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Czechoslo?ak Mathematical Journal, 36 (111) 1986, Praha 

ON STRICTLY POSITIVE LATTICE ORDERED SEMIGROUPS 

JÂN JAKUBIK, Kosice 

(Received May 5, 1984) 

In this note a question proposed by M. Anderson [1] concerning subdirect product 
decompositions of lattice ordered semigroups will be dealt with. 

Let us recall the basic notions. By an /-semigroup we will mean a semigroup 
equipped with a lattice order such that the multipHcation distributes over each of the 
lattice operations, from both the left and the right (this definition is stronger than that 
applied in [2]). Let S be an /-semigroup. 

S is said to be strictly positive if ab A ba ^ b for all elements a and b in S. All 
/-semigroups considered in this note are assumed to be strictly positive. 

S is called a-simple if for any elements a and b of S there exist positive integers m 
and n for which 

a ^ b"^ and b й «". 

S is said to be a nil-l-semigroup if it has a zero element 0, and some finite power 
of every other element equals 0. 

We denote by j / the class of all ^-simple nil-/-semigroups. If S e s/ and if the 
element 0 is finitely join irreducible (that is, if a v Ь = 0 impUes that a or Ь is 0) 
then S is said to be a step. 

Let jR be a congruence relation on S. The corresponding factor /-semigroup is 
denoted by SjR. The symbols Ĵ o ^^^ ^ i always denote the least and the greatest 
congruence relation, respectively. The congruence relation R is nontrivial if RQ + 
Ф R Ф Ri- For XE S, x{R) is the set of all 3; G S with x R y. 

If the semigroup operation of S is not taken into account, then the corresponding 
lattice will be denoted by (S; л , v). The /-semigroup S is said to be distributive if 
the lattice (S; л , v) is distributive. 

If X and у are elements of a lattice such that x is less than y, then the relation 
X ^ у is called a nontrivial comparability relation. A lattice is said to be discrete 
if each of its bounded chains is finite. 

The following theorem was proved in [1] : 
(A) Let S e se and let S be distributive. Then S is a subdirect product of steps. 
Also, in [1] the following question is proposed: 
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Question. /5 Theorem (A) true for non-distributive l-semigroups'! 

Let us denote by ^ the class of all /-semigroups S e s^ such that S cannot be re­
presented as a subdirect product of steps. The above question consists in asking 
whether the class ^ is empty. 

The following existence results (B) and (C) show that the class ^ is rather large. 

(B) For each cardinal a ^ 5 there exists an Usemigroup S such that the lattice 
{S, Л, v ) is modular, S e^ and card S = a. 

Proof. Let j5 be a cardinal such that oc = ß + 2. Let S = {и, v, ajje/, card/ = ß. 
The partial order g on S is defined as follows: w < â  < t; for each i e / , and â  

Fig. 1 

is incomparable with aj whenever i and j are distinct elements of S. (Cf. Fig. 1.) 
Hence (S, л , v ) is a modular lattice. For any x, у e S put xy = v. Then S is an l-
semigroup belonging to the class ^ and card S = a. 

S fails to be a step, since v is finitely join-reducible. By way of contradiction, sup­
pose that S does not belong to ^ . Hence S can be represented as a subdirect product 
of steps Sk {k e K). For each кеК there exists a congruence relation R^ on S such 
that Si^ is isomorphic to SJRj.. Since iS is not a step, we must have JR^ ф RQ for each 
кеК; without loss of generality we may assume that Rj^ =^ R^ for each кеК. 
Each Rk is also a congruence relation on the lattice (S, л , v ) . Because this lattice is 
discrete and any two of its prime intervals are projective, we have Con ((S; л , v)) = 
= [RQ, R^]; thus jRfc G {RQ, R^} for each ke K, which is a contradiction. 

(C) For each infinite cardinal a there exists a system 9" = {Sjj-gi of l-semi-
groups Si such that 

(i) card/ = a; 
(ii) // i,j el, then {Si, A i, v , ) = (Sj, AJ, Vy) (i.e., the underlying sets Si and Sj 
coincide, and the corresponsing partial orders are the same); 
(iii) Si fails to be isomorphic to Sj whenever i and j are distinct elements of I; 
(iv) 5^ с <̂ . 

Proof. Let a^(/ el) be distinct cardinals and for each / e / l e t J(i) be a set of indices 
with card J{i) = â . Let 

S = {и, Wi, V, ai, bij} {iel, {ij)el x J( i ) ) . 
é 
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We define a partial order ^ on 5 by putting 

и < Ui < ûi < bij < и 

for each iel and each {ij)el x J{^i); no other nontrivial comparability relation 
is assumed to be vaHd in S, Then (5; ^ ) is a lattice (cf. Fig. 2). 

For each iel WQ now define a binary operation o,- on S as follows: let x, y e S; 
we put X 01У = ui if X = y = и, and x oiy = v otherwise. Put S; = {S; л , v , of). 
It is easy to verify that S^ e se. Hence the conditions (i) and (ii) are valid. 

ou 
Fig. 2 

Suppose that / andj are distinct elements of/ and that there exists an isomorphism 
cp of Si onto 5j . Then (p is an automorphism of the lattice (S; л , v ) . Thus w, w ,̂ a^ 
and a J are fixed points of (p. Hence we have 

a I — (p{a}j = (p[u Of M) = (p{ti) oj (p{u) = и oj и = aj , 

which is a contradiction. Therefore the condition (iii) is fulfilled. 
For proving (iv), we proceed by way of contradiction. Suppose that there exists 

i el such that Si does not belong to ^ . Hence Si can be represented as a subdirect 
product of steps T^ (m e M). Since S^ fails to be a step, there are non-trivial con­
gruence relations i^^ (m e M) on Si such that SiJR^, is isomorphic to T^ for each 
m G M , a n d ЛшеЛ/ ^ m = ^ 0 -

Let m e M be fixed. Let 7(1), j(2) be distinct elements of/. 
We have 

Because S /̂K^ is a step, и(Кш) niust be finitely v -irreducible, hence we have either 
^y(i)(^m) = ^(^m) or aj(^2){^m) = ^(^m)- I^ ordcr to fix thc uotatiou, let us suppose 
that the first of these two possibilities occurs. Let j(3) e I, j{i) Ф j(3) Ф j(2). From 
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^j(i) ^m ^ we obtain 

Wi = aj-(i) л ад2) Rm^ ^ ^Л2) = ^Л2) ' 

Ml = «Л1) ^ ^ЛЗ) Rfn^ ^ <̂ ЛЗ) = ^ЛЗ) ' 
whence 

Therefore Wi Я^ Î; for each m. Thus U^RQV, which is a contradiction, because 
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