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(Received October 30, 1984) 

1. Introduction. The notion of a tolerance dates back at least to E. C. Zeeman 
[22]. A tolerance Ton a set X is simply a reflexive symmetric binary relation on Z , 
and a tolerance space is a pair [X, T) where Â  is a set and T a fixed tolerance on X, 
These ideas were apphed to automata theory by M. A. Arbib ([1], [2]) so that some 
form of "continuity" could be apphed to the state set of a finite automaton. To say 
that a function / : Z -^ X on a tolerance space (X, T) is continuous is to say ([2], 
p. 225) that xTy implies/(x) Tf{y) for all x, y eX. The set of continuous functions 
on (A, T) evidently forms a semigroup under composition. With a sHght change of 
perspective, one can fix one's attention on a specified semigroup S of mappings 
on the set A, and then consider only those tolerances on X that make the mappings 
continuous. This is the viewpoint that will be adpoted here. 

Tolerances on algebraic structures were introduced by B. Zelinka [23]. Though 
the bibliography is by no means complete, the reader might note that apphcations 
to lattice theory appear in [3], [5], [6], [7], [8], [9], [10], and [21]. Results appearing 
in [3] and [9] on complemented tolerances form the basis on which the present paper 
rests. Our goal will be to provide a setting general enough so that these results may 
be extended and related to similar results on congruences that appeared in [14], 
[15], and [16]. 

2. Preliminary concepts. Throughout the paper, ^ will denote a bounded lattice 
and ^ a semigroup of isotone mappings on ^, subject only to the condition that ^ 
contain the identity map. Consider the following conditions that a reflexive symmetric 
binary relation R on L might enjoy: 

(1) aRb =>ф{а) R ф{Ь) for all ф e ^ . 
(2) aRb, cRd => (a v c) R{b v d), and (a л с) R{b л d), 
(3) R is transitive. 

We agree to call R a set- theoretic ^-tolerance if it satisfies (1), an ^-tolerance 
if it satisfies (1) and (2), and an ^-congruence if all three conditions hold. These 
three classes of relations will be denoted respectively by the symbols ST(.9^, =^), 
LT(5^, J^) and Con(c9^, =^), and they wifl each be ordered by set inclusion. In case ^ 
consists only of the identity map, the simpler symbols ST(if), LT(=^) and Con(if) 

108 



will be employed. It is well known that ST(.^, ^), h%9', ^) and Con(5^, 5£) each 
form complete algebraic lattices whose least element is zi = {(a, d)\ ae ^}, and 
whose greatest element is J5f x o^. The meet operation is in each case set intersection, 
while the join operation in Con(c9^, câf) coincides with that in Con(if); indeed, it is 
easy to see that Con(^, ^) is necessarily a complete sublattice of Con(j^). Similarly, 
the join operation ST(^, JèP) is set union, and ST(5^, ^) is a complete sublattice 
of ST(if). The join operation in LT(.9^, ^) is more difficult to describe. Given 
a reflexive symmetric relation R on ^, let t[R) denote the collection of all ordered 
pairs of the form (a v c, b w d) ov (a A c, b A d) with aRc and bRd; let s[R) be 
all ordered pairs of the form {ф{а), ф{Ь)) with ф e «5̂  and aRb. The .9^-tolerance 
generated by R is evidently the set of all ordered pairs of the form (/(a),/(b)) with 
aRb a n d / t h e composition of finitely many functions of the form s or t. For a family 
{T^} of elements of LT(^ , =^), it is evident that y^T^ in LT(^ , ^ ) is the ^-tolerance 
generated by Ua^a- For a,b e S^, it will be convenient to let T<^{a, b) denote the 
e9^-tolerance generated by ( J u (a, b) u (b, a)]. Similarly, we shall let ^^^(a, b) 
denote the set-theoretic 5^-tolerance and все{а, b) the ^-congruence relation generated 
by the pair {a, b]. 

It will now be assumed that 9^ contains all meet and join translations of L. In 
case ^ consists only of these translations, we shall write 5'^(a, b), Ty (̂a, b) and 
Ocf{a, b) in the more simple form S{a, b), T[a, b) and 0(a, b). Our immediate goal 
is to provide a sHght generahzation of [3], Lemma 2.1, p. 374. Before doing so, 
some terminology is needed. A quotient of Lis pair ajb of elements of Lfor which 
Ö ^ b. To say that the quotient a/b is 5^-projective onto cjd will be to say that 
с = ф{а) and d = ф{Ь) for some ф e 6^. The symbol ajb -^^ cjd will be used to 
denote this fact. In the case where У consists only of the identity map and the join 
and meet translations of if, 5^-projectivity is the reverse of the notion of weak 
projectivity that was introduced by Dilworth [11]. We now have 

Lemma 1. Given Те ST(^ , ^) and 0 e Con(c$^, ^) with Тяв, let Q be the set 
of all ordered pairs (a, b) such that (1) a0b, and (2) a v bja л b -^^ cjd with cTd 
implies с = d. Then Q e Con(c9^, =âf) and in ^'T[^, ^), is the relative pseudo-
complement of T in 0. 

Proof. If r e S T ( ^ , ^ ) , r я 0 and Tn Г = A, then аГЬ clearly implies 
a V bVa V a, and a л аТ'а A b. If a v bja л b ->"̂  cjd with cTd, and if ф e ^ 
is the mapping for which ф{а v b) == с and ф[а A b) = d., then ф(а v b) V ф{а) 
and ф{а) Тф[а л b) together imply that ф(а v Ь) = ф(а) = ф[а л Ь), so с = d. 
It follows that T ^ Q. We would be done now if it could be shown that 
Q e Con(.$^, ^ ) . In view of [12], Lemma 4, p. 149, we need only establish that 

(a) aQb, Ф G S implies ф{а) Q ф(Ь), and 
(b) а ^ Ь ^ с with aQb and bQc together imply that aQc. 

To establish (a), we must show that if aQb 

ф{а) V ф{Ь)1ф{а) A ф{Ь) ->^ eld with cTd 
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implies с = d. But 

ф{а V Ь) ^ ф{а) V ф{Ь) ^ ф{а) л ф{Ь) ^ ф(а л Ь) 

says that (/)(а v Ь)1ф(а л Ь) -»"̂  c/J, and from this с = d follows. To estabhsh (b), 
note that if a ^ b ^ с with aQb and bOc, then авс is clear from в e Con(^ , J^), 
and ajc ~^^ xjz with xTz forces the existence of an element у such that ajb -^^ xjy 
and bjc ~^^ yjz. But now x = у = z, thus completing the proof. 

This now leads immediately to 

Theorem 2. Each of ST(^ , if) , LT(^ , if) a?t(i Con(i^, if) /s a pseudocomple-
mented lattice. For a given TeST(5^, if), T* as computed in ST(5^, if) is necessari­
ly an .9^-congruence on L. 

3. Tolerance kernels. Let Те ST(5^, if). The kernel of T is defined by the rule 
{x e 5£\ хЩ. This is evidently an order ideal of if; if Т е LT(^ , 5e\ then ker(T) 
is even an ideal of S£, In any event, it is always ^-projective (see [14]) in the sense 
that if i^ = ker(T), then 

a еК , b S a V X with b A x = 0 together imply b еК . 

The idea of a distributive ideal appears to be due to O. Ore [19]. To say that the ideal 
D is distributive amounts to saying that the binary relation 0(D) defined by 

X 0(D) у if and only if x v d = у v d 

for some J e D is a congruence on L. We shall also need the notion of a standard 
ideal [13]. This is an ideal S for which the binary relation 

X 0[S) y if and only if x v y = (x A y) v s 

for some s e 5 is a congruence on £^. H. J. Bandelt ([3], p. 377) mentions the fact 
that if ^ is section complemented, then LT(if) = Con(if). We shall now extend 
this by showing that in such a lattice if the kernel of a set-theoretic tolerance T is an 
ideal, then Te Con(if). To this end, we note the following generalization of [9], 
Theorem 1, p. 55: 

Theorem 3. Let D be a distributive ideal of Lfor which 0(D) e Con(c9^, ^). If T 
is the smallest set-theoretic ^-tolerance having kernel D, then T = 0(D). 

Proof. Evidently, T £ 0(D), so assume that a 0(D) b. Then (a v b) 0(D) (a л b) 
and (a V b) V d = (a A b) V d fox some d e D so that dTO implies [(a л b) v 
V d] T[(a A b) V 0], and (a v b) A [(a A b) v d] T(a v b) A [(a A b) v 0] . 
But (a V b) A [(a A b) v d^ = (a v b) A [i^a v b) v d^ = a v b, and (a v b) A 
л [(a л b) V 0] = a л b, from which (a v b) T(a л Ь), and consequently aTb 
follows. This shows that 0(D) ç T. 

Corollary 4. / / L is section complemented, then lJï(^, 5£) = Con(5^, £^); 
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furthermore, if the kernel of the set-theoretic tolerance T is an ideal of if, then 
Te Con(^ , if). 

Proof. It suffices to estabhsh the second assertion, so let Te ST(5^, if) with К = 
= ker(T) an ideal of ^ . A shght modification of [14], Theorem 4.2, p. 293 shows К 
to be a standard (hence distributive) ideal of ^ . By the Theorem, в{К) ^ T On the 
other hand, if aTb, and if t is a complement of a A b in [0, a v b], then teK 
shows that a в(К) b, and from this we obtain T = 9[K). 

Remark 5. The assertion that К = ker(T) be an ideal of i f is really needed. To see 
this, let ^ = {0, a, b, 1} be a four element Boolean algebra with 0 < a, Ь < 1. 
If Tis the set-theoretic tolerance obtained by collapsing the quotients ajO, bjO, 1/a 
and 1/b, then Тф Con(if), and ker(T) = {0, a, b} is not an ideal of ^ . 

4, Complementary tolerances. The question of the meaning of an «9^-tolerance 
having a complement in LT(y , ^) or Con(5^, ^) will now be addressed. In view 
of Theorem 2, we may restrict ourselves to the consideration of ^^-congruences. 
The basic groundwork was laid by H, J. Bandelt ([3], Lemma 2.3, p. 375) and we 
begin by extending that result to the present context. 

Lemma 6. Let Ti, T2 e LT(^, ^) with T^ n T2 = A. Then T = T^ v T2 is given 
by the rule aTb if and only if there exists elements Ci of L[i = 1, 2) such that 
a V b = Ci V C2, a A b = c^ A C2, and CiTia л b. 

Proof. By [3], Lemma 2.3, p. 375, T = T^ v T2 in LT(if). Thus we need only 
estabhsh that Те LT(5^, ^). To do this, assume aTb, and let ф e S. Then 

ф{а V Ь) = ф[с, V C2) ^ ф{с,) V ф{с2) è ф{с^) A ф{с2) ^ 

^ 0(Ci л C2) = Ф{С1 A b) . 

Using the fact that ф{с^) л ф{с2) (Т^ п Т2) ф{а л Ь), we have ф{а А b) = 
= ф{с^) А ф{с2). А similar argument produces ф[а v b) = 0(ci) v ф{с2), and 
from this ф{а) Tф{Ь) follows. 

We may now generahze [9], Theorem 3, p. 57 and [16], Thoerem 2, p. 88 by noting 

Theorem 7. An ^-congruence T has a complement in hT[^, ^) if and only if 
there is a central element z of L such that T — 0(0, z) and 9[z, 1) e Con(5^, ^), 

Proof. If T, T' are complements in LT(.9^, ,^), then by Lemma 6, there exist 
elements z, z' such that zTO, z'T'O, and 1 = z v z'. Since 0 (Гп T') z л z\ we must 
have z л z' = 0. For a given x e ^, zTO imphes (x v z) л (x v z') T(x v 0) л 
л (x V z') = X. Similarly, (x v z) л (x v z') T' x, whence (x v z) л (x v z') = 
= X. Now zTO implies 1 = z v zTO v z' = z'. Since also IT'z, a dual argument 
produces X = (x л z) V (x л z'). By [14], Theorem 7.2, p. 299, z is central. We 
must still argue that T = в{0, z). From the proof of Theorem 3, 0(0, z) ç T. To 
estabhsh the reverse inclusion, note that aTb implies a v zTb v z. Now zT' l 
with z ^ (a V z) л (b V z) ^ (a V z) V (b V z) ^ 1 forces a v zT'b v z, and 
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from this a V z = Ь V z follows, thereby showing that T = 6(0, z). Dually, Г' = 
= 0[z, 1). The converse is clear. 

Note that [16], Theorem 2, p. 88 is vaHd for c9^-congruences, as well as congruences; 
furthermore, [9], Theorem 3, p. 57 may be generalized by removing the restriction 
that the lattice be modular as follows: 

Theorem 8. Let z, z' be complementary elements of if, with T = T^(0, z) and 
T = T</{Q, z'). The following conditions are then equivalent: 

(a) z is central J 0(0, z) = 0^(0, z) and ö(z, 1) = в^[г, 1). 
(b) ву{0, z) n в,^{0, z') = A. 
(c) Тп Г = А. 
(d) Т and Т are complements in LT(5^, ^), 

Proof, (b) => (c) is clear, and so is (c) => (d). To estabhsh (d) => (a), note that 
by Theorem 7, there is a central element z^ such that T = 0(0, z^) with T = e{z^, 1). 
Evidently, z ^ Zj, and the fact that z^ л z' (Тел V)0 implies that z = z^. This 
leaves us to establish (a) => (b). In that [0, z'] = ker(ö(z, 1)), Theorem 3 now 
shows that T = 0^(0, t) and T = 0^(0, z'), so (b) is clear. 

In view of Theorems 7 and 8, it is appropriate at this point to introduce the notion 
of an e9^-central element. This is a central element z for which 0(0, z) = 0^(O,z) 
and 0(0, z) = 0^(0, z). It follows from Theorem 8 that the =^-central elements of L 
form a Boolean sublattice of L, which will be denoted as Zc^(jJ). \ï 6^ consists of only 
the join and meet translations, then z 5^-central is equivalent to z being central, 
and Zc^[L) becomes the center of L. 

If Te LT(5^, ^) has a complement in LT(5^, if) , then it also has a complement 
in Con(5^, if). The converse is not true, and this may be seen by letting T = T^O,z), 
where z is a neutral element of i f that has no complement in if. If i f is comple­
mented, the converse does, however, follow from [16], Theorem 2, p. 88. 

5. Stone lattices. The term Stone lattice will be used here to denote a bounded 
pseudocomplemented lattice in which the pseudocomplement of each element has 
a complement. In [15] and [16], an investigation was launched into lattices ^ 
in which Con(<^ )̂ is a Stone lattice. This investigation was carried out in terms of 
axioms involving weak projectivity, and was thus related to properties of the lattice 
^ . It is equally possible to think of the problem in terms of 5^-congruences, and 
investigate the situation in terms of properties of the semigroup ^ of isotone 
mappings of if. It turns out that the results and proofs carry over with only minor 
modifications, so that some of our discussion here will consist only of an indication 
of the possibilities. The analogue of Axiom (A) of [15] is 

(i^. A) a/0 ~^^ cjd with с > s implies cjd ->"̂  ^i /^i for 

suitable elements a^, ^2 such that a ^ a^ > «2 • 
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[15], Lemma 1, p. 178 now translates as 

Lemma 7. Axiom ( ^ , A) is equivalent to the assertion that for every ^-con­
gruence relation в on L, aö*0 iff the interval [0, a] contains only trivial classes of 9. 

Axiom (B) becomes 
(5^, B) a > b implies the existence of an element t such that tOl but t '^ a, 
where в is the ^-congruence relation generated by ajb. 

The proof of [15], Theorem 3, p. 179 now carries over to produce 

Theorem 9. The following conditions are equivalent: 
(1) For each ^-congruence relation в on L, aö*0 о a is a lower bound for 

{teL: Ш } . 
(2) ^ satisfies ( ^ , A) and (У, B), 

The analog of [16], Theorem 4, p. 89 may now be stated as 

Theorem 10. (1) Let ^satisfy the duals of axioms ( ^ , A) and (5^, B). If LT{^, if) 
/5 a Stone lattice, then the kernel of every ^-tolerance on 5£ has a supremum 
in ^ . Furthermore, if i f /5 complemented, then LT(5^, if) a Stone lattice is equi­
valent to Соп(У', if) being a Stone lattice. 

(2) Let 5£ and its dual satisfy (У, Ä) and (5^, Б). / / the kernel of each ^-con­
gruence of ^ has a supremum in S£, then JJT{£^, ̂ ) is a Stone lattice. 

Proof. (1) follows from Theorem 2, Theorem 7, and the proof of [16], Theorem 
4(1), p. 89. To estabhsh (2), let Те L T ( ^ , ^). By Theorem 2, Г*, Г** e Con(^ , ^). 
By hypothesis, z = V{ker(T**)} and z' = V{ker(T*)} both exist in L. By Theorem 
9, we must have zr**0, z'T^O, zT*!, and z'T**l. It is now apparent that z and z' 
are complementary elements of ^ . By Theorem 8, z is central and T*, T** are com­
plements in LT(.^, J^). 

A rather curious connection exists between results in [17] and LT(^ , ^) being 
a Stone lattice. In what follows, when we speak of Z^(if) being a complete sublattice 
of ^, we shall mean that for any family {z^} of elements of Z^{^), both ZQ = /\^z^ 
and z^ = Va^a ^^ist in ^, and are themselves ^-central. 

Theorem 11. / / LT(5^, ^) is a Stone lattice, or if ^ is complemented and 
Con(^ , ^^ is a Stone lattice, then Zcf[S^) is a complete sublattice of ^, 

Proof. Let { z j be a family of i^-central elements, T« = T\f), z j , and T = Ç\J^. 
Then Тел T^ = Л implies Г** n Г / = A, so that T** ç O^T^ = T. It follows 
that T has a complement in LT(^ , ^), and by Theorem 7, there is an 5^-central 
element z such that T = TyO, z). Evidently, z = A^z^. A dual argument apphes to 
suprema. 

If the conditions of Theorem 10 (2) hold, then it is clear that for each element a 
of L, the smallest c9^-central element dominating a is the supremum of the kernel 
of 6^(0, a). We also mention that [15], Theorems 6 and 7, pp. 180 — 181 can be 
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put in the present framework, as well as some earlier work by C. S. Johnson [18] 
and B. J. Thorne [20]. 

6. Complete tolerances. We generalize a definition of R. Wille [21] by saying that 
a tolerance T on L is complete if for each x e L, there correspond elements Xj, x^ 
such that 

{y E L: xTy} = [xj^, x^] . 

If we now define фт[х) = Xj, and Фт{х) = x^, we may note that 

фг(х) -^ у о X A уТх о уТх V у о X -^ Фт{у) • 
This shows that ф^ is residuated in the sense of [4], p. 11. Note that Tis completely 
determined by ф^ in that xTy is equivalent to the assertion that x ^ Фт{у) ^^^ 
у ^ Фт[^). Suppose now that ф is a decreasing residuated mapping on Lwith ф"̂  
its associated residual mapping. By [4], Theorem 2.9, p. 13, ф'^ is an increasing 
mapping. Thus we have 

ф{х) й X й Ф'^[х) 

for every x e L. Let us define a binary relation Ton Lby the rule 

xTy if and only if x ^ ф(у) and у ^ ф{х) . 

Note that xTy is also equivalent to x ^ Ф'^{у) and у S Ф^(-^)- Because of this, it 
is easy to see that Tis a complete tolerance on Lfor which ф = фJ. and ф'^ = ф^. 
It is even true that if x̂ Tĵ ,- for all f, and if x = V/^i? У — Vtyt both exist, then xTy, 
with a similar assertion vahd for arbitrary existing infima. [4], Theorem 15.1, p. 
144 estabhshes a bijection between complete congruences and idempotent decreasing 
residuated maps. The corresponding result for complete tolerances may now be 
stated as 

Theorem 12. Given the complete tolerance relation T, if ф^ is defined by the 
rule фт{х) — l\\yeS£\ уТх}, then ф^ is a decreasing residuated mapping. The 
correspondence T-> ф2^ sets up a bijection between complete tolerances and 
decreasing residuated mappings. Under this bijection, complete congruences 
correspond to idempotent decreasing residuated mappings. 

[4], Exercise 15.2., p. 149 may now be used to deduce 

Corollary 13. Any complete tolerance on a bounded section semicomplemented 
lattice is in fact a congruence. 

The result of Corollary 13 remains valid if ^ satisfies the condition that: 
a > b implies the existence of an element t such that ajb -^ tjO, t -^ a, but t ^ b. 

A further investigation of complete tolerances is most certainly called for, but this 
will be reserved for a later paper. 
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