximal compact subgroup of the connected component GL*(n, R)
of the unit element of GL(n, R). Consequently, GL(n, R) is a regular real form of
GL(n, C) as we have claimed.

In the remaining part of this section we generalize the above notions and results
to principal bundles having a connected complex Lie group as a structure group.

2.15. Definition. Let G be a connected complex Lie group. An involution of a prin-
cipal G-bundle & = (P, p, M, G) is a pair (Z, o) consisting of an involution ¢ of G
and a o-automorphism X of the principal G-bundle & such that X? = id, P* =
= {xeP:2(x) = x} is a closed submanifold of P and & = (P* p*, M, G°),
where p* is the restriction of p on PZ, is a principal G°-bundle. -
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2.16. Definition. Let G be a connected complex Lie group and & = (P, p, M.G)
a principal G-bundle. A real form of & is a reduction ¢ = (P, p, M, G) of & to a sub-
group G < G for which there is an involution (Z, o) of € such that G is a real form
of G associated with ¢ and P c P*.

A real form ¢ of & is said to be quasicompact or regular if G is a quasicompact
or regular form of G, respectively.

2.17. Remark. It is clear that for a given reduction & of & there exists at most one
involution (X, o) of & with the properties listed in Definition 2.16. This allows us
to call (2, o) the involution associated to the real form & of é.

2.18. Proposition. Let G be a connected complex Lie group, & = (P, p, M, G)
a regular real form of a principal G-bundle & = (P, p, M, G), and (Z, o) the in-
volution of & associated with ¢. Let G, be the connected component of the unit
element of G and let T be any involution of G such that ¢ o1 = 7 6, G".is a quasi-
compact real form of G, the maximal compact subgroup K of G* intersects all the
components of G, and Gy N K is a maximal compact subgroup of G,.

Under these assumptions there exists an involution (T, r) of the principal G-
bundle & such that ToX = X o T and & is the extension to the principal G*-bundle
of a reduction of & to the subgroup G n K.

Proof. It follows from our assumptions and from [8] (see 2.12) that G/G n K
is diffeomorphic to R® for some s. Consequently, applying Proposition 5.6 and Theo-
rem 5.7 of [9, Chapter I] we get a reduction ¢, = (P4, py, M, G n K) of & to the sub-
group G n K. Supposing P, = P and p, = p/P,, which is clearly admissible, one
casily verifies that the required t-automorphism T of & may be defined by the formula
T(x.g) = x.1(g), where xe P, and g € G.

2.19. Remark. Using Remark 2.10, we can show in a similar way that for any
principal G-bundle, where G is a connected reductive complex Lie group, there exist
quasicompact real forms.

3. TRANSGRESSION THEOREM AND HOMOLOGY OF REAL FORMS
OF COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS OVER C

Let k be a commutative field of characteristic 0.

3.1. Starting from this section, by a G-k-algebra (DG-k-algebra) A we mean
a graded algebra (differential graded algebra) over k the graduation {A4"} of which
is non-negative, i.e. 4" = 0 for all n < 0.

By a filtration of a G-k-algebra (DG-k-algebra) A we mean a decreasing filtration
FA = {F?A} of the graded (differential graded) algebra A satisfying F°A = A4,
F"*14" = 0 for all n. v
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By an FG-k-algebra (FDG-k-algebra) we mecan a G-k-algebra (DG-k-algebra)
equipped with a fixed filtration.

All algebras under consideration are supposed to be associative, and commutativity
of a graded algebra means commutativity in the graded sense.

3.2. A spectral sequence {E,, d,, t,},5,, over k is called multiplicative if for any
rZ ro,

(a) E, is a bigraded k-algebra,

(b) the differential d, has bidegree (r, I — r) and is a derivation in the graded sense
with respect to the total degree in E,,

(¢) 4: E.+1 — H(E,, d,) is an isomorphism of bigraded k-algebras, and

(d) EP? = 0 if either p <0 or g < 0.

Let us remark that by virtue of (d) every multiplicative spectral sequence con-
verges. '

Homomorphisms of multiplicative spectral sequences are defined in the obvious
way. :

3.3. A diagram

{Er’ dr; 6,,},,;0 _—(L’;L)—> Hrel. FH

will mean that {E,, d,, ¢,},5,, is a multiplicative spectral sequence over k (with the
limit E,,), H is a G-k-algebra equipped with a filtration FH, and ¢, is an isomorphism
of the bigraded k-algebra E_ with the bigraded k-algebra ¥rFH = @® %r"'FH
associated with the filtration FH; here ¥r”?FH = FPHP*4[Frrifgr+a  p4

Now let us suppose we are given a diagram

(3.1) B de s, %> H rel. FH

£ h

r> Y ’r

- (EL d\ ¢} are %}W H' rel. FH'

with the rows having the meaning described above, where ¢ is a homomorphism of
multiplicative spectral sequences, and h is a homomorphism of G-k-algebras com-
patible with the filtrations FH and FH’. We shall say that this diagram commutes
if (9rh)ot, =1, o0&, where ¢,: E, — E., and 9rh; 9rFH — $rFH' are homo-
morphisms induced by e, h, respectively. We shall also describe such a situation
by saying that the homomorphisms ¢ and h are compatible with respect to ¢
and ¢;.

We recall the well-known fact that commutativity of the diagram (3.1) implies
that h is an isomorphism of G-k-algebras if ¢,: E, ~ E; for some r.

3.4. It is well known that with each FDG-k-algebra A a diagram

{E,. d,, 4}, 21 === H(A) rel. FH(A) -

(hy
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is associated, where H(A) is the homology G-k-algebra of the DG-k-algebra A.
This can be shown in several equivalent ways. Using the definition of H. Cartan and
S. Eilenberg [4, Chap. XV] we have
EP9 = Zp“’/Bp"’

where

Zr4 = Im {HPH(FPA[FP*7A) — HPH(FPAJFP 1 4))

B4 = Im {HP*9~Y(FP~"*1A|FPA) — HPI(FPA[FP* ' A)}
and

F? H(A) = Im {H(F"A) - H(A)} .

If the FDG-k-algebra A is commutative then each algebra E, is commutative in
the graded sense with respect to the total degree. If 4 has the unit element then
each E, has the unit element. Analogous assertions hold of course also for the algebras
H(A) and 9rFH(A).

We remark that the DG-k-subalgebra E7*° = @ E?° of E, can be canonically

14
identified with the DG-k-subalgebra B = @ B? of A, where BP = FPA? n

p
Nd Y(FPT14P*Y). Clearly, ker d7° is identified with Z?(B) = B” nkerd via
this identification.

3.5. The transgression homomorphism (briefly transgression) in the first quadrant
spectral sequence {E,, d,, ¢,},» is the homomorphism
® dPy: ®EN, > ®EI!
q q q
of total degree 1. Let v,: E;’;{’l — E9* be the canonical monomorphisms and
Mg+t ker d4*"% — EIT] the canonical epimorphisms. An element x € E9*? is called
transgressive if it belongs to Im v,. By a transgression of a transgressive element
x € E3*? we shall mean any element y € ker d4* "% such that m ., ,(y) = dJ:%(vy '(x)),
or its image in E4*'°.
If the spectral sequence under consideration is associated with a FDG-k-algebra 4,
then for any integer g we have the following commutative diagram

FUAY A d™Y(FTH AT ) < A4 A d-l(Fq+1Aq+1)_"L> Efl)iql _ e, g%«

I d |

)
a . ZY(B) 498,
|
0—> Bt} —— s ker d4*"° — E31}° 0
!
0

in which the left column and the lower row are exact, and =, is a canonical epi-
morphism. This diagram implies that y e ker d4* "% is a transgression of x € E9?
if and only if there is an element z € A7 N d~'(F*'4%" ") such that y = d(z) and
vgom(z) = x.
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The following proposition formalizes Borel’s transgression theorem [2, Chap. VI,

§24].

3.6. Proposition. Let A be a commutative FDG-k-algebra with the unit element,
and let us suppose that the spectral sequence {E,, d,, t},>, associated with A
satisfies the following conditions:

(a) The G-k-algebra E3™* = ®EJ" is a free G-k-algebra L(P) = A(P,) ®; S(P,)
q
over P = P, ® P, where Py = E3* (P, = E3"*) is a graded k-vector subspace
spanned by transgressive elements of odd (euen) degree.

(b) The canonical homomorphism E2° ®, EYY — E%Y is an isomorphism for
all p,q.

Let B ®; L(P) be the tensor product (in the graded sense) of the G-k-algebra
B = ET*° (sec 3.5) and the G-k-algebra L(P). Let us choose a homogeneous basis
ai}ier of the graded k-vector space P and set q, = deg a;. For each i€l let us
further choose a transfression b;e BY*' of a, and a representative c;e A% N
A d~Y(FITTAYT Y of a; (see 3.5) such that de; = b,. Then the following assertions
hold:

() The k-linear map d: B ®, P - B ®, L(P) defined by

db®a)=db®a, +(—1)"b.b,®@1 (beB, icl)
extends in a unique way to the differential d of the G-k-algebra B ®, L(P) so that
B ®, L(P) together with this d is a DG-k-algebra C.
The differential d is explicitly given by the formula

(3:2) db®a, A...ANa;, ®a; ...q;) =
=db®a; A...Na, Da; ...a; +

ir

+ (=) Y (=) bbby @a, A NGy A A a, ®
k=1

s

s
®a;, ...a; + (—l)q.k‘;lb. b; ®@a;, A...Aa, Qa; ..d4; .. qa

where be B and iy, ..., i,, jy, ..., js are any elements of I such that a;, ..., a; € P,
and a;,...,a; €P,. )

(B) The k-linear map ¢: B ®, P — A defined by ¢(b ® a;) = be, (be B, iel)
extends in a unique way to a homomorphism ¢: C — A of DG-k-algebras and the
induced homomorphism ¢,: H(C) - H(A) of homology G-k-algebras is an iso-
morphism.

The homomorphism ¢ is explicitly given by the formula
pb®a;, A...Aa, ®aj ...a;)=bc; ...cic; ...,

where b and i, ..., i, jy, ..., j; have the same meaning as in (3.2).
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Proof. The assertion (o) is trivial as well as the part of () concerning the existence
and the explicit expression of ¢: C — A. Thus it suffices to prove that ¢, is an
isomorphism.

Let us define a filtration FC of the DG-k-algebra C by the formula F’C = ® B" ®,
r2p

®; L(P). It is easy to see that ¢ is compatible with the filtrations FC and F A, so that ¢
induces a homomorphism & = {¢,},», of the spectral sequence {E,, d,, %}, as-
sociated with the filtration FC of the DG-k-algebra C into the spectral sequence
{E,,d,, t,},5 . It is also clear that ¢ is compatible with ¢,. An easy calculation shows
that we can identify E, with E3° ®, L(P) = E3*° ®, E3’*. Under this identification
the homomorphism ¢,: E, — E, coincides with the canonical isomorphism E3° ®,
® ES"* - E,. Therefore ¢,, and consequently ¢, is an isomorphism.

3.7. Corollary. Let A and A’ be commutative FDG-k-algebras with the unit ele-
ment, and let us suppose that the spectral sequences {E,, d,, t,},> and {E], d,, 1},
associated with A and A', respectively, satisfy the conditions (a) and (b) of Proposi-
tion 3.6 with P and P', respectively. Further, let us suppose that there exists a homo-
morphism ¢: E}'° — E™° of DG-k-algebras inducing an isomorphism @4: E3"° ~
~ Ey*° of G-k-algebras, and an isomorphism : P — P’ of graded k-vector
spaces, which commute with the transgression in the following sense: for each x € P
there exists its transgression y € E}*° such that ¢(y) is a transgression of y(x).
Then the G-k-algebras H(A) and H(A') are isomorphic.

Proof. Let us keep the notation from the proof of Proposition 3.6. We may sup-
pose that the b;’s have been chosen in such a way that b} = ¢(b;) is a transgression
of aj = y(a;) for all i e I. Using the elements a; and b; (i €I), let us define a DG-k-
algebra C’ analogously as we have defined C. Clearly ¢ and ¢ induce a homo-
morphism ¢ ® L(}): C - C’ of DG-k-algebras. This homomorphism is compatible
with the filtrations FC and FC’, and one easily verifies that it induces an isomorphism
of the spectral sequences associated with FC and FC', respectively. Thus H(C) ~
~ H(C’), which by virtue of Proposition 3.6 completes the proof.

3.8. Remark. As can be easily seen from the proofs of 3.6 and 3.7, we have in fact
proved somewhat more, namely, that under the assumptions of Corollary 3.7 there
exists an isomorphism H(A4) ~ H(A’) of G-k-algebras compatible with the filtrations
FH(A) and FH(A'), and such that the diagram

H(B) ~ E}* —“— E;*° ~ H(B)

| |

H(4) : H(4)

where the vertical homomorphisms are induced by the inclusions, commutes.
An analogous remark holds for the following special case of Corollary 3.7.
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3.9. Corollary. Let A and A’ be commutative F DG-k-algebras with unit elements,
and let us suppose that the multiplicative spectral sequences {E,, d,, t},», and
{E,, d,, v,},>, associated with A and A', respectively, satisfy the conditions (a)
and (b) of Propositions 3.6 with P and P iespectively Further, let us suppose
that there is a homomorphism¢: {E,, d,, v,},>, = {E,, d;, t},5, of spectral sequences
over k, not necessarily compatible with thelr multiplicative structures, which maps P
isomorphicaly onto P', and the restriction £}°°: E¥'° — E{*° of which is an isomor-
phism of DG-k-algebras. Then the G-k-algebras H(A) and H(A') are isomorphic.
(See also the preceding remark.)

The remaining part of this section is devoted to FDG-C-algebras and their real
forms. Let &/ denote the category of all G-C-algebras or FG-C-algebras or DG-C-
algebras or FDG-C-algebras or bigradéd C-algebras, and let o/ denote the corres-
ponding category of R-algebras.

3.10. Definition. Let 4 be an object of 7. An involution of A is an automorphism
of A considered as an object of </ such that ¢* = id and o(ia) = —io(a) for all
ae A. A real form of 4 is a subobject 4 of 4 considered as an object of ./ such that
A = A @ iA in the corresponding category of R-vector spaces.

Clearly there is a one-to-one correspondence between involutions of 4 and real
forms of A. For an involution ¢ of A the corresponding real form of 4 is 4° =
={xed:o(x) =x}.

3.11. Let o be an involution of 4 € . Clearly we have a canonical isomorphism
A° ®x C ~ A in o compatible with the canonical involution of 4° ® x C and the
involution o of A.

If 4 is a DG-C-algebra or an FDG-C-algebra, this isomorphism induces an iso-
morphism H(A%) ®x C ~ H(4) of G-C-algebras or FG-C-algebras, respectively.
On the other hand, ¢ clearly induces an involution of H(4), which we also denote
by o, and there is a canonical isomorphism H(A)” ® g C &~ H(A). It is easy to see
that both these isomorphisms can be identified by means of the canonical iso-
morphism H(A°) ~ H(A)’ induced by the inclusion 4° = 4.

Similarly, if 4 is an FG-C-algebra, there is an induced involution ¢ of 9rF A, the
canonical isomorphism 4° ® x C ~ A4 induces a canonical isomorphism (4rFA°) @ g
®g C ~ 9rFA of bigraded C-algebras, and 9rFA° ~ (4rFA)’ canonically.

In what follows we shall regard all the canonical isomorphisms of this section as
identifications.

3.12. Lemma. Let A be a G-C-algebra (FG-C-olgebra, DG-C-algebra, FDG-C-
algebra, bigraded C-algebra), and let o and t be two commuting involutions in A.
Let us define C-linear maps ¢, y: A — A by

(3.3) : (p=1(id+aor)+£(id-aor),
2 2
1 i
==-id+ oT'———id—UoT.
avag-@a-oun
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Then: (a) ¢ and  are automorphisms of the G-C-vector space (FG-C-vector space,
DG-C-vector space, FDG-C-vector space, bigraded C-vector space) Aand ¢ o)y =
= l// o = id.

(b) 9(A7) = A", (A7) = A, Y(A) = A, (A" = 4.

Proof is trivial. We only remark that the multiplicative structure of 4 plays no
role here.

3.13. Lemma. Let A be a G-C-algebra, and let ¢ and t be two commuting involu-
tions of A. If A° is a free commutative G-R-algebra Lg(P) with unit over a 1-
invariant G-R-submodule P < A°, then A® is a free commutative G-R-algebra
with unit over the o-invariant G-R-submodule ¢(P) = y(P) < A".

Proof. Clearly 4 = A° @y Cis a free commutative G-C-algebra over P. However,
since P =P @ P™%, where P"=Pn A" and P° = P nid’, and ¢(a) = a for
ae A°n A" and ¢(b) = ib for be A° niA", it is also a free commutative G-C-
algebra L(¢(P)) with unit over ¢(P) = ¢(P*) @ ¢(P™%) = P* @ iP™". Using the
obvious fact that the canonical isomorphism L(¢(P)) ~ A induced by the inclusion
@(P) = A" = A is compatible with the canonical involution of L¢(¢(P)) =
= Lg(¢(P)) ®g C and the involution t of A4, we immediately conclude that A
is a free commutative G-R-algebra with unit over ¢(P).

3.14. Remark. Let p,: Lg(P) > A° and p,: Lg(¢(P)) > A extend the inclusions
P < A4° and ¢(P) = A", respectively, and let us define an R-linear map @: Lg(P) —
— Lg(@(P)) by putting

P(ay ... aby ... b)) = (1) gp(a)) ... p(a) . o(by) ... o(b) =
= (=" a, ... a.(iby)...(ib)

for ay,...,a,€ P and by, ..., b,e P77, where [1/2] denotes the integer part of /2.
It is easy to verify that @ is a well defined isomorphism of G-R-modules and that
the diagram

Lg(P) —=> A4°
x| P ~ l(p
Le(p(P)) —— A

commutes. This gives an alternative proof of the preceding lemma.

3.15. Lemma. Let A be a complex bigraded algebra, and let ¢ be an involution
of A. Then the canonical homomorphism (A°)"° ®g(4°)°* — (4°)"* is an iso-
morphism if and only if the canonical homomorphism A?° @ A4 — AP is
an isomorphism.

3.16. Definition. An involution of a multiplicative spectral sequence E =
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= {E,, d,, ,},5, over the field C is an automorphism ¢ of the multiplicative spectral
sequence E over R such that ¢? = id and ¢(ia) = —id(a).

Clearly, for every r = k we then have a differential d°: EZ — E? induced by the
differential d,, an isomorphism ¢: E7, ; ~ H(EZ, d7) of bigraded R-algebras induced
by «, and E° = {E7,d’,«},5, is a multiplicative spectral sequence over R.

We remark that ¢ induces an involution of E (also denoted by o), and that E,
can be canonically identified with (E,)°.

The following lemma is an immediate consequence of Lemma 3.12.

3.17. Lemma. Let ¢ and t© be two commuting involutions of a multiplicative
spectral sequence E = {E,, d,, 1,5, over C, and let us define C-linear maps
¢, Y: E - E by the formulae (3.3). Then:

(a) @ and Y are automorphisms of the additive spectral sequence E over C
(ie the multiplicative structure of E is not taken into account), and Qo =
=Y. =id.

(b) @(E°) = EF, @(E%) = E°, y(E°) = E7, and y(E7) = E°.

(Again the multiplicative structure of E plays no role here.)

3.18. Let 4 be an FDG-C-algebra and let ¢ be an involution of 4. Then ¢ induces
an involution, which we denote again by o, of the multiplicative spectral sequence
E ={E,d,',5, over Cassociated with 4. It is easy to see that we can canonically
identify the multiplicative speotral sequence E, = {E,,, d,,, t,,},>; over R associated
with the FDG-R-algebra A° and the multiplicative spectral sequence E° =
= {E7,d?, o},», over R.

If ¢ and 7 are two commuting involutions of A, the induced involutions ¢ and ©
of E also commute, and the automorphisms ¢ and ¥ of E defined in Lemma 3.17
are induced, respectively, by the automorphisms ¢ and ¥ of A4 defined in Lemma 3.12.

The following proposition is the main result of this section.

3.19. Proposition. Let A be a commutative FDG-C-algebra with unit, and let ¢
and t© be two commuting involutions of A. Let E = {E,, d,, ,},5, be the multiplica-
tive spectral sequence over C associated with A, and let the induced involutions o
and t of E coincide on E¥° = @ E?°. Finally, let ¢ be the automorphism of E
defined in Lemma 3.17. »

Under these assumptions, if the multiplicative spectral sequence E = E° = E,
over R associated with the FDG-R-algebra A* satisfies the conditions of Proposition
3.6 with P = P, invariant under o, then the multiplicative spectral sequence
E = E° = E_ over R associated with the FDG-R-algebra A° satisfies these conditions
with P = P,, where P, = @(P,) is invariant under t, and the G-R-algebras H(/f’)
and H(A°) are isomorphic.

Proof. Applying Lemma 3.13 to the G-C-algebra E* = (-B E99 we immediately”
see that EJ°) is a free G-R-algebra over the G-R-vector subspace P, = ¢(P,). By virtue
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of Lemma 3.17, ¢: E, - E, is an isomorphism of additive spectral sequences (i.c.,
the multiplicative structures of E, and E, are not considered here), which implies
that P, is spanned by transgressive elements if and only if P, = ¢(P,) is. It follows
that E, satisfies the condition (a) of Proposition 3.6. The condition (b) for E, follows
from Lemma 3.15 when applied twice to the complex bigraded algebra E,. Since ¢
is the identity on E¥-°, the rest of the proposition follows from Corolary 3.9.

3.20. Remark. Applying in the preczding proof Remark 3.8 instead of Corollary
3.9, we get that under that assumptions of Proposition 3.19 there exists a commutative
diagram of G-R-algebras

‘———H(B)——Il
H(A) —= H(A")

where B = EX) = E¥ is a DG-R-subalgebra of both DG-R-algebras 4° and A"
(see 3.4)

4. INVARIANT DE RHAM COHOMOLOGY OF REAL FORMS
OF PRINCIPAL BUNDLES WITH COMPLEX LIE STRUCTURE GROUPS

Let A be a finite dimensional commutative associative algebra over R with unit,
and let A be an algebra of the same type over C.

4.1. Given a manifold M, we denote by A(M; A) the de Rham DG-R-algebra
of differential forms on M with values in A and by Hpg(M; A) its cohomology
G-R-algebra. For a map f/: M — M’, the both induced homomorphisms A(M'; A) —
— A(M; A) and Hpp(M'; A) - Hpp(M; A) are denoted by f*.

4.2. Now we shall recall some basic facts about the invariant de Rham cohomology.
More details can be found e.g. in [6].

Let G be a Lie group and M a right G-manifold, i.e. a manifold on which G operates
from the right. For g € G, let R,: M — M be the right translation by g defined by
Ry(x) = x.g for xe M. A form we A(M; A) is called invariant if R;‘(w) = o for
all g € G. Clearly, the set of all invariant forms is a DG-R-subalgebra AI(M; A)
of A(M; A). The cohomology G-R-algebra of A,(M; A) is denoted by H,pe(M; A)
and called the invariant de Rham cohomology algebra of M with coefficients in A.

It is easy to see that A/(—; A) and Hpe(—; A) may be considered as contravariant
functors on the appropriate category. If y: G — G’ is a homomorphism of Lie groups
and f: M —» M’ is a y-equivariant map of a G-manifold M into a G'-manifold M’,
then f induces homomorphisms A, (M'; A) - A(M;A) and Hppg(M'; A) -
— Hypr(M; A). Both these homomorphisms will be denoted again by f*. The same
argument as in the case of the ordinary de Rham cochomology shows that y-equi-
variantly homotopic maps fo, f;: M — M’ induce the same homomorphism of in-
variant de Rham cohomology, i.e. fg = f1: Hipp(M'; A) > H pr(M; A).
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We shall need the following result of C. Chevalley and S. Eilenberg [5] concerning
the canonical homomorphism

(4.1) Hipa(M; A) = Hpo(M; A)
(see also [6, vol. 11, p. 163]).

4.3. Proposition. Let M be a G-manifold. If the Lie group G is compact and con-
nected, then the canonical homomorphism (4. 1) is an isomorphism.

4.4. A Lie group G will always be considered as a right G-manifold. Each left
translation L,: G — G of G by an element g € G is an equivariant diffeomorphism
of the right G-manifold G, and therefore it induces an automorphism E; of the
G-R-algebra H,DR(G; A). If g belongs to the connected component G, of the unit
element e € G, then L, is equivariantly homotopic to L, = id, and therefore L} is
the identity automorphism of H;pe(G; A). It follows that the group 7,(G) = G/G,
of connected components of the group G operates (in a canonical way) from the
right on the G-R-algebra H,,x(G; A).

4.5. Lemma. Let M be a manifold, and let a Lie group G operate on M x G
by the canonical right action. Then the canonical homomorphisms

A(M; R) ®g A{G; 1) — A(M x G; A),
Hpp(M; R) @ Hipr(Gs A) = Hipr(M x G; A)
are isomorphisms.

In particular, if M is connected and Hyp(M; R) =0 for p > 0, then the canonical
projection M x G — G induces an isomorphism Hppp(G: A) & Hype(M x G; A).

Proof is easy.

4.6. Lemma. Let ¢ = (P, p, M, G) be a principal G-bundle and let # 1pr(p; A)
be the sheaf on M generated by the presheaf U Hypr(p~'(U); A). If the group
7o(G) operates trivially on H,pg(G; A), the sheaf # pg(p; A) is canonically iso-
morphic to the constant sheaf on M with the stalk Hpp(G; A).

Proof follows immediately from the special part of the preceding lemma.

4.7. Now let M be a complex manifold. In this case the tangent bundle of M
(considered as a real manifo]d) has a canonical structure of a holomorphic complex
vector bundle so that it makes sense to speak about holomorphic vector fields on
open subsets of M and about multiplication of vectors and vector fields by complex
numbers. More explicitly, a vector field X on an open subset of M will be called
holomorphic if it is a holomorphic section of the tangent bundle of M or, equivalently,
if £yJ = 0, where &£y denotes the Lie derivative with respect to X, and J is the
associated integrable almost complex structure. We remark that this conception is
a little bit nonstandard because our holomorphic fields are real vector fields. Let us
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notice that a vector field X on an open subset U = M is holomorphic if and only
if [X,iY] = i[ X, Y] for all vector fields Y on U.

A differential form w on M with values in A will be called holomorphic if it is
C-linear, and for any holomorphic vector fields X ;, ..., X, on an open subset U = M,
the map w(XI, cn X)) U - A is holomorphic. Using the property of holomorphic
vector fields mentioned above one can easily verify that holomorphic forms constitute
a DG-C-subalgebra Ay(M; A) of the DG-C-algebra A(M; A).

4.8. Now let us consider a principal G-bundle & = (P, p, M, G) with G a complex
Lie group. A differential form w on P with values in A will be called vertically
holomorphic if the restriction of w to any fibre of & is a holomorphic form (this makes
sense since each fibre of € has a canonical structure of complex manifold). It is clear
from the properties of invariant and holomorphic forms that all invariant vertically
holomorphic differential forms on P with values in A constitute a DG-C-subalgebra
of the DG-C-algebra A;(P; A). We shall denote this DG-C-algebra by A, »(P; A).
It will play an important role in all the rest of this section.

4.9. Lemma. Let ¢ = (P, p, M, G) be a principal G-bundle with G a complex
Lie group, let (Z, o) be an involution of E andlet A = A ®g C. Then the formula

(4.2) s(w) = 2¥(w), oeAyyP; A),

where the bar denotes the canonical involution in A, defines an involution s of the
DG-C-algebra Ayyu(P; A).

Proof. We have to prove that s(w) is invariant, that its restriction s(w)/p~'(x)
to a fibre p~'(x) is holomorphic for any x € M, and that d(s(w)) = s(d(w)), where d
is the exterior differential. The first property follows easily from the relation X - R, =
= R, o Z holding for all g € G (see Definition 2.15). Since s(w) is already known to
be invariant, it has the second property if and only if s(w)/p~'(x) is C-multilinear
for any x € M. But this is obvious in the special case M = {x', P = G and X = o,
and the general case reduces immediately to this special one. Finally, the third pro-
perty is obvious.

4.10 Lemma. Let & = (13, P, M, G) be a princ'ipal G-bundle with G a co mplex
Lie group, let £ = (P, p, M, G) be a real form of & associated with an involution
(2,0)0f & let A = A @g C, and let us identify A with the subalgebra A ® 1 = A.
If s is the involution of the DG-C-algebra A, y(P; A) defined by the formula (4.2),
then for a form w € Apy(P; A) we have s(w) = w if and only if the restriction w|P
of  to P is a form with values in A, and the correspondence » — w|P defines an
isomorphism Apy(P; A =~ A(P; A) of DG-R-algebras.

Proof. Let w € A%, 4(P; A). If s(w) = w, then for any point y € P and any vectors
Vi, ..., Vye T,P = T,P we have

(Vi oo Vi) = 3(0) Vis -5 Vi) = (d2(Vy), ..., d2(V)) = o(Vy, ..., Vi)

97



since ¥ = id on P, and therefore d¥ = id on TP. This shows that a)/P takes values
in A.

Conversely, let us suppose that the restriction w/P takes values in A. Let § € P,
and let ,,...,V,e TJ’ be any vectors. We can choose a point ye P, anelement ge G, and
vectors Vi, ..., Vi€ T,P such that = Ry(y) and dR,(V;) = V; for j = 1,2,..., k.
It is easy to see that Tyﬁ = T,P ® T;P, where T;P denotes the tangent space at y
to the fibre of ¢ through the point y. By virtue of this decomposition we can write
V; =V; +iV] with Ve T,P and V/ e T;P for j = 1, ..., k. Now we have

s(@) (Vy, ..., Vi) = s(w) (dR,(V1), ..., AR, (W) = s(@) (Vy, ..., Vi) =

= W(dZ(Vy), . dZ(V) = @(Vy — V], Vi — iV} =
- = o(V] + iV, .., Vi + V) = o(Vi, ..., Vi) =

= w(dR,(V}), ..., dR(V,)) = oV, e 7)),
which proves that s(w) = w. We remark that the fifth equality above holds because
o/[P takes values in A, and that we have used the fact that the tangent space Ty”'f’
has the canonical structure of a complex vector space, and dX: TP — T/P satisfies
dx(iV) = —id2(V) for all Pe TyP.

If s(w) = w, the above considerations show that w(V,, ..., Vi) = o(Vy, ..., Vy).

This implies that = 0if w/P = 0, and that any form ' € 4,(P; A) can be uniquely

extended to a form w e A,VH(P; /T)s. This proves the last assertion of the lemma and
completes the proof.

Now we are ready to prove the main results of this section.

4.11. Proposition. Let ¢ = (P, p, M, G) be a principal G-bundle with G a reductive
connected complex Lie group without non-discrete compact complex Lie subgroups
(or equivalently, without complex tori), and let &; = (P, p, M,G;), i =12,
be any two regular forms of &. Then the G-R-algebras Hp(Py; A) and Hpp(Py; A)
are isomorphic.

Proof. Since clearly A,(P;; A) ~ A(P; R) @g A and therefore Hppg(Pi; A4) =
= H,DR(Pi; R) @g A, if suffices to consider the case A = R. Moreover, obviously
we may suppose that M is connected.

(a) Let i = 1 or 2 befixed. Let &#/(M; R) be the de Rham sheaf on M, ie.
#(M; R)(U) = A(U; R) for U = M, U open, and let us define DG-R-algebra sheaves
o/ (p,; R) and o/; on M by the formulae

o (pi; R)(U) = Afp; '(U); R) for U <M, U open,
oA = J?f(MQ R) ®r JJI(P;‘Q R)~
There is a canonical monomorphism e

(4.3) ‘ﬂl(pi; R) - o,
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of DG-R-algebra sheaves, and therefore also a canonical monomorphism
(4.4) A(P;; R) — A;

of DG-R-algebras, where we have put A; = o/ (M). We shall prove that (4.4) induces
an isomorphism H,pe(P;; R) & H(A;) of cohomology G-R-algebras.

Each of the sheaves in (4.3) has a canonical structure of a module over the sheaf
/°(M; R). Since the sheaf «7°(M; R) is fine, the same is true for both sheaves in
(4.3). Further, the Kiinneth theorem yieids that (4.3) induces an isomorphism
H (A (pi; R)) = #(;) of homology sheaves. Consequently, we may apply [3, chap.
IV, Theorem 2.2], which immediately implies that (4.4) induces an isomorphism of
cohomology G-R-algebras.

(b) Let (£, a;) be the involution of & associated with the real form &, and let us

suppose that the involutions (X, ¢,) and (£, 0,) commute. Let us now consider
a DG-R-algebra sheaf o 5(p; C) on M defined by

A pyu(p; C) (U) = Apy((p)~* (U); €) for U <M, U open,
and a FDG-C-algebra sheaf o7 on M defined by the formulae
A = A(M; R) @p A 1yu(p; C)
Fof = @ o£'(M;R) @ A 1yu(: C).
rzp

By Lemma 4.9, the involution (2?,», 0;) induces in a canonical way an involution of the
DG-C-algebra sheaf <7y, y(p; C), and therefore also an involution of the FDG-C-
algebra sheaf /. We denote both these involutions by s;. Furthermore the involu-
tion s; of . induces an involution of the FDG-C-algebra 4 = &/(M), which will be
denoted by the same symbol s;. It is clear that in each case we have s; o 5, = 55 0 5;.
Let us further consider &; as an F DG-R-algebra sheaf with a filtration given by the
formula

Frod; = @ A"(M; R) ®g (pi; R),

rzp

and A; as a FDG-R-algebra with the filtration
FPA; = (F*s/,) (M).

Lemma 4.10 implies that the FDG-R-algebra sheaf /* can be identified with the
FDG-R-algebra sheaf f;, and therefore the FDG-R-algebra A*' can be identified
with the FDG-R-algebra A;. It means that 4, and A, are two commuting real forms
of the FDG-C-algebra A. Clearly, A is commutative (in graded sense) and has a unit.
Consequently, if we knew that 4 and ¢ = s,, T = s, satisfy the conditions of Proposi-
tion 3.19, we could conclude by applying this proposition that the cohomology
G-R-algebras H(A,) and H(A,) are isomorphic.

(¢) Let & = (P, p. M, G) be a quasicompact real form of , and for ¢ let us define
a DG-R-algebra sheaf o//(p; R), a FDG-R-algebra sheaf o7, and a FDG-R-algebra A
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in the same way as we have defined for &, the sheaves <7 ,(p;; R), &;and thealgebra 4;.
We shall show that the multiplicative spectral sequence E = {E,, d,, ¢,},5,; over R
associated with the FDG-R-algebra A satisfies the conditions of Proposition 3.6
with P = P, being invariant under any automorphism of E induced by a y-auto-
morphism of &, where 7y is an automorphism of G.

An easy calculation using the exactness of the functor & — (M) on the sub-
category of fine sheaves of abelian groups and Lemma 4.6 shows that there is an
isomorphism
(4.5) E, & Hpr(M; R) ® g Hipr(G; R)
of bigraded R-algebras. Consequently,

(4.6) ’ EY* ~ Hpp(G: R)
as G-R-algebras.

It follows immediately from (4.5) that the sbectral sequence E satisfies the condi-
tion (b) of Proposition 3.6. Let y be an automorphism of G, and g a y-automorphism
of &. It is easy to see that via (4.6) the automorphism g* of E3-* induced by g becomes
the automorphism y* of H;pe(G; R). Consequently, it remains to show that
H,pr(G; R) is the exterior algebra over a vector subspace P invariant under all y*, y
being an automorphism of G.

Let L(G) be the Lie algebra of G, and let G, and G, be the integral subgroups of G
corresponding to the derived subalgebra [L(G), L(G)] and the centre of L(G),
respectively. Since G. is a central subgroup of G, the multiplication in G defines
a canonical homomorphism G, x G. — G. By assumption, G is a direct product
(both in algebraic and topological sense) of a maximal compact subgroup and a sub-
group isomorphic to R? for some d. Using this direct product decomposition, and
arguing similarly as in the proof of Proposition 2.9, it is easy to show that G, is
closed, that G; x G, — G is a covering map with finite multiplicity, and that Gy is
compact. It follows that there are canonical isomorphisms

A{G; R) ~ A(G, x G.;R) ~ A(G; R) @ A(G,; R)

of DG-R-algebras, which together with Kiinneth theorem and Proposition 4.3 yields
a canonical isomorphism

(4.7) Hipe(G; R) ~ Hpr(Gy; R) ® g Hipr(Ge; R)
of G-R-algebras. By [6, vol. II, Chap. IV, Theorem IV], we have
HDR(GS; R) ~ A(Ps) s

where P is the subspace of primitive elements in H ,z(G; R). Further, since G, is
commutative, Hyr(G,; R) ~ A/(G,; R) ~ A(4}(G,; R)), and therefore -

Hpi(G; R) =~ A(P,)
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with P, = Hype(G,; R). All these facts together yield that Hypr(G; R) is the exterior
algebra over the subspace P corresponding via the isomorphism (4.7) to P, ® 1 +
+ 1 ® P.. It remains to show that y*(P) = P for any automorphism y of G, but this
follows immediately from the corresponding property of P; and P, since clearly
7(G,) = G and y(G,) = G..

(d) Let us now return to the situation considered in part (b) and suppose that
one of the real forms &, and &,, say &;, is quasicompact. We shall prove that under
this additional assumption the G-R-algebras H(A,) and H(A,) are isomorphic.

Let j denote the element of the set {1, 2} different from i. Clearly, o; restricts to
the automorphism ¢,/G; of G;, and X; restricts to the (¢;/G;)-automorphism X,/P;
of &,. Let E, be the spectral sequence associated with the FDG-R-algebra A4;, and let E
be the spectral sequence associated with the FDG-C-algebra A. The isomorphism
A; ~ A% of FDG-R-algebras induces in isomorphism E; ~ E‘s{ = E** (see 3.18 for
the notation) of multiplicative spectral sequences over R, and it is easy to see that
this isomorphism takes the automorphism (Z,;/P,)* of E; induced by X,/P; into the
restriction of the involution s; of E to E,,. This, together with (c), implies that the
spectral sequence E = E|, satisfies the conditions of Proposition 3.6 with P invariant
under s;. Since clearly s; and s, coincide on ET° ~ Hpp(M; R) @ C, where they
are both induced by the conjugation in C, we see that the FDG-C-algebra 4 and its
involutions ¢ = s, and 7 = s, satisfy the conditions of Proposition 3.19, and there-
fore by (b) the G-R-algebras H(A,) and H(A,) are isomorphic.

(e) It follows immediately from (a) and (d) that the assertion of the proposition
holds if the real forms &; and &, commute and one of them is quasicompact.

(f) Now we shall prove that the assertion of the proposition is true if both the real
forms ¢, and &, are quasicompact.

Since the real form &; is quasicompact, there is a direct product decomposition
G, = K; x R,, where K; is a maximal compact subgroup of G and R; is a closed
central subgroup of G; isomorphic to R? with d depending, by Remark 2.6 (b), on G
only. The homogeneous space G;/K; is diffeomorphic to R?, and therefore there exists
a reduction #; = (Q;, 4;; M, K;) of &; to the subgroup K;. The right G,-manifold P,
is clearly canonically equivariantly diffeomorphic to the right G;-manifold Q; x R;,
and therefore we have canonical isomorphisms

(4.8) Al(Pi; R) 5 AI(Qi X R R) ~ AI(Qi§ R) ®r AI(R"; R) ~
~ 4,(Q:; R) ®g A{R%; R)

of DG-R-algebras. Combining (4.8) with the Kiinneth theorem and Proposition 4.3,
we get a canonical isomorphism

Hipr(Pi; R) & Hpg(Q:; R) ® g Hipr(R%; R)

of G-R-algebras. Consequently, it suffices to prove that the manifolds Q, and Q,
are diffeomorphic.
By [8] any two maximal compact subgroups of G are conjugate, and therefore
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there exists an element g, € G such that K, = g;'.K . g,. Since (x.9)-90 =
=(x.g0)-95'99, for all xe Q, and geK,, the formulae Q5 = Q;.do, 42 =
= p/Q; define a principal K,-bundle n, = (Q3, g5, M, K,) with Q) diffeomorphic
to Q,. Further, 5, and 1, may be considered as reductions of ¢ to the maximal com-
pact subgroup K, of G, and therefore they are isomorphic. These two facts imply
that the manifolds Q, and Q, are diffecomorphic.

() In general case, the assertion of the proposition follows easily from (e), (f),
and Proposition 2.18.

4.12. Remark. If we use in the preceding proof Remark 3.20 instead of Proposition
3.19, we find that under the assumptions of Proposition 4.11 there exists a com-
mutative diagram of G-R-algebras

—Hpr(M; R)—
lp’f 29

HIDR(Pl; R) X HIDR(Pz;R)

A similar remark applies to the following two corollaries of Proposition 4.11.

4.13. Corollary. Let ¢ = (P, p, M, G) be a principal G-bundle, where G is a reduc-
tive connected complex Lie group without non-discrete compact complex Lie sub-
group (or equivalently, without complex tori), let & = (P, p. M, G) be a regular
real form of &, and let n = (0.4, M, K) be a reduction of & to a maximal compact
subgroup K of G. Then there exists an isomorphism of G-R-algebras

(49) Hypp(P; R) = Hpp(Q: R) ®g A(RY),

where d = dim¢ G — dimg K, and the elements of R are supposed to have degree
1. If G (or equivalently G) is semisimple, then d = 0.

Proof. By [8] any two maximal compact subgroups of G are conjugate. This
and Remark 2.10 easily yield that there exists a closed oentral subgroup R of G _
such that K " R = {e},and G’ = K. R = K x R s a quasicompact real form of G.
Putting &' = (P, p', M, G'), where P’ = Q. R and p' = p/P’, we evidently get
a quasicompact real form of . By Proposition 4.11, the G-R-algebras Hpr(P; R)
and H,pr(P’; R) are isomorphioc, and the same argument as in part (f) of the proof
of Proposition 4.11 yields an isomorphism

(4.10) H,DR(P'; R) X HDR(Q; R) Rgr H,DR(RJ; R)
of G-R-algebras. Combining (4.10) with the obvious isomorphisms H, (R R) ~
~ AR’ R) ~ A((R*)*) ~ A(R’) we get an isomorphism (4.9).

4.14. Corollary. Let G = GL(n, R) be a reductive Lie subgroup, let G c GL(n,C)
be its complexification, and let K = G be a maximal compact subgroup. Let
¢ =(P,p, M, G) be a principal G-bundle, let & = (P, p, M, G) be an extensicn
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of & to the group G, and let n = (Q, g, M, K) be a reduction of & to the group K-
If G is a regular real form of G, then there exists an isomorphism (4.9) of G-R-
algebras, where d = dimg G — dimg K. If G is semisimple, then d = 0.

4.15. Remark. By the well known de Rham theorem, we may replace H DR(Q; R)
in the both preceding corollaries by the singular cohomology algebra Hj(Q; R)-
The assertion then remains valid even if the reduction # is not smooth.

S. PROOF OF THE MAIN THEOREM

5.1. Keeping the notation from the beginning of Section 1, for any vector field X
on an open subset U of M let us denote by XV its natural lift [9, pp. 229—230]
to py'(U). It is well known that

(a) the map X > X is R-linear,

(b) [X, Y] =[x, y],

(c) X is invariant, and

(d) dpu(XV) = X.

Moreover, it is easy to check that the value of X" at a point y € p;,'(U) depends only
on the 1-jet j{(X) of X at the point x = py(y). It follows that the formula

BUx(X)) = XP0), x = puly), XeZ(x),
defines an injective R-linear map
(5‘1) Lyt J! f{(x) - y(BM) >

where T},(B,,) is the tangent space of By, at the point y.

It is well known that X € Z(U) is an infinitesimal automorphism of the G-structure &
if and only if X' is tangent to P at all points y e p~*(U). Consequently, (5.1)
restricts to an injective R-linear map

Iyt It Le(x) > T(P)

for any point ye P, and x = p(y). This further implies that in the general case
dim J! Z«(x) < m + dim G, and that ¢ is 1-transitive iff y, . is bijective for all
yeP.

Finally, let us remark that the definition of the G-R-algebra C;)(Z;; &) implies
that its arbitrary element « of degree k defines in a canonical way alternating k-linear

forms
a I LX) x o x TP Z(x) > R (xeM).

5.2. Lemma. Let us suppose that the G-structure & is I-transitive. Then for any
ae C\(Les &) the formula

a(l)(Vl’ sy Vk) = “x(x;,é(Vl)9 LR Xy_, 1C(Vk)) s

where y € P, x = p(y) and Vy, ..., V, € T,(P), defines an invariant smooth form o(V)
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on P, and the formula p(x) = o' defines an isomorphism

1 CaLe &) ~ A(P; R)
of DG-R-algebras

Proof. Let a € Cf, (&L &). It is easy to see that for any point x, € M there is
an open neighbourhood U of x, and vector fields X, ..., X, gim¢ € L(U) such that
the 1-jets jI(X,), ..., js(Xm+aimg) fOrm a basis of the R-vector space J' Zy(x) for
any x € U. Using the bijectivity of 3, . for all y € P, we get that X{"(), ..., X+ aima(V
is a basis of T,(P) for all yep '(U). Since olearly a™(X{V, ..., X{")(y) =
=a(X;,,....X; ) (p(y)) for any indices iy,..., i €{l,2,...,m + dim G} and all
yep~!(U), we see that o is smooth and invariant.

It is clear that u is a homomorphism of G-R-algebras. To prove that it is bijective
and commutes with the differentials, it suffices to notice that the formula

(@) (X 1. ..., X,) (p(9) = «(X 7, ..., X0) (3),

where « € Af(P; R), X, ..., X, € Z4(U), U is an open subset of M, and y e p~'(U),
defines a homomorphism '

v A(P; R) > C(Zs: &)

of DG-R-algebras which is inverse to p.

5.3. Proof of Theorem 1.5. In view of the preceding lemma, it is an immediate
consequence of Corollary 4.14 and Remark 4.15.

5.4. Remark. Similarly we can obtain the commutative diagram of Remark 1.7.
To this end it suffices to apply also Remark 4.12.
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