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LOSIK COHOMOLOGY OF THE LIE ALGEBRA OF INFINITESIMAL 
AUTOMORPHISMS OF A G-STRUCTURE 

VojTECH BARTIK, Praha and JIRI VANZURA, Olomouc 

(Received November 22, 1983) 

INTRODUCTION 

In this paper, we shall work exclusively with objects of class C°°. All manifolds 
are supposed to be paracompact and Hausdorfif, and the terms Lie group and Lie 
subgroup are used in the sense of [9, chap. I, § 4]. When working with sheaves we 
keep the terminology and notation of [3] preferring, however, to define a sheaf as 
a presheaf satisfying certain axioms [3, pp. 5— б]. 

Let M be a manifold with dim M = m, let 5^ be the sheaf of all real functions 
on M, and let J^ be a topological Lie algebra sheaf on M, i.e. a topological Lie 
algebra subsheaf of the topological Lie algebra sheaf Ж of all vector fields on M. 
(The topology on each Lie algebra J^(t/), where V is an open subset of M, ist thus the 
C^-topology.) Considering =âf as a topological vector space sheaf, let us denote by 
Ш5£ the direct product of p copies of o^ and define C^{^\ 6^) to be the vector space 
of all alternating multihnear maps a: П^^ -^ ^ oï topological vector space sheafs. 
As usual, the formula 

( d a ) ( X o , . . . , Z , ) = = f ; ( - i y X , a ( Z o , . . . , l „ . . . , X , ) + 
i = 0 

where a e C\^\ ^ ) , Z Q , ... , X ^ G ^{IJ), U an open subset of M, defines a differential 

d: CP{^; 6^) -> a-" \Se\ ^), 
and the formula 

~ "•; ; Z ^ ^ ^ ^ • ^Y^n{\Y • • • ' ^ Я ( р ) ) • Д ^ 7 Г ( р + 1 ) 5 • • • 5 ^ я ( р + д)) 5 
p! q}, n 

where a e CP{^; ^ ) , ß e C%^; У) , Z j , . . . , Xp+^ e if(U), U an open subset of M, 
and n runs over all permutations of the set (1 , 2 , . . . , p + q], defines a multiplication 

л : CP{^; ^) X C%^; ^ ) -> C^''^(if ; У ) . 
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If we set 

then together with the differential d and the multiplication л the graded vector space 
C(if ; y ) becomes a commutative (in the graded sense) associative differential graded 
algebra (over R) with a unit. 

Let C{^{M), y(M)) be the differential graded algebra of continuous cochains of 
the topological Lie algebra ^ ( M ) with coefficients in the topological c^(M)--module 
5^(M). There is a canonical homomorphism 

of differential graded algebras, and it is easy to see that the image of this homo­
morphism is contained in the diagonal differential graded subalgebra Cj^^{M), 
^{M)) consisting in degree p of all cochains a satisfying the support condition 

p 

suppa(Xi , . . . ,Zp) с HsuppX^ forall X^, ...,X^, e i f ( M ) . 

In the special case when ^ = ^ one can easily verify that this homomorphism is 
an isomorphism onto Сд(с^(М), ^ (М)) . In this sense the differential graded algebra 
C(=^; ^) can be considered a natural generalization of the diagonal differential 
graded algebra Cj^^{M), ^ (M)) to the case when there are not sufficiently many 
globally defined sections of if. Of course, the term "sufficiently many" can be given 
many various meanings. Probably the most natural one is that the sheaf ^ is fine 
in the sense that the sheaf Homij ( j ^ ; ^) of germs of endomorphisms of the topo­
logical vector space sheaf ^ is soft. For such a sheaf ^ one can easily verify that 
C{^; ^) ^ Q( i f (M) , ^ (M)) . 

Under a certain hypothesis on £^ there is a differential graded subalgebra of 
C(j^; ^) that can be considered a generalization of the diagonal algebra Сд(^'(М), 
^ (M)) , too. Let r ^ 0 be an integer. An element a e C^{^; ^) will be called a p-
cochain of order ^ r if it satisfies the following condition: For any open subset 
и czM and aby X^,..., Xpe^(U), the value of the function (x{X^, . ..,Xp) at a point 
xeU depends only on the r-jets of the vector fields X^, ...,Xp at the point x. Let 
C(^)(if ; 6^) be the graded vector subspace of C ( ^ ; ^) generated by all cochains of 
order ^ r . Clearly, C^^>j^S£\ 6^) is a graded subalgebra of C(«âf; ^), but in general 
it need not be invariant under the differential of C(o^; ^ ) . If, however, the function 
(i(^): M - ^ i?, <i(̂ (̂x) = dim^ J'*.^(x), where J''^{x) denotes the vector space of 
r-jets Гх{Х) of germs Z e ^ ( x ) , is locally constant, then one can show (compare 
with Proposition 1.2) that C(^)(.:^; ^) is a differential graded subalgebra of C ( ^ ; 6/"). 
We can also introduce the graded subalgebra C^^){^; Sf) of all cochains which are 
locally of finite order. To this end let us define a differential graded algebra sheaf 
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^€{^^\ 9^) and its graded algebra subsheaves ^(^)(=^; ^ ) , 0 g r < oo, putting 

^(if ; ^ ) (U) = C(if I [/, ^ I (У), 

^(,X=^' ^ ) (^) = ^iri^ I (7, ^ I L/) 
for each open subset \J of M. Further, let us denote by ^i^^^{S£\ 9) the least graded 
vector space subsheaf of ^ê[^\ 9) containing all the subsheaves ^(^^(j^; 5^), 0 ^ 
^ г < GO, and, finally, let us set 

Again C(oo)(if; 9) is a differential graded subalgebra of C(=^; 5^), if the function d^^^ is 
locally constant for all sufficiently large r.lf ^ = ^, then by virtue of J. Peetre's theo­
rem [11, Theorem 3.3.3] we have C^^^{^; ^ ) - C(^; 9) ^ Q(i^(M), .^(M)) = 
= C, where С is the M. V. Losik's diff'erential graded algebra introduced in [lO]. 
Consequently, in general case of a sheaf ^ such that the function J(̂ ) is locally con­
stant for all sufficiently large r, the differential graded algebra C(oo)(if ; ^ ) can also 
be considered a generalization of the diagonal algebra C^(.f (М), 9(М)) or, equi-
valently, of Losik's algebra C. 

The main aim of this paper is to calculate the cohomology algebra H(^)(if ; У) 
of the differential graded algebra C(^)(if ; 9) for r = 1 in the special case when ^ 
is the sheaf of all infinitesimal automorphisms of a G-structure on M. Of course, 
the class of G-structures under consideration is subject to certain restrictions which 
ensure especially that the differential graded algebras C(̂ )(= ;̂ 9) are defined, and 
which will be specified in Section 1. Our main theorem is Theorem 1.5, which gen­
eralizes the first part of a result by M. V. Losik [10], who calculated the cohomology 
algebra Я(1)(^; 6^) and proved that Яц)(^; 9) ^ H^^^{^\ S^). (Let us recall that 
C(i)(^; 9) and С(да)(^; 9) are canonically isomorphic to Losik's algebras В and C, 
respectively.) The case 1 < г ^ oo will be studied in a subsequent paper. Let us 
remark that the main theorem of the present paper was announced in [ l] . 

1. MAIN RESULTS 

Throughout this section, let M be a manifold with dim M = m, let G be a Lie 
subgroup of GL(m, R), let ^ = (P, p, M, G) be a G-structure on M, i.e. a reduction 
in the sense of [9] of the principal GL(m, i?)-bundle ß = [В^, p^f, M, GL{m, R)) 
of all frames on M to the subgroup G, and let j ^ ^ be the sheaf of all infinitesimal 
automorphisms of the G-structure ^. It is clear that Ĵ ^ can be considered a topo­
logical Lie algebra subsheaf of the topological Lie algebra sheaf if^ = ^ of all 
vector fields on M. 

1.1. Définition. Let r be a non-negative integer, and let J^'S^^{x) be the vector space 
of r-jets fx{X) of all germs X from the stalk ^^(л;) of the sheaf £^^ at the point x. 
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A G-struoture ^ will be called r-regular if the function xi-> dim J''if^(x) is locally 
constant on M. 

The following proposition can be proved by using special forms and computations 
of [10]. 

1.2. Proposition. If a G-structure ^ is r-regular, then C(^)(j^^; ^) is a differential 
graded subalgebra of C(if^; У). 

1.3. Definition. A G-structure ^ will be called 1-transitive if dim J^J^^(x) = 
= m + dim G for all x e M. 

1.4. Remarks, (a) Clearly any 1-transitive G-structure is 1-regular. 
(b) If a G-structure (̂  is transitive in the sense of [12], then it is r-regular for any 

г ^ 0. If, moreover, M is connected, then a transitive G-structure ä, is 1-transitive 
if and only if dim J^^^(x) = m + dim G for at least one point xe M. 

(c) It is not difficult to see that all locally flat G-structures are 1-transitive. More­
over, it can be easily proved that almost complex and almost symplectic structures 
are 1-transitive if and only if they are locally flat, and that riemannian and pseudo-
riemannian structures are 1-transitive if and only if they have constant sectional 
curvature. 

For the sake of formulation of our main result we remark that by the complexifica­
tion of a Lie subgroup G of GL(m, R) we mean the integral subgroup G с: GL{m, С) 
of the complexification of the Lie algebra of G in 9l(m, C). By definition, G is a com­
plex Lie subgroup of the complex Lie group GL(m, C), and dim^ G = 2 dim^̂  G = 
- 2 dirn^ G. 

1.5. Theorem. Let us suppose that the Lie group G is connected and reductive, 
and that the G-structure ^ is 1-transitive. Let G be the complexification of G, and 
let I = (JP, p, M, G) be an extension of â, to the group G. Finally, let К be a maximal 
compact subgroup of G, let ц = ( ß , q, M, К) be a reduction of | to the subgroup K, 
and let d = dim G — dim К. Then there exists an isomorphism of graded algebras 
over R 

Я ц ) ( ^ , ; ^ ) ^ Hl{Q; R) ®^ Ä{R') , 

where H*(g; R) denotes the singular cohomology algebra of Q with real coefficients. 
If G is semisimple, then ^ = 0. 

1.6. Remark. The conclusion of Theorem 1.5 holds also in a more general case 
when the assumption that G is connected is replaced by the assumption that G is 
a regular real form in the sense of Definition 2.13 of its complexification G. This will 
be clear from the proof of Theorem 1.5. 

1.7. Remark. In fact, we shall prove, see Remark 5.4, that under the assumptions 
of Theorem 1.5 (or of the preceding remark) there is a commutative diagram of graded 
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algebras over R 

Я , « ( М ; А ) ^ - ^ ^ Я * ( М ; А ) 

\q*<S)l 

where the vertical arrow on the left denotes a canonical homomorphism. 

2. REAL FORMS OF COMPLEX LIE GROUPS 
AND PRINCIPAL BUNDLES WITH COMPLEX LIE STRUCTURE GROUPS 

2.1. If G is a (real) Lie group we denote by L(G) its Lie algebra, and if/: G -> H 
is a homomorphism of Lie groups we denote byX(/) : L(G) -^ L[H) the corresponding 
homomorphism of their Lie algebras. For a complex Lie group G, we mean by L[G) 
the Lie algebra of ô considered as a real Lie group. In this case, however, L(G) has 
a canonical complex Lie algebra structure, and if / : G -» Й is a homomorphism of 
complex Lie groups then L(/) is a homomorphism of complex Lie algebras. 

As usual, the Lie algebras of the Unear groups GL{n, R) and GL{n, C) are denoted 
by 9Ï(n, R) and gï(fî. С), respectively. Let us remark that GL{n, C) is a complex Lie 
group, and that the complex Lie algebra gl(n, C) can be canonically identified with 
gl(n, R) ®H С 

2.2. Definition. Let g be a complex Lie algebra. An involution of g is an auto­
morphism Ö- of g considered as a real Lie algebra such that cr̂  = id and a(ix) = 
= —ia(x) for all x e g. A real form of g is a real Lie subalgebra g of the real Lie 
algebra g such that g = g © ig in the category of real vector spaces. 

It is easy to see that there is a one-to-one correspondence between the involutions 
of g and the real forms of g. For an involution ex of g the corresponding real 
form g*̂  of g is given by g"" = {x e g: cr(x) = x] . 

2.3. Definition. Let G be a connected complex Lie group. An involution of G 
is an automorphism a of the real Lie group G such that L[a) is an involution of the 
complex Lie algebra L(G). 

2.4. Let G and a be as in Definition 2.3. It is easy to see that Ô'' = [geG: а{д) = g} 
is a closed Lie subgroup of the real Lie group G and L(G*̂ ) = L(G)^ '̂̂ ^ Moreover, 
it is clear that two involutions cr, т of G coincide if and only if 1̂ (0*̂ ) = L{G^), which 
in turn is equivalent to the assertion that the connected components of the unit 
element in the groups G"" and Ĝ  coincide. 

2.5. Definition. Let G be a connected complex Lie group. A real form of G is 
a closed real Lie subgroup G of ô for which there exists an involution (т of G such that 
G ао"" and L{G) = L((S'̂ ). 
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A real form G of G will be called quasicompact, if G = ô"^ and if G is the direct 
product (both in algebraic and topological sense) of a maximal compact subgroup К 
of G and a closed central subgroup К of G isomorphic to R"^. 

2.6. Remarks, (a) Let G be a real form of a connected complex Lie group G. 
According to 2.4, there exists exactly one involution Ö- of G satisfying L(G) = L^G"^). 
We shall say that the involution a is associated with the real form G of G, and also 
that the real form G is associated with the involution a, even if G is not determined 
by a uniquely. 

(b) Let G be a quasicompact real form of G, and let K, R and d be as in Definition 
2.5. It is well known, see e.g. [8], that the maximal compact subgroups of a connected 
Lie group are connected and mutually conjugate. Consequently, G is connected. 
Since clearly d = dim^^ G — dimj^ K, it also follows that d depends only on G. 

It follows easily from the definition that a connected complex Lie group G having 
a quasicompact real form is necessarily reductive (in the sense that the Lie algebra 
L(G) is reductive) and contains no non-discrete compact complex Lie subgroups. 
The aim of the next part of this section is to prove the converse assertion. We shall 
also prove that, under the conditions just mentioned, for any connected real form G 
of G there is a quasioompact real form of G which is in a "nice" position with respect 
to G. Our results may be considered a generahzation of E. Cartan's results on semi-
simple Lie groups, see e.g. [7, Chap. 3 and 6]. 

2.7. Lemma. Let G be a connected commutative complex Lie group without 
non-discrete compact complex Lie subgroups, a an involution of G, and G a con­
nected component of the unit element in G"". Then there is an involution т of ô 
such that a о T = T о a, G^ is the direct product (both in algebraic and topological 
sense) of a (unique) maximal compact subgroup К of G and a closed subgroup 
R Œ G isomorphic to R*^, and G n К is a (^unique) maximal compact subgroup of G. 

Proof. First let us remark that according to the definition of the involution, the 
complex Lie algebra L(G) can be identified canpnically with L(^G) ®RC and that 
then L(cr) (x ® c) = X ® с for x e L(G) and ce C. 

Now let К be a maximal compact subgroup of G. Since G clearly contains exactly 
one maximal compact subgroup, the subalgebras L{K) and L(K) = L(K) + iL(K) 
of L(G) are L((7)-invariant, and hence L(K) = {L(K) n L(G)) ® Л С. This implies 
that for any subalgebra r с L(G) satisfying L{G) = r © {L{K) n L(G)) we have 
also L(G) = (r ® Д C) ® L(X). Using the (j-invariance of К and the assumption 
that G does not contain non-discrete compact complex subgroups we further find 
that L{K) n iL(i^) = 0, and consequently L{K) = L{K) ® iL{K). These direct decom­
positions of L{G) and L(K) imply that G is the direct product of the integral sub­
group К of r ®R С and the integral subgroup К of L{K), with R being simultaneously 
the direct product of the integral subgroup Я of t and the integral subgroup Ri 
of ir, and К being the direct product of К and the integral subgroup K^ of iL(K). 
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It follows that we can define an automorphism т of the real Lie group G by putting 
т(г . Ti, к . ki) = r . rf^ . к . k^^ for r e R, r̂  G JR̂ , кеК and kieK^, and one 
easily shows that т is an involution of G having all the required properties. 

2.8. Remark. As is clear from the proof of Lemma 2.7, we have proved at the same 
time that a connected commutative complex Lie group without non-discrete compact 
complex Lie subgroups has quasicompact real forms. 

2.9. Proposition. Let G be a connected reductive Lie group without any nondiscrete 
compact complex Lie subgroup, о an involution of G, and G the connected com­
ponent of the unit element in G"". Then there is an involution т of G such that 
a о T — X о G and G^ is the direct product {both in algebraic and topological sense) 
of a maximal compact subgroup К of G and a closed central subgroup R of ô 
isomorphic to R"^. Moreover, R a G, and G h К is a maximal compact subgroup 
of G. If G is semisimple, then d = 0. 

Proof. The proposition is true for G commutative by Lemma 2.7 and represents 
a classical result of E. Cartan for G semisimple — see e.g. [7, Chaps. 3 and 6]. 

In the general case, let Ĝ  с G be the integral subgroup of the centre of the Lie 
algebra L(G) and Ĝ  c: Ô the integral subgroup of the derived subalgebra [ L ( G ) , L ( G ) ] 
of L{Gy By the reductivity of L{G), L{G) = L{G^) 0 L{G,), and L{G^) is a maximal 
commutative ideal in L(G). It follows that the subgroup Ĝ  cz G is closed, and that 
the canonical homomorphism p: G^ x ô^ -^ G *̂s a covering map with multiplicity 
card (G^ n Gs). We remark that p is really a homomorphism because G^ is a central 
subgroup of G. Now Gc n Ĝ  is a closed central subgroup o^ the semisimple complex 
Lie group Gs, and hence it is not only discrete but even finite. Consequently, the 
multiplicity of p is finite, which easily yields that Ĝ  is closed in G, and that every 
maximal compact subgroup iC of G is of the form К = K^. K^ where K^ c: Ĝ  
and K^ с Gs are maximal compact subgroups. Moreover, as one easily shows, 
K, = К n G, ша K, = К n G,. 

Similarly, let G^ cz G be the integral subgroup of the centre of the Lie algebra 
L(G) and Gs c= G the integral subgroup of the derived subalgebra [ L ( G ) , L ( G ) ] of 
L{G). Since the reductivity of L(G) = L(G) (X)̂ ^ С is equivalent to the reductivity 
of L(G) the same argument ^s above yields that G^ is a closed subgroup of G, and 
that the canonical homomorphism p: G^ x Ĝ  -> G is a covering map with multi-
phcity card (G^ n G^). The inclusion Ĝ  n G, с (5^ n Ĝ  further implies that this 
multiphcity is finite, and hence Ĝ  is closed in G and the maximal compact subgroups 
of G are related to those of Ĝ  and G^ in the same way as the maximal compact 
subgroups of G are related to those of G^ and G .̂ 

Let (T̂  and ст^ denote the restrictions of the involution a to the subgroups G^ 
and G^, respectively. By Lemma 2.7 there exists an involution т̂  of ô^ such that 
a^ о T̂  = To о (7̂ , Ĝ ^ is the direct product of a maximal compact subgroup K^ of 0^ 
and of a closed subgroup R с G^ isomorphic to R^, and K^ n Ĝ  is a maximal compact 

84 



subgroup of G .̂ By the first paragraph of this proof there also exists an involution т̂  
of the group Gs such that (Т̂  о т̂  = т̂  о а^, К^ = Gl^ is а maximal compact subgroup 
of G ,̂ and K^ n Gs is a maximal compact subgroup of G .̂ Let us consider the auto­
morphism Tc X T5 of the group G^ x G .̂ The kernel of p consists of all pairs (g, g~^) 
where g e G^ n G^. We have seen, however, that Ĝ  n G^ is a finite central subgroup 
of G, and hence it is contained in K^ n K^. This immediately impHes that the auto­
morphism T̂  X T5 restricts to identity on ker p, and hence it induces an automorphism 
T: Ô -^ G satisfying p о (т^ x т̂ ) = т о р. Using the fact that L(p) is an isomorphism 
of complex Lie algebras we easily deduce that т is an involution of the complex Lie 
group G. It remains to show that the subgroups R and К = K^ . K^ and the involu­
tion T have all the desired properties. 

The properties of R are obvious, and the assertion that К a G and К n G cz G 
are maximal compact subgroups is a consequence of what has been said in the 
second and third paragraphs of the proof. The equality croT = Tocrisan immediate 
consequence of the definition of т, as well as the inclusion R . К a G^. We now show 
that, in fact, R . К = G'^.To this aim it suffices to prove that the equality т^д^. g^) = 
= g^. g,, where g^ e G, and g, e G„ implies т{д^) = g^. If, however, т{д^. g,) = 
= g, . g,, then g; ^. т{д,) = g,. т{д,)~' ^ eG,nG,=K,n K,, and hence g; ^. т{д^) = 
= т(д^^ . т(б с̂)) = ^{9c)~^ ' Qc^ which further yields g^^ = T{gf). Since the kernel of 
the exponential homomorphism exp: L{G^ -^ G^ is clearly contained in L(K^), 
this equality easily imphes that g^ = 1(0^̂ ). It remains to show that the decomposition 
R . К = G^ is direct both in algebraic and topological sense. But this is an easy 
consequence of the equality R n К = R n K^ = {1], the compactness of К and the 
closedness of R in G. 

2.10. Remark. Similar arguments prove that every connected reductive complex 
Lie group without non-discrete compact complex Lie subgroups has quasicompact 
real forms. 

2.11. Corollary. Let G a GL{n, R) be a reductive integral subgroup, and let 
G Cl GL{n, с) be the integral subgroup of the complex Lie subalgebra £(G) = 
= L{G) ® Л С of cjl(n, C). Then the following assertions hold: 

(a) G /5 a complex Lie group containing together with a matrix g also its complex 
conjugate matrix g, the map a: G -> G defined by a(g) = g is an involution of G, 
and G is a connected component of the unit element 1 of G"". 

(b) There exists an involution т of G such that cr о т = x о a, and the subgroup G^ 
is the direct product {both in algebraic and topological sense) of a maximal 
compact subgroup К of G and a closed central subgroup R of G isomorphic to R^. 
Moreover, R с G, and G n К is a maximal compact subgroup of G. If G is semi-
simple, then d = 0. 

Proof. The assertion (a) is obvious, and (b) follows from Proposition 2.9 since 
it is an easy consequence of the Jordan canonical form of a matrix that GL(n, C) 
does not contain non-discrete compact complex Lie subgroups. 
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2.12. Let us keep the notation of Proposition 2.9. The generalization of this 
proposition to principal bundles given below (see Proposition 2.18) uses the well 
known fact (see e.g. [8]) that the homogeneous space GJG n К is diffeomorphic 
to R^ for some s. If G^ is a real form of G having G as the connected companent 
of its unit element then the space GJG n К imbeds canonically in GilG-i_ n К as 
a closed-open subspace. It follows that G^JG^ n К is diffeomorphic to R^ if and 
only if GJG n К = G^JGi n K, which is, however, equivalent to the assertion that К 
intersects all the connected components of G .̂ 

It is therefore natural to ask whether for G^ as above there is an involution т of ö 
having all the properties listed in Proposition 2.9 and such that К intersects all the 
connected components of G .̂ Such an involution exists, for example, if G = GL(n,C), 
Gi = GL{n, R) and G = GL^{n, R), as shown in Remark 2.14 below. Unfortunately, 
we do not know any simple conditions ensuring the existence of such an involution т 
in general. This fact and the effort to cover also this important special case motivate 
the following definition. 

2.13. Definition. Let G be a connected complex Lie group, G a real form of G 
associated with an involution a of G, and GQ c: G the connected component of the 
unit element of G. We shall say that G is a regular real form of the group G if tucre 
exists an involution т of G such that cr о т = т о a, G^ is а. quasicompact real form 
of G, the maximal compact subgroup К of G^ intersects all the connected components 
of G, and Go П iC is a maximal compact subgroup of GQ. 

2.14. Remark. Let G be a connected reductive complex Lie group without non-
discrete compact complex Lie subgroups. Proposition 2.9 says that every con­
nected real form of G is regular. 

An example of a non-connected regular real form is the subgroup GL(^n, R) of 
GL(n, C). In fact, let a be the involution of GL(^n, C) defined by (т[д) = g, where g 
denotes the complex conj'ugate matrix to g, and let т be the involution of GL{n, C) 
defined by т(д) = {g^)~^, where g'^ denotes the hermitian conjugate matrix to g. 
Clearly GL{n, Cf = GL{n, R), GL{n, C)' = U{n) and (j о т = т о cr. Moreover, 
U(n) is a maximal compact subgroup of GL(^n, C) having a non-empty intersection 
with each of the both connected components of GL(n, R), and U{n) n GL^(n, R) = 
= 0^{n) is a maximal compact subgroup of the connected component GL^[n, R) 
of the unit element of GL[n, R). Consequently, GL{n, R) is a regular real form of 
GL[n, C) as we have claimed. 

In the remaining part of this section we generalize the above notions and results 
to principal bundles having a connected complex Lie group as a structure group. 

2.15. Definition. Let ô be a connected complex Lie group. An involution of a prin­
cipal G-bundle I = (P, p, M, G) is a pair (I", a) consisting of an involution cr of ô 
and a (T-automorphism E of the principal ö-bundle | such that I^ — id, P^ = 
= {% e P : I{x) = x} is a closed submanifold of P and |^ = ( Я , P^, M, 0""), 
where p^ is the restriction of p on P^, is a principal G'^-bundle. 
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2.16. Definition. Let G be a connected complex Lie group and | = (P, p, ММ) 
a principal G-bundle. A real form of ^ is a, reduction ^ = (P, p, M^ G) of | to a sub­
group G cz G for which there is an involution (l, a) of | such that G is a real form 
of G associated with a and P cz P^. 

A real form (̂  of | is said to be quasicompact or regular if G is a quasicompact 
or regular form of ô, respectively. 

2.17. Remark. It is clear that for a given reduction ^ of | there exists at most one 
involution (r , a) of | with the properties listed in Definition 2.16. This allows us 
to call (Z, a) the involution associated to the real form ^ of | . 

2.18. Proposition. Let G be a connected complex Lie group, ^ = (P, p, M, G) 
a regular real form of a principal ô-bundle | = (Д p, M, G), and (Г, a) the in­
volution of I associated with ^. Let Go he the connected component of the unit 
element of G and let т be any involution of G such that a о т = т о cr, G'^ is a quasi-
compact real form of G, the maximal compact subgroup К of Ĝ  intersects all the 
components of G, and G^ n К is a maximal compact subgroup of GQ. 

Under these assumptions there exists an involution (T, т) of the principal G-
bundlet, such that Toi = I о T and | ^ /5 the extension to the principal G^-bundle 
of a reduction of { to the subgroup G n K. 

Proof. It follows from our assumptions and from [8] (see 2.12) that GJG n К 
is diffeomorphic to R^ for some 5. Consequently, applying Proposition 5.6 and Theo­
rem 5.7 of [9, Chapter I] we get a reduction ^^ = (P^, p^, M, G n K) of ^to the sub­
group G n K. Supposing P^ cz P and p^ = pjPi, which is clearly admissible, one 
easily verifies that the required т-automorphism T of | may be defined by the formula 
T(x . g) = X . т{д), where xe P^ and g E G. 

2.19. Remark. Using Remark 2.10, we can show in a similar way that for any 
principal G-bundle, where ô is a connected reductive complex Lie group, there exist 
quasioompact real forms. 

3. TRANSGRESSION THEOREM AND HOMOLOGY OF REAL FORMS 

OF COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS OVER С 

Let /c be a commutative field of characteristic 0. 

3.1. Starting from this section, by a G-/c-algebrä (/)G-/c-algebra) Ä we mean 
a graded algebra (diff'erential graded algebra) over к the graduation {A"] of which 
is non-negative, i.e. A" — 0 for all n < 0. 

By a filtration of a G-/c-algebra (DG-fc-algebra) A we mean a decreasing filtration 
FA == {FM} of the graded (differential graded) algebra Л satisfying F^A = A, 
fn + i^n ^ 0 for all n. 
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By an FG-/c-algebra (FDG-Zc-algebra) we mean a G-/c-algebra (DG-Zc-aigebra) 
equipped with a fixed filtration. 

All algebras under consideration are supposed to be associative, and commutativity 
of a graded algebra means commutativity in the graded sense. 

3.2. A spectral sequence {E^, d^, ^J^^ro ^^^^ ^ ^̂  called multiplicative if for any 
r è Го, 

(a) E^ is a bigraded /c-algebra, 
(b) the differential d^ has bidegree (r, 1 — r) and is a derivation in the graded sense 

with respect to the total degree in £^, 
(c) i/, Ег-ы -^ H(Er, d^ is an isomorphism of bigraded /c-algebras, and 
(d) £f'^ = 0 if either p < 0 or ^ < 0. 

Let us remark that by virtue of (d) every multiplicative spectral sequence con­

verges. 

Homomorphisms of multipHcative spectral sequences are defined in the obvious 
way. • 

3.3. A diagram 

{ £ „ J „ . , } , ^ o = > i ^ r e L i ^ H 

will mean that (E^, d^, >'t]r-^ro ^^ ^ multiplicative spectral sequence over к (with the 
limit £^) , Я is a G-/c-algebra equipped with a filtration FH, and t^ is an isomorphism 
of the bigraded /c-algebra E^ with the bigraded /c-algebra "^rFH = © ^r^'^^FH 
associated with the filtration FH; here ^r^'^^FH = F^HP^^IEP^^H^^^. '̂̂  

Now let us suppose we are given a diagram 

(3.1) { £ „ ^ „ . , } , ^ , , = = = > Я г е 1 / Я 

{ Е ; , ^ ; , < } , ^ , ^ ^ > Я ' г е 1 . Е Я ' 

with the rows having the meaning described above, where г is a homomorphism of 
multiplicative spectral sequences, and /i is a homomorphism of G-/c-algebras com­
patible with the filtrations FH and FH'. We shall say that this diagram commutes 
if {^rh) о t^^ = ù'^ о e^, where ê^: £ ^ -> £'^ and ^rh; ^rFH -> ^^rFH' are homo­
morphisms induced by e, h, respectively. We shall also describe such a situation 
by saying that the homomorphisms e and h are compatible with respect to t^^ 
and C. 

We recall the well-known fact that commutativity of the diagram (3.1) implies 
that h is an isomorphism of G-/c-algebras if e/. E^ ^ £,' for some r. 

3.4. It is well known that with each F£)G-/c-algebra Ä a diagram 

{£„ 4 , ^.]>^ 1 = = > H(A) rel. FH{Ä) 



is associated, where H(Ä) is the homology G-/c-algebra of the DG-/c-algebra A, 
This can be shown in several equivalent ways. Using the definition of H. Cartan and 
S. Eilenberg [4, Chap. XV] we have 

where 
Z'/'' = Im [W^FPAJF^-^'A) -> H ^ + ^ ( F M / F ^ + ^ 4 ) } , 

BP/'^ ^ Im (H^+'^-^^F^-'-^M/FM) -> H^+^(FM/F^^U)} , 
and 

pp H{A) = Im {H(FM) -> H {A)} . 

If the FDG-/c-algebra A is commutative then each algebra E^ is commutative in 
the graded sense with respect to the total degree. If A has the unit element then 
each E^ has the unit element. Analogous assertions hold of course also for the algebras 
H{A) and (^rFH{A). 

We remark that the DG-k-subalgebra F^'^ = © ^ i ' ^ of E I can be canonically 
p 

identified with the DG-/c-subalgebra В = @ B^ of A, where B^ = F^A" n 
p 

nd-\FP'-^AP'''^). Clearly, ker if^ is identified with Z^(5) = Б^ n ker J via 
this identification. 

3.5. The transgression homomorphism (briefly transgression) in the first quadrant 
spectral sequence {E^, d^, ^r}r^i is the homomorphism 

4 4 Ч 

of total degree 1. Let v :̂ E^^'^^ -^ E^2^ be the canonical monomorphisms and 
TTg+j: ker<i^"^^'^ -^ ЩХ\ the canonical epimorphisms. An element xeE^2^^ is called 
transgressive if it belongs to Im v̂ . By a transgression of a transgressive element 
X G F2'^ we shall mean any element y e ker d\^ ^ '^ such that n^^-^{y) = d^!^i(v~\x)'), 
or its image in F|"^^'°. 

If the spectral sequence under consideration is associated with a FDG-Ä:-algebra A^ 
then for any integer q we have the following commutative diagram 

F'A' n dr\F'^-''A'^^') cz A' n d~'{F^'-U^-'')~^^E^^::\ -~~^^ F^'^ 

Z^-^^B) 

kercif'° 

"q+ 1 

• 0 — > B i : i ' ' 

i 
0 

in which the left column and the lower row are exact, and n'^ is a canonical epi-
morphism. This diagram implies that yekevd\'^^'° is a transgression of x e E j ' * 
if and only if there is an element z e A^ n d~'(F*'"'" /̂l'"'"') such that у = d{z') and 
V, о 7c;(z) = X. 
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The following proposition formalizes Borel's transgression theorem [2, Chap. VI, 
§24]. 

3.6. Proposition. Let A be a commutative FDG-k-algebra with the unit element, 
and let us suppose that the spectral sequence [E^, d^, с^.},,^^ associated with A 
satisfies the following conditions: 

(a) The G-k-algebra E^'* = @El^'' is a free G-k-algebra L{P) = Л{Ро) (g)̂  S{P,) 
Ч 

over P = PQ @ Pe ^^^here PQ a ^^'^ {^e ^ ^2'*) i^ ^ graded k-vector subspace 
spanned by transgressive elements of odd (even) degree. 

(b) The canonical homomorphism £2'^ ®/c ^2' ' '~^ ^2'^ i^ ^^ isomorphism for 
all p, q. 

Let В ®k L{P) b^ ^^^ tensor product (in the graded sense) of the G-k-algebra 
В = £*'^ (see 3.5) and the G-k-algebra L(P). Let us choose a homogeneous basis 
X^ijiei of i^^ graded k-vector space P and set q. = deg a .̂ For each iel let us 
further choose a transfression bieB"^'^^ of a^ and a representative CieA^^n 
n d~'^(F'^'^^A'^^^^) of Ui (see 3.5) such that dc-, = b,. Then the following assertions 
hold: 

(a) The k-linear map d: В ®kP ~^ В ®k ^(P) defined by 

d{b ® a) = db® а^Л- {-1)^ b .b.®\ {b e B\ i s J) 

extends in a unique way to the differential d of the G-k-algebra В ®^ L{P) so that 
В ®i^ L(P) together with this d is a DG-k-algebra C. 

The differential d is explicitly given by the formula 

(3.2) d(b ® a^^ A . . . л a,-̂  ® aj^ ... a^J = 

= db ® a^^ A . . . л a^^ @ aj^ ... aj^ + 

+ ( - i ) ' - Z ( - l ) ' " ' ^ - ^ - . ® « û A ... ЛО,, л ... л a,̂ (x) 
к = 1 

s 

®^j\'"^js + ( - l ) ' - Z ^ ' ^ - . ® ^и ^ ••• A a,^®aj^...âj^...aj^ 
k=i 

where b e B^ and i^,..., i^^Ji, ---Js ^^^ ^^У elenwnts of I such that a^^,..., ai^e PQ 
and aj^,..., aj^e P^. 

(ß) The k-linear map (p: В ®,^ P -^ A defined by (p{b ® a^) = bc^ (be B, iel) 
extends in a unique way to a homomorphism cp: С -^ A of DG-k-algebras and the 
induced homomorphism cp^: H(C)-^ H(À) of homology G-k-algebras is an iso­
morphism. 

The homomorphism (p is explicitly given by the formula 

(p(b (X) â ^ л . . . л a,.̂  ® aj^ ... Uj) = bc^^ . . . с^^с^^... Cj^ 

where b and г\, . . . , ir,ji> •••,Л ^^^^^ ^^^ same meaning as in (3.2), 
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Proof. The assertion (a) is trivial as well as the part of (ß) concerning the existence 
and the explicit expression of (p: С -^ A. Thus it suffices to prove that cp^ is an 
isomorphism. 

Let us define a filtration FC of the i)G-/c-algebra С by the formula F^C == @ B' ®^ 

®̂ ^ L{Py It is easy to see that cp is compatible with the filtrations FC a n d F ^ , so that cp 
induces a homomorphism г = {&r}r^i ^^ ^^^ spectral sequence { r̂? 3̂ ? * r̂]r̂ i as­
sociated with the filtration FC of the DG-A:-algebra С into the spectral sequence 
[E^, d^, ^r}r^i- It is also clear that г is compatible with ^^j,. An easy calculation shows 
that we can identify £2 with E*'^ ®k L{P) = E^'^ (gik ^2'*- Under this identification 
the homomorphism £2- -̂ 2 ~̂  ^2 coincides with the canonical isomorphism E*'^ ®/c 
®;, £2'* ~^ El- Therefore 82, and consequently c/)̂  is an isomorphism. 

3.7. Corollary. Let A and A' be commutative EDG-k-algebras with the unit ele­
ment,and let us suppose that the spectral sequences [E^, d^, ^Jr^i ^f^d [E^, d^, t^j^^i 
associated with A and A', respectively, satisfy the conditions (a) and (b) of Proposi­
tion 3.6 with P and P', respectively. Further, let us suppose that there exists a homo­
morphism cp: £*'^ -^ £J*'^ of DG-k-algebras inducing an isomorphism cp^: E*'^ ^ 
^ £2*'^ of G-k-algebras, and an isomorphism \jj\ P -^ P' of graded k-vector 
spaces, which commute with the transgression in the following sense: for each x e P 
there exists its transgression у e Ep^ such that (p(^y) is a transgression of i^(x). 
Then the G-k-algebras Я(Л) and H(A') are isomorphic. 

Proof. Let us keep the notation from the proof of Proposition 3.6. We may sup­
pose that the b^'s have been chosen in such a way that b'l = (p{bi) is a transgression 
of a'l = ij/{ai) for all i eL Using the elements a- and bj (/ el), let us define a DG-k-
algebra С analogously as we have defined C. Clearly cp and ф induce a homo­
morphism cp ® Ь(ф): С -^ С of DG-/c-algebras. This homomorphism is compatible 
with the filtrations EC and EC, and one easily verifies that it induces an isomorphism 
of the spectral sequences associated with EC and EC, respectively. Thus H(C) ^ 
^ H(C'), which by virtue of Proposition 3.6 completes the proof. 

3.8. Remark. As can be easily seen from the proofs of 3.6 and 3.7, we have in fact 
proved somewhat more, namely, that under the assumptions of Corollary 3.7 there 
exists an isomorphism H(A) ^ H(A') of G-A:-algebras compatible with the filtrations 
FH(^A) and EH(A'), and such that the diagram 

H{B) ^ £*'^ —^-^ £2*' ' ^ H{B') 

H{A) ^— > H{A') 

where the vertical homomorphisms are induced by the inclusions, commutes. 
An analogous remark holds for the following special case of Corollary 3.7. 
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3.9. Corollary. Let A and A' be commutative FDG-k-algebras with unit elements, 
and let us suppose that the multiplicative spectral sequences {E^, d^, i,^]^^i and 
{El, dl, c'^]^^i associated with A and A', respectively, satisfy the conditions (a) 
and (b) of Propositions 3.6 with P and P\ respectively. Further, let us suppose 
that there is a homomorphism s: {E^, d^, ^r}r^i ~^ {^r' ^r? ^'г]г^1 of spectral sequences 
over k, not necessarily compatible with their multiplicative structures, which maps P 
isomorphicaly onto P\ and the restriction г*'°: £*'^ -> E[^'^ of which is an isomor­
phism of DG-k-algebras. Then the G-k-algebras Я(Л) and Я(Л') are isomorphic. 
(See also the preceding remark.) 

The remaining part of this section is devoted to FDO-C-algebras and their real 
forms. Let ^ denote the category of all G-C-algebras or FG-C-algebras or DG-C-
algebras or FDG-C-algebras or bigraded C-algebras, and let se denote the corres­
ponding category of i?-algebras. 

3.10. Definition. Let Â be an object of ^ . An involution of Ä is an automorphism 
of Â considered as an object of j / such that a^ — id and ö-(ia) = — icr(a) for all 
a E Â. A real form of Ĵ  is a subobject A of Ä considered as an object of s/ such that 
Â = A @ iA in the corresponding category of i?-vector spaces. 

Clearly there is a one-to-one correspondence between involutions of Â and real 
forms of A. For an involution a of Â the corresponding real form of Â is A"" = 
= {xE Ä : a(x) = x ] . 

3.11. Let a be an involution of ^1 e j / . Clearly we have a canonical isomorphism 
A"" ®RC ^ Â in Я' compatible with the canonical involution of A"" ®R С and the 
involution a of Â. 

If y| is a DG-C-algebra or an FDG-C-algebra, this isomorphism induces an iso­
morphism H^Â"") ®i^C ^ H[Ä) of G-C-algebras or F G-C-algebras, respectively. 
On the other hand, a clearly induces an involution of H(^Â), which we also denote 
by (J, and there is a canonical isomorphism ЩЛу ®^С ^ H(^Äy It is easy to see 
that both these isomorphisms can be identified by means of the canonical iso­
morphism H^Â"") ̂  H(Ây induced by the inclusion A'' с Ä. 

Similarly, if Ä is an FG-C-algebra, there is an induced involution a of ^rFÄ, the 
canonical isomorphism A"" ®R С ^ Â induces a canonical isomorphism (^rFÂf) (x)̂ ^ 
®ii С ^ ^rFÄ of bigraded C-algebras, and ^rFÂ"" ^ (^rFÄy oanonically. 

In what follows we shall regard all the canonical isomorphisms of this section as 
identifications. 

3.12. Lemma. Let Ä be a G-C-algebra {FG-C-ulgebra, DG-C-algebra, FDG-C-
algebra, bigraded C-algebra), and let a and т be two commuting involutions in Ä. 
Let us define C-linear maps cp,\l/: Ä -^ Â by 

(3.3) ^ = - (id + (J о T) -h - (id — (T о T) , 

i/' == - (id + a о T) — - (id — (T о T) . 
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Then: (a) cp and ф are automorphisms of the G-C-vector space {FG-C-vector space, 
DG-C-vector space, FDG-C-vector space, bigraded C-vector space) Ä and cp oij/ = 
= \j/ о (p = \d. 

(b) ф(^^) = Ä\ ip{Ä') = Ä% ф{А'') = Ä\ ф{А') = i ^ 

P roo f is trivial. We only remark that the multiplicative structure of Â plays no 
role here. 

3.13. Lemma. Let Â be a G-C-algebra, and let a and т be ty^o commuting involu­
tions of Â. If A"" is a free commutative G-R-algebra Lp{P) with unit over a x-
Invariant G-R-submodule P cz Ä"^, then Ä^ Is a free commutative G-R-algebra 
with unit over the a-lnvarlant G-R-submodule (p{P) = Ф{Р) <= Ä\ 

Proof. Clearly Ä = Â"^ (x)|j Cis a free commutative G-C-algebra over P. However, 
since P = P" © p-\ where P' = P n Ä' and P'' = P n iÄ\ and (p{a) = a for 
a e A"" n A"" and (p[b) = ib for b e A"" n iA\ it is also a free commutative G-C-
algebra Lc{(p{P)) with unit over cp{P) = ф(Р^) ® ç{P~') = P' @iP~\ Using the 
obvious fact that the canonical isomorphism Ьс{(р{РУ) ^ Â induced by the inclusion 
cp(P) cz Â^ cz Â is compatible with the canonical involution of Lc{(p{P)) = 
= L^(^(p(^P)) (x)jj С and the involution т of Ä, we immediately conclude that Â'^ 
is a free commutative G-i?-a1gebra with unit over (p{P). 

3.14. Remark. Let jny. Lj^P) -^ A"" and /i^: Lf^{(p(P)) -^ A extend the inclusions 
P cz A"^ and ф(Р) cz Â\ respectively, and let us define an i?-linear map Ф: Ljj(P) -> 
-> L^{(p{P)) by putting 

0{a,...a,b,,..b,) = {-lf^^^(p(a,)...(p{a,).(p{b,).,.<p{b,) = 

=={-ir'U,...a,.{ib,)...{ib,) 
for Oj, ...,aj,eP'' and b^,..., biE P ~ \ where [//2] denotes the integer part of //2. 
It is easy to verify that Ф is a well defined isomorphism of G-jR-modules and that 
the diagram 

4P) - ^ '̂̂  

1'' 
commutes. This gives an alternative proof of the preceding lemma. 

3.15. Lemma. Let Ä be a complex bigraded algebra, and let a be an involution 
of Ä. Then the canonical homomorphlsm (Â'^Y'^ 0Е{А^У''^ -^ {Ä^'Y'^ is an iso­
morphism if and only if the canonical homomorphlsm Â^'^ (S)c ^^^"^ -^ Ä^'^ ^̂  
an isomorphism. 

3.16. Definition. An involution of a multiplicative spectral sequence Ê = 

93 



= [Ê^, d^, ^r]r^k over the field С is an automorphism G of the multiplicative spectral 
sequence Ê over R such that cr̂  = id and a{ïd) =•- —ïô{d). 

Clearly, for every r ^ k V^Q then have a differential J^: Ê^ -> Ê^ induced by the 
differential d^, an isomorphism fc^: £^+1 ^ H{E% â^) of bigraded i?-algebras induced 
by c^, and JÊ^ = {£^, (î^, t^b^fc is a multiplicative spectral sequence over R. 

We remark that a induces an involution of Ê^ (also denoted by a), and that Ê^ 
can be canonically identified with {Ê^y. 

The following lemma is an immediate consequence of Lemma 3.12. 

3.17. Lemma. Let a and т be two commuting involutions of a multiplicative 
spectral sequence Ê = {Ê^, d^,\^^^j^ over C, and let us define C-linear maps 
(p,il/: Ê -^ Ê by the formulae (3.3). Then: 

(a) (p and ф are automorphisms of the additive spectral sequence Ê over С 
(i.e. the multiplicative structure of Ê is not taken into account), and (p о ф = 
= ф о (p = id. 

(b) (p(Ê^) = Ê\ cp{Ê') = Ê^ ф{Ё'') = Ê\ and ф{Ё') = Ê\ 

(Again the multiplicative structure of E plays no role here.) 

3.18. Let Ä be an FDG-C-algebra and let a be an involution of Â. Then a induces 
an involution, which we denote again by a, of the multipMcative spectral sequence 
JÊ = {Ê^, d^, f'r]r^i over С associated with Ä. It is easy to see that we can canonically 
identify the multiplicative spectral sequence E^ = [E^^, d^^, ^vrlr^i over R associated 
with the i^'Z)G-i?-algebra A"" and the multiplicative spectral sequence Ê"" == 
= {£; : ,< , 0 , ^ 1 o v e r ^ . 

If a and T are two commuting involutions of Â, the induced involutions a and т 
of Ê also commute, and the automorphisms cp and ф of Ê defined in Lemma 3.17 
are induced, respectively, by the automorphisms (p and ф of yî defined in Lemma 3.12. 

The following proposition is the main result of this section. 

3.19. Proposition. Let Â be a commutative EDG-C-algebra with unit, and let a 
and T be two commuting involutions of Ä. Let Ê = {Ê^, d^, i^r^i ^^ ^he multiplica­
tive spectral sequence over С associated with Â, and let the induced involutions a 
and T of Ê coincide on £*'^ = © Ê{'^. Finally, let cp be the automorphism of Ê 
defined in Lemma 3.17. ^ 

Under these assumptions, if the multiplicative spectral sequence E = È^ = E^. 
over R associated with the FDG-R-algebra Ä'' satisfies the conditions of Proposition 
3.6 with P = P^ invariant under a, then the multiplicative spectral sequence 
E = Ê"" = E„ over R associated with the FDG-R-algebra A"" satisfies these conditions 
with P = P^, where P„ = (p{P^ is invariant under т, and the G-R-algebras H[Â^) 
and H^Â"^) are isomorphic. 

Proof. Applying Lemma 3.13 to the G-C-algebra £^'* = ф £^''^ we immediately" 

see that £ ^ ' | is a free G-J^-algebra over the G-if-vector subspace P„ ~ (p{P^. By virtue 
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of Lemma 3.17, (p: E^ ^ E^ is an isomorphism of additive spectral sequences (i.e., 
the multiplicative structures of E^ and E^ are not considered here), which implies 
that P^ is spanned by transgressive elements if and only if P„ = (p{Px) is. It follows 
that E^ satisfies the condition (a) of Proposition 3.6. The condition (b) for E^ follows 
from Lemma 3.15 when applied twice to the complex bigraded algebra £2. Since <p 
is the identity on £f'^, the rest of the proposition follows from Corolary 3.9. 

3.20. Remark. Applying in the preceding proof Remark 3.8 instead of Corollary 
3.9, we get that under that assumptions of Proposition 3.19 there exists a commutative 
diagram of G-i?-algebras 

r-~H{B)—^ 
i i 

H{Ä') —^-> H(i^) 

where В = £*,'? = ^f/i^ ŝ a DG-i?-subalgebra of both DG-i?-algebras A"" and Ä' 
(see 3.4). 

4. INVARIANT DE RHAM COHOMOLOGY OF REAL FORMS 

OF PRINCIPAL BUNDLES WITH COMPLEX LIE STRUCTURE GROUPS 

Let Л be a finite dimensional commutative associative algebra over R with unit, 
and let Ä be an algebra of the same type over С 

4.1. Given a manifold M, we denote by A(M; A) the de Rham i)G-i?-algebra 
of differential forms on M with values in A and by H^J^M; A) its cohomology 
G-i?-algebra. For a m a p / : M -> M', the both induced homomorphisms A(M'; A) -> 
-> A{M; A) and Hj)^{M'\ A) -> Я^^СМ; A) are denoted by / * . 

4.2. Now we shall recall some basic facts about the invariant de Rham cohomology. 
More details can be found e.g. in [6]. 

Let G be a Lie group and M a right G-manifold, i.e. a manifold on which G operates 
from the right. For g eG, let Я^: M -> M be the right translation by g defined by 
Rg{x) = X . g for X e M. A form œ e A{M; A) is called invariant if R*(co) = со for 
all g e G. Clearly, the set of all invariant forms is a DG-i?-suba]gebra Ai{M; A) 
of A{M; A). The cohomology G-i?-algebra of А^(М; A) is denoted by Нц)^{М\ A) 
and called the Invariant de Rham coliomology algebra of M with coefficients in A. 

It is easy to see that Aj{—; Л) and Я/рд(— ; /1) may be considered as contravariant 
functors on the appropriate category. If 7: G -> G' is a homomorphism of Lie groups 
and / : M -» M' is a y-equivariant map of a G-manifoId M into a G'-manifold M\ 
then / induces homomorphisms Aj(M'; A) -> Ai[M; A) and Hji,J^M'; A) -> 
-^ Hjj)j^[M; A). Both these homomorphisms will be denoted again b y / * . The same 
argument as in the case of the ordinary de Rham cohomology shows that y-equi-
variantly homotopic maps fo,fi- M -^ M' induce the same homomorphism of in­
variant de Rham cohomology, i.e. /0* = /f: Hjj)j^(M'\ A) -> Hfiy^^M; A). 
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We shall need the following result of C. Chevalley and S. Eilenberg [5] concerning 
the canonical homomorphism 

(4.1) Hj^^{M;A)~.Hj,^{M;A) 

(see also [6, vol. II, p. 163]). 

4.3. Proposition. Let M be a G-manifold. If the Lie group G is compact and con­
nected, then the canonical homomorphism (4.1) is an isomorphism. 

4.4. A Lie group G will always be considered as a right G~manifold. Each left 
translation L^: G -> G of G by an element ^̂  G G is an equivariant diifeomorphism 
of the right G-manifold G, and therefore it induces an automorphism L* of the 
G-i?-algebra Hj^J^G; /1). If g belongs to the connected component Go of the unit 
element e e G, then L^ is equivariantly homotopic to L^ = id, and therefore L* is 
the identity automorphism of Hu^J^G; A), It follows that the group ^^{G) = GjG^ 
of connected components of the group G operates (in a canonical way) from the 
right on the G-i?-algebra HI^R^G; A). 

4.5. Lemma. Let M be a manifold, and let a Lie group G operate on M x G 
by the canonical right action. Then the canonical homomorpJiisms 

A{M; R) 0R Ar{G; A) -> Aj{M x G; A) , 

HOR{M; R) ® K HJ^^{G; A) ^ Hjj,^{M x G; A) 

are isomorphisms. 
In particular, if M is connected and H^i^{M; R) = Ofor p > 0, then the canonical 

projection M X G -^ G induces an isomorphism Hjjjj^(G;A) ^ ^IDR{^ '^ G^M)-

P r o o f is easy. 

4.6. Lemma. Let ^ = (P, p, M, G) be a principal G-bundle and let ЖIOR{P\ A) 
be the sheaf on M generated by the presheaf U ь-̂  Hjjy^{p~\U); A). If the group 
71Q{G) operates trivially on Huyp{G', Л), the sheaf ^^wRipi ^) Is canonically iso­
morphic to the constant sheaf on M with the stalk Hijyjfi] Ä). 

Proo f follows immediately from the special part of the preceding lemma. 

4.7. Now let M be a complex manifold. In this case the tangent bundle of M 
(considered as a real manifold) has a canonical structure of a holomorphic complex 
vector bundle so that it makes sense to speak about holomorphic vector fields on 
open subsets of M and about multipHcation of vectors and vector fields by complex 
numbers. More explicitly, a vector field X on an open subset of M will be called 
holomorphic if it is a holomorphic section of the tangent bundle of M or, equivalently, 
if.SfjtJ = 0, where ^j^r denotes the Lie derivative with respect to X, and J is the 
associated integrable almost complex structure. We remark that this conception is 
a little bit nonstandard because our holomorphic fields are real vector fields. Let us 
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iiotioe that a vector field X on an open subset [/ cz M is holomorphic if and only 
if [X, i y ] = i[X, y ] for all vector fields У on U, 

A differential form œ on M with values in Л will be called holomorphic if it is 
C-linear, and for any holomorphic vector fields Z^, ..., X ,̂ on an open subset U cz M, 
the map co(Xi, ...,Xp): C/ -> Л is holomorphic. Using the property of holomorphic 
vector fields mentioned above one can easily verify that holomorphic forms constitute 
a DG-C-subalgebra Ля(М; Л) of the DG-C-algebra A{M\ Л). 

4.8. Now let us consider a principal G-bundle I = (P, p, M, G) with G a complex 
Lie group. A differential form ш on P with values in A will be called vertically 
holomorphic if the restriction of ш to any fibre of ^ is a holomorphic form (this makes 
sense since each fibre of | has a canonical structure of complex manifold). It is clear 
from the properties of invariant and holomorphic forms that all invariant vertically 
holomorphic diff*erential forms on P with values in A constitute a DG-C-subalgebra 
of the DG-C-algebra ^j(P; A). We shall denote this DG-C-algebra by Л/гя(^; ^ ) -
It will play an important role in all the rest of this section. 

4.9. Lemma. Let I = (P,p,M, G) be a principal G-bundle with G a complex 
Lie group, let (X, a) be an involution of C, and let Ä = A ®R C. Then the formula 

(4.2) s{oj) = ^*(ш) , Ш E A,y^{P', A) , 

where the bar denotes the canonical involution in A, defines an involution s of the 
DG-C-algebra AJVH{P; Л). 

Proof. We have to prove that S{(D) is invariant, that its restriction s(œ)lp~^(x) 
to a fibre p~\x) is holomorphic for any x e M, and that <i(s(a>)) = s{d(a})), where d 
is the exterior diflferential. The first property follows easily from the relation I о Rg = 
= R^^g^ ОI holding for all g e G (see Definition 2.15). Since S((D) is already known to 
be invariant, it has the second property if and only if s(co)lp~\x) is C-multilinear 
for any X e M. But this is obvious in the special case M = [x\ P = G and I = a, 
and the general case reduces immediately to this special one. Finally, the third pro­
perty is obvious. 

4.10 Lemma. Let | = {P, P, M, ô) be a principal ô-bundle with G a complex 
Lie group, let ^ = (P, p, M, G) be a real form of | associated with an involution 
{I, G) of I, let A = A ®R C, and let us identify A with the subalgebra A ® 1 a A. 
If s is the involution of the DG-C-algebra Л/кн(^? ^ ) defined by the formula (4.2), 
then for a form œ e А1ун{Р; A) we have s(^œ) = o) if and only if the restriction œjP 
of œ to P is a form with values in A, and the correspondence a> i—> co/P defines an 
isomorphism Л г я ( ^ ' "^У ^ ^ / (^^ ^ ) ^f DG-R-algebras. 

Proof. Let 0) 6 A^yniPl ^) - If ^(^) = <^, then for any point у e P and any vectors 
Fl, . . . , 14 6 TyP cz Typ we have 

a;(Ki, .. . , V,) = s{œ){V„..., V,) = co{dE{V,), ...,dl{V,)) = œ{V„..., V,) 
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since Г = id on P, and therefore dl = id on TP, This shows that colP takes vakies 
in Л. 

Conversely, let us suppose that the restriction cojP takes values in Л. Let у e P, 
andletf^i,...,F;^eT^P be any vectors. We can choose a point j e P , an element ^GG,and 
vectors F l , . . . , Vk e TyP such that j) = Rg{y) and dRg{Vj) = 9j for j = 1, 2, ..., k. 
It is easy to see that TyP = TyP © TyP, where T f̂P denotes the tangent space at у 
to the fibre of ^ through the point y. By virtue of this decomposition we can write 
Vj = v; + i F / with F ; G ГЗ^Р and F / G T ; P for 7 = 1, ..., к. Now we have 

s{co) (F l , . . . , F,) = 5(a>) H , ( F i ) , . . . , t iP^F j ) = .(o)) {V,, ..., П) == 

= co(dZ(Fi), .. . , dZ(F,)) = oj{V; - iF;', ..., F/ - iF^) = 

=. co{v; + iFr,..., F ; + iF;) = co{v,,..., n) = 
= œ(dRXV,l..., JP,(F,)) = o>{V,, . . . , !>,) , 

which proves that s{œ) = со. We remark that the fifth equahty above holds because 
co/P takes values in Л, and that we have used the fact that the tangent space TyP 
has the canonical structure of a complex vector space, and dl: TyP -^ TyP satisfies 
dZ{iV) = -idl{V) for all Ve Т;Р. 

If s[a>) — CD, the above considerations show that œ[Vi, ..., %) = 0){V^, ..., Vj^). 
This implies that ш = 0 if cojP = 0, and that any form оУ e Л/(Р; Л) can be uniquely 
extended to a form со G /1JKH(^? '^)*- This proves the last assertion of the lemma and 
completes the proof. 

Now we are ready to prove the main results of this section. 

4.11. Proposition. Let I = (P, p, M, G) be a principal G-bundle with G a reductive 
connected complex Lie group without non-discrete compact complex Lie subgroups 
{or equivalently, without complex tori), and let (̂^ = (P,-, p^, M, G,), / = 1,2, 
be any two regular forms of I. Then the G-R-algebras Hjj^J^Pi; Л) and Я/оя(^2^ '̂0 
are isomorphic. 

Proof. Since clearly Aj(Pi; A) Ä Ai{Pi;R)®RA and therefore Hioji{Pi;Ä) ^ 
^ ^1вк{Рь Щ ®R ^? if suffices to consider the case Л = R. Moreover, obviously 
we may suppose that M is connected. 

(a) Let г = 1 or 2 be fixed. Let j / ( M ; R) be the de Rham sheaf on M, i.e. 
j / ( M ; R) (U) = A{U; R) for Ù c=:M,U open, and let us define DG-if-algebra sheaves 
>s^j{Pi; R) and j / ^ on M by the formulae 

j^i{Pi; R) (U) = Äi{p; \U); R) for U a M , U open , 

j ^ \ = ^ ( M ; R) ®j, s^j{p,] R). 

There is a canonical monomorphism ^ 

(4.3) s^,{p.,R)-.^, 
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of /)G-i?-algebra sheaves, and therefore also a canonical monomorphism 

(4.4) Ar{Pr, R) -> Л, 

of DG-i?-algebras, where we have put A^ = ^\{M). We shall prove that (4.4) induces 
an isomorphism Hijyj^{Pi\ R) ^ H(Ai) of cohomology G-i?-algebras. 

Each of the sheaves in (4.3) has a canonical structure of a module over the sheaf 
j / ^ ( M ; J?). Since the sheaf J2/^(M; R) is fine, the same is true for both sheaves in 
(4.3). Further, the Künneth theorem yields that (4.3) induces an isomorphism 
Ж{^1{р1; R)) ^ c^ (^ i ) of homology sheaves. Consequently, we may apply [3, chap. 
IV, Theorem 2.2], which immediately implies that (4.4) induces an isomorphism of 
cohomology G-i?-algebras. 

(b) Let [II, (7i) be the involution of | associated with the real form ^i, and let us 
suppose that the involutions (Z^, a^) and (1̂ 2̂  ̂ 2) commute. Let us now consider 
a DG-i?-algebra sheaf ^ггн{Р1 С") on M defined by 

j^iyjjiP; C) (U) = Ajyjj{{p)~' (U); C) for и czM, U open , 

and a FDG-C-algebra sheaf j ^ on M defined by the formulae 

J = ^{M; R) ®^ ^rviiiP; C) , 

F W = e ^'"(M; R) ®я ^1уя(р; С) . 

By Lemma 4.9, the involution (Г -̂, a,) induces in a canonical way an involution of the 
DG-C-algebra sheaf ^rviiiPl ^)? ^^^ therefore also an involution of the FDG~C-
algebra sheaf j ^ . We denote both these involutions by ŝ . Furthermore the involu­
tion S'l of j / induces an involution of the FDG-C-algebra A = J^(M), which will be 
denoted by the same symbol 5̂ . It is clear that in each case we have ŝ  о S2 = S2 о s^. 
Let us further consider J /^ as an FDG-i?-algebra sheaf with a filtration given by the 
formula 

F W , = @ sé\M; R) ®^ j^j{p,; R) , 

and У4, as a FDG-i?-algebra with the filtration 

F M . = (F^J3/,)(M). 

Lemma 4.10 implies that the FDG-i?-algebra sheaf ^ ' ' can be identified with the 
FDG-Z^-algebra sheaf j / , . , and therefore the FDG-i?-algebra Ä^' can be identified 
with the FDG"i^-algebra Л,-. It means that A^ and A2 are two commuting real forms 
of the Fi)G-C-algebra Â. Clearly, Â is commutative (in graded sense) and has a unit. 
Consequently, if we knew that Â and cr = s^, т = S2 satisfy the conditions of Proposi­
tion 3.19, we could conclude by applying this proposition that the cohomology 
G-i?~algebras H[A^) and H(A2) are isomorphic. 

(c) Let ^ = (P, p. M, G) be a quasicompact real form of | , and for ^ let us define 
a DG-i?-algebra sheaf s^i{p; R), a FDG-if-algebra sheaf j ^ / , and a FDG-i^-algebra A 
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in the same way as we have defined for ^i the sheaves J^j{pi; R), -.^^t and the algebra Л,-. 
We shall show that the multiplicative spectral sequence E = {£^, d^, b^r^i over R 
associated with the FDG-i?-algebra A satisfies the conditions of Proposition 3.6 
with P = PQ being invariant under any automorphism of E induced by a y-auto-
morphism of ^, where у is an automorphism of G. 

An easy calculation using the exactness of the functor 5^ f-> 6^(M) on the sub­
category of uïiQ sheaves of abelian groups and Lemma 4.6 shows that there is an 
isomorphism 

(4.5) £2 « H^^{M; R) ®« HroaiG; R) 

of bigraded i?-algebras. Consequently, 

(4.6) £ « - * « H , ^ « ( G ; Ä ) 

as G-i?-algebras. 

It follows immediately from (4.5) that the spectral sequence E satisfies the condi­
tion (b) of Proposition 3.6. Let y be an automorphism of G, and g a 7-automorphism 
of ^. It is easy to see that via (4.6) the automorphism g^ of £2'* induced by g becomes 
the automorphism 7* of Я^£,̂ (̂G; R). Consequently, it remains to show that 
Hjjyj^(G; R) is the exterior algebra over a vector subspace P invariant under all y*, y 
being an automorphism of G. 

Let L ( G ) be the Lie algebra of G, and let Ĝ  and Ĝ  be the integral subgroups of G 
corresponding to the derived subalgebra [L(G),L(Gy] and the centre of L(G), 
respectively. Since Ĝ  is a central subgroup of G, the multiplication in G defines 
a canonical homomorphism G^ x G^ -^ G. By assumption, G is a direct product 
(both in algebraic and topological sense) of a maximal compact subgroup and a sub­
group isomorphic to R^ for some d. Using this direct product decomposition, and 
arguing similarly as in the proof of Proposition 2.9, it is easy to show that Ĝ  is 
closed, that Ĝ  x G^ -> G is a covering map with finite multiplicity, and that Ĝ  is 
compact. It follows that there are canonical isomorphisms 

Aj{G; R) ^ Äi{G, X G,; R) ^ Ä,{G,; R) ®^ Äj{G,; R) 

of i)G-i?-algebras, which together with Künneth theorem and Proposition 4.3 yields 
a canonical isomorphism 

(4.7) Hro^(G; R) « H^^{G,; R) ® „ W,^«(G,; R) 

of G-if-algebras. By [6, vol. II, Chap. IV, Theorem IV], we have 

Ho^{G,;R)^A{P,), 

where P^ is the subspace of primitive elements in H^^^G; R). Further, since G^ is 
commutative, Hj^gifi,; R) « A,{G,; R) « A{A\{G,; A ) ) , and therefore 

H^„«(G,; Ä) « Л(Р,) 

100 



with P^ = H]2)K(G^; R). All these facts together yield that HIDR{G; R) is the exterior 
algebra over the subspace P corresponding via the isomorphism (4.7) to P^ ® 1 + 
+ 1 (X) P^. It remains to show that 7*(P) = P for any automorphism y of G, but this 
follows immediately from the corresponding property of P^ and P^ since clearly 
7(G,) = G, and 7(G,) = G,. 

(d) Let us now return to the situation considered in part (b) and suppose that 
one of the real forms ^^ and (̂ 2? ^̂ У Cn is quasicompact. We shall prove that under 
this additional assumption the G-J?-algebras H[A^) and ЩА2) are isomorphic. 

Let 7 denote the element of the set {1, 2j different from /. Clearly, Uj restricts to 
the automorphism cr̂ /G^ of G ,̂ and Ij restricts to the ((Ty/Gf)-automorphism ^j/Pj 
of ^i. Let El be the spectral sequence associated with the PDG-i?-algebra Ai, and let Ê 
be the spectral sequence associated with the PDG-C-algebra Ä. The isomorphism 
Ai ^ Ä^' of PDG-if-algebras induces in isomorphism £,• ^ Ê^. = Ê^^ (see 3.18 for 
the notation) of multiplicative spectral sequences over i?, and it is easy to see that 
this isomorphism takes the automorphism (I'j/Pj)* of Èi induced by ^jjPt into the 
restriction of the involution Sj of Ê to Ê^^, This, together with (c), implies that the 
spectral sequence E = Ê^. satisfies the conditions of Proposition 3.6 with P invariant 
under Sj. Since clearly s^ and $2 coincide on £*'^ ^ Hj^J^M; R) ®д С, where they 
are both induced by the conjugation in C^ we see that the FDG-C-algebra Â and its 
involutions (7 = Si and т = 52 satisfy the conditions of Proposition 3.19, and there­
fore by (b) the G-i?-algebras H(A^) and H(A2) are isomorphic. 

(e) It follows immediately from (a) and (d) that the assertion of the proposition 
holds if the real forms ^^ and ^2 commute and one of them is quasicompact. 

(f ) Now we shall prove that the assertion of the proposition is true if both the real 
forms (̂ 1 and ^2 ^^^ quasicompact. 

Since the real form ^i is quasicompact, there is a direct product decomposition 
d = Ki X Ri, where Ki is a maximal compact subgroup of G and Ri is a closed 
central subgroup of G,- isomorphic to R^ with d depending, by Remark 2.6 (b), on G 
only. The homogeneous space GiJKi is diffeomorphic to R^, and therefore there exists 
a reduction rji = (Qi, qi, M, Ki) of ^i to the subgroup Ki. The right Gpmanifold P^ 
is clearly canonically equivariantly diffeomorphic to the right G^-manifold Qi x P,-, 
and therefore we have canonical isomorphisms 

(4.8) Ar{Pi; R) ^ A,{Qi x P, ; R) ^ A,{Qi; R) ®^ Л^(Р,; R) ^ 

^Aj{Qi;R)®^Aj{R';R) 

of Z)G-i?-algebras. Combining (4.8) with the Künneth theorem and Proposition 4.3, 
we get a canonical isomorphism 

H,,,j,{P,; R) « Я^,«(оь R) ®я Я„я(А' ' ; R) 

of G-i?-algebras. Consequently, it suffices to prove that the manifolds Q^ and Q2 
are diffeomorphic. 

By [8] any two maximal compact subgroups of G are conjugate, and therefore 
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there exists an element goe G such that K2 = g^^ .K. gQ. Since (x. g) . д(^ — 
= (x . é̂ o) • Qö^QQo for all xe Q^ and g еК^, the formulae 62 = Ô1 • ö̂ o? ^2 = 
= PIQ2 define a principal K2-bundle ri2 = {Q2, д'г^ M, K2) with Ö2 diffeomorphic 
to g j . Further, ?̂2 and /̂2 may be considered as reductions of I to the maximal com­
pact subgroup K2 of G, and therefore they are isomorphic. These two facts imply 
that the manifolds Q^ and Q2 ^^^ diffeomorphic. 

(g) In general case, the assertion of the proposition follows easily from (e), (f), 
and Proposition 2.18. 

4.12. Remark. If we use in the preceding proof Remark 3.20 instead of Proposition 
3.19, we find that under the assumptions of Proposition 4.11 there exists a com­
mutative diagram of G-i?-algebras 

г~Нпя{М\ R)-~ 

A similar remark applies to the following two corollaries of Proposition 4.11. 

4.13. Corollary. Let I = (Д p, M, G) be a principal G-bundle, where G is a reduc­
tive connected complex Lie group without non-discrete compact complex Lie sub­
group [or equivalently, without complex tori), let ^ = (P, p, M, G) be a regular 
real form of | , and let rj = [Q, q, M, K) be a reduction of | to a maximal compact 
subgroup К of G. Then there exists an isomorphism of G-R-algebras 

(4.9) Hr^^{P;R)xH^^{Q;R)®^A{R'), 

where d = dim^ G — dim^i^, and the elements of R*^ are supposed to have degree 
1. If G [or equivalently G) is semisimple, then d = 0. 

Proof. By [8] any two maximal compact subgroups of G are conjugate. This 
and Remark 2.10 easily yield that there exists a closed central subgroup î  of ö 
such that К n R = {e}, and G ' = X . i ^ = X x K i s a quasicompact real form of ô. 
Putting i' = (P', p\ M, G'), where P' = Q , R and p ' = pjP', we evidently get 
a quasicompact real form of | . By Proposition 4.11, the G-i?-algebras Hi^J^P; R) 
and Hjjyfi(P'; R) are isomorphic, and the same argument as in part (f) of the proof 
of Proposition 4.11 yields an isomorphism 

(4.10) H,^^{F; R) ^ H^^iQ; R) ®^ H,^^(R'; R) 

of G-i?-algebras. Combining (4.10) with the obvious isomorphisms Hf,)R{R^; R) ^ 
^ Aj{R^: R) Ä Ä{{R^)'') ^ Ä{R^) we get an isomorphism (4.9). 

4.14. Corollary. Let G с GL(n, R) be a reductive Lie subgroup, let G с GL(^n,C) 
be its complexification, and let К a G be a maximal compact subgroup. Let 
^ = (P, p, M, G) be a principal G-bundle, let I = (P, p, M, G) be an extension 
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of ^ to the group G, and let rj = (Q, q, M, K) be a reduction of I to the group К-
If G is a regular real form of G, then there exists an isomorphism (4.9) of G-R^ 
algebras, where d ~ dim^ G — dim^K. / / G is semisimple, then d = 0. 

4.15. Remark. By the well known de Rham theorem, we may replace HJ)R{Q; Я) 
in the both preceding corollaries by the singular cohomology algebra H*{Q; R)-
The assertion then remains valid even if the reduction rj is not smooth. 

5. PROOF OF THE MAIN THEOREM 

5.1. Keeping the notation from the beginning of Section 1, for any vector field X 
on an open subset U of M let us denote by X^^^ its natural hft [9, pp. 229-230] 
to PM\^)- It is well known that 

(a) the map X \-^ X^^^ is i?-hnear, 
(b) [X, Yj'^ = [X^'\ y(i)], 
(c) X^^^ is invariant, and 
(d) dp^X<-'^) = X. 

Moreover, it is easy to check that the value of X^̂ ^ at a point y e PM^{U) depends only 
on the l-JQtjl(X) of Z at the point x = Рм{у)' It follows that the formula 

Xy{j'^{X)) = X^'\y) , х^рф), Х е а д , 

defines an injective i?-linear map 

(5.1) Xr • / ' а д - ^ 7;(BM) , 

where Ty{Bj^) is the tangent space of Bj^ at the point y. 
It is well known that X E ^(U) is an infinitesimal automorphism of the G-structure ^ 

if and only if X^^^ is tangent to P at all points yep~^(U). Consequently, (5.1) 
restricts to an injective i?-hnear map 

xy.f J' ^«W - 4P) 
for any point у e P, and x = p{y). This further implies that in the general case 
dim J^ if^.(x) ^ m + dim G, and that ^ is 1-transitive iff Xy,<? is bijective for all 
ye P. 

Finally, let us remark that the definition of the G-i?-algebra C(i)(j^^; 5^) implies 
that its arbitrary element a of degree к defines in a canonical way alternating fe-linear 
forms 

a,: J^ if^(x) X ... X J i ^^(x) -> i? (x e M) . 

5.2. Lemma. Let us suppose that the G-structure ^ is l-transitive. Then for any 
a 6 C(j)(if^; 6^) the formula 

^''\v„..., V,) = ф-1{у,),,..,х-\{у,)), 
where у e P, x = p{y) and F^, . . . , V^e Ty(P), defines an invariant smooth form â i> 
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on P, and the formula /x(a) = â ^̂  defines an isomorphism 

fi: C(i)(if^; ^ ) ^ Ar{P; R) 
of DG'R-algebras 

Proof. Let a e C(i)(j^^; 6^). It is easy to see that for any point x^e M there is 
an open neighbourhood U of XQ and vector fields X^,..., X^ + dî G ^ =^< (̂̂ ) ̂ ^^^ that 
the 1-jets J X - ^ I ) ' ••'Jxi^m+dimG) ^^^^ ^ basis of the i?-veotor space J^ =^^(x) for 
any X e U. Using the bijectivity of ẑ ^̂  for all >; e P, we get thatZ^/^(>'),. ..,Х^+^-^^^(у) 
is a basis of Ty{P) for all уер'Щ. Since clearly a^^\X\l\ ..., X\l^)(y) = 
= (x{Xi^, ...,XiJ{p{y)) for any indices Ẑ , . . . , / j ^ e {1, 2, ..., m + dim G} and all 
J e p~^(U), we see that â ^̂  is smooth and invariant. 

It is clear that /i is a homomorphism of G-i?-algebras. To prove that it is bijective 
and commutes with the differentials, it suffices to notice that the formula 

where a G A^J(P; R), X^, . . . , X^ G <=^^(^), U is an open subset of M, and y e p~^((7), 
defines a homomorphism 

r. Ä,{P; R) - . С ц Х ^ ^ ^ ) 

of DG-i?-algebras which is inverse to ju. 

5.3. Proof of Theorem 1.5. In view of the preceding lemma, it is an immediate 
consequence of Corollary 4.14 and Remark 4.15. 

5.4. Remark. Similarly we can obtain the commutative diagram of Remark 1.7. 
To this end it suffices to apply also Remark 4.12. 
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