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SVAZEK 10 (1965) APLIKACE MATEMATIKY ČÍSLO 3 

THE MOTION OF A COLD FRONT 1 ) 

EUGENE ISAACSON 

(to topic c) 

INTRODUCTION 

The motion of a layer of cold air on the rotating earth, can be formulated as 
a symmetric hyperbolic first order system in terms of two horizontal velocity com­
ponents and the depth. The following two-dimensional model incorporates the 
"average" effect that the upper warm air layer has on the cold air; neglects thermo­
dynamics and incompressibility; and incorporates the hydrostatic pressure law 
(see [1]): 

(1) PT + AP4 + BPn= QP + K, 

where 

/ 0, F, 0\ 
QEE U F , 0, 0 , 

\ o, 0, 0/ 

in dimensionless variables, with F and G constant, (u, v) = horizontal velocity com­
ponents, <P2 = 4 • (depth of cold air). 

Equation (l) is to be solved with initial data given at r = 0, and appropriate 
boundary data in the changing domain <P > 0. 

<P(£, rf9 T) = 0 is the "cold front." 

}( The work presented in this paper was supported by the AEC Computing and Applied 
Mathematics Center, Courant Institute of Mathematical Sciences, New York University, under 
Contract AT (30-l)-1480 with the U.S. Atomic Energy Commission. 

The work herein reported on is a joint effort of A. Kasahara, J. J. Stoker and myself (see [3]). 
In the short space available to produce this paper, the author presents an abstract of that work and 
is ready to accept the sole blame for any shortcomings. 
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The motion of the "cold front" is determined by replacing (1) by finite differences 
and following the motion of "frontal points" (£-(T), */-(T)) satisfying 

(2) <P(^(x), nix), x) = 0 . 

The meteorological "occlusion" process, which is characterized by the development 
of a cusp at the cold front, is found to begin in the numerical results. 

The above example was offered at the Conference at Liblice, as a challenge to 
numerical analysts to develop efficient methods for the solution of "free boundary" 
problems. 

METHOD OF SOLUTION 

In the interior of the region of cold air, the finite difference scheme to approximate 
(1), of second order accuracy in the time step AT, is found by setting at (£, n) 

(2) P(T + AT) = P(r) - <A> P£c + JTAT) . AT -

- <B> P„(T + | A T ) . AT + (Q<P> + K) . AT , 

where 

We then express 

<«> = i [ đ ( т + Дт) + ű(т)] . 

P,(x + | A T ) = P,(x) + ^ L (PT(x)) + 0 ( A T 2 ) , 
2 CQ 

where Pr is replaced by using (1). (See [2] for a systematic discussion of difference 

schemes.) 

Finally, since w, v and $ appear linearly in A and B, (2) can be written in the explicit 

form 

(3) P(C, r\, T + AT) = S P(£, r/, T) + K* AT , 

where S is a difference operator in (£, f/) which involves the eight nearest neighbors, 
that is, for ?, j = — 1, 0, 1, '(£ + i A£, ^ + j A^), while K* is a vector. At interior 
points whose eight lattice neighbors are not interior to the cold air region at time T, 
a slightly different procedure is used. 

We solve the initial-boundary value problem for (1) in a domain bounded on 
the South by the front <P = 0; on the East and West by the periodicity condition 
P(£, ^, T) = P(c + D, ^, T); and on the North by a mountain range with the condition 
v(£, Y, T) = 0. The motion of the front is determined by following the motion of 
points that are originally selected to be about 0.8 A£ apart. 
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— ř Fig. 1. 
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In our calculations, we used D ~ 1500 km, Y ~ 1500 km, A£ = At] = As ~ 16 km, 
AT ~ 600 sec. We followed the motion which resulted from an initially "sinusoidal" 
front for approximately 11 hours. At the end of this time, the cold front had an 
asymmetric shape typical of the beginning of the occlusion process. In Figure 1 we 
plot the initial contour lines at 5,000 ft. intervals and in Figure 2 we plot the contour 
lines after 11 hours. 

CONCLUSION 

A large amount of human and machine effort was needed to formulate and 
partially solve the above mathematical problem. The only difficulty in solving (1) 
arose from the occurrence of the free boundary. Before such free surfaces can be 
incorporated into the solution of more complete meteorological problems, consi­
derable simplification of the numerical method is needed. 
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