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DERIVATION OF NON-CLASSICAL VARIATIONAL PRINCIPLES
IN THE THEORY OF ELASTICITY

IvAN HLAVACEK

(Received December 27, 1965.)

1. INTRODUCTION

Methods of approximate solution of boundary-value problems in the mechanics
of solids are often based on the variational principles, concerning the extreme (RITZ’S
and TREFFTZ’s method) or merely the stationary value (BUBNOFF-GALERKIN's method)
of certain functionals. Hence the effort follows to derive the variational principles
also in the newer fields of the mechanics of solids, as e.g. in the geometrically or
physically non-linear theory of elasticity, theory of viscoelasticity, theory of plasticity
a.s.0.

It is the object of the present paper to suggest a certain scheme for deriving the
complete group of variational principles, which is known already in the linear
theory of elasticity. This group is composed partly of four fundamental principles:
classical principles of the minimum of potential energy (LAGRANGE—D[RICHLET) and
that of the minimum of complementary energy (CASTIGLIANO-MENABREA), generalized
principles of Hu HAI-CHANG-W AsHIZU and of REISSNER-HELLINGER, partly of a series
of the special variational theorems, following from the generalized principles. An
analogous scheme would be possible to use for deriving similar variational principles
in the newer branches of mechanics, too.

The group of variational principles, mentioned above, could, however, incite
a research of the possibilities to define newly the weak (generalized) solutions of the
boundary-value problems in the theory of partial differential equations. These
definitions are based (for the elliptic equations and systems) solely on the principle
of the minimum of potential energy. A question arises about the suitability of other
definition following from some of the further three fundamental principles.

Finally the questions about the convergence of the approximate methods, based
on the non-classical variational principles and theorems, stand out. The answer
to one of them only — that of the “theorem for boundary conditions” — is presented
here in the last section.

15



2. CLASSICAL PRINCIPLES

Let us consider the mixed boundary-value problem in the classical theory of
elasticity for the body, occupying a bounded region Q of the three-dimensional
Euclidean space, having sufficiently smooth boundary I". Suppose that

r=r,ul,

where T, and T'p are two mutually disjoint parts of the boundary. Let the displace-
ments be given on the part T',, i.e.

(1) u;=ia; on T

u

and the surface charge be given on the part I'p, i.e.
(2) Ty = P; on T'p,

where t;; are the components of the stress tensor, n, the components of the unit
external normal-vector to I" and the sums over repeated indices are implied; i, k =
=1,2,3.

For this problem the well-known classical principle of the minimum of potential

energy (Lagrange-Dirichlet) — see [3], § 26 — holds in the form

¥ = min.,
where
(3) g(”is &) = J (%Ciktmsihatm - K.’"i) dx - f Pu;dsS.
o) r,

In (3) the components of the strain tensor are given by
(4) Eix = %(“i,k + uk,i)

on the class of sufficiently smooth vector-functions u(X) of the displacements, which
satisfy the boundary condition (1), ¢, are coefficients of the generalized Hooke’s
law in the relations

(5) Tik = CikimEim 1)

and u; , = 0u;[0x,, K; are the components of the vector of body forces.

The second classical variational principle is the principle of the minimum of
complementary energy (Castigliano-Menabrea). It corresponds to the principle
of the minimum of potential energy in the following sense: the components of stress-

3
— 2 —
Ly It holds Cigpm = Ckilm = Cimik> CiklmEikEim = Ho kZI«em (ng = const. > 0).
i,k=

16



tensor correspond to the components of displacements, the equations of equilibrium
to the equations of compatibility and the statical boundary conditions to the geo-
metric boundary conditions. It is possible to derive this principle directly on the
base of the positive-definiteness of the quadratic form, expressing the density of the
strain energy by means of the stress components (see [5]), or by the method of or-
thogonal projections in the corresponding Hilbert space (see [3], §54).%) With
respect to the further procedure it is suitable, however, to show here the derivation
of this principle from the principle of the minimum of potential energy using the
Friedrichs’ method (see e.g. [1] or [2]). The latter way of derivation is in the linear
theory of elasticity more tedious than the method using positive definiteness of the
energy, but only the Friedrichs’ method is convenient for the non-linear cases of
statical and dynamical problems of the theory of elasticity (see [9], [10]).

Let us sum up (4) and (1) as the side conditions with coefficients A,(X), u(X)
to the functional #(u,, ¢;) according to the Lagrange’s method of multipliers and
let us express the components ¢; everywhere by means of the components t; ac-
cording to the generalized Hooke’s law in the form inverse to (5):

(51) Eik = AikimTim -
We obtain the functional
H(ui, Tirs Aito lii) = j {%aimm’ﬂkﬁm - Ku; + )'ik[_aiklmrlm + %(“i,k + “k,i)]} dX —
Q
- J. Pu,dS + J‘ plu; — ;) ds,
re Ty
where all variable functions are independent except the relation
A = Qg -

Let us form the corresponding variation and use the symmetry

Aikim = Aimik
and the integration by parts. Hence we obtain

0H = J {aiktm(ftm - llm) 0Ty — ("{ik,k + Ki) ou; + [_“iklmTtm +
Q

Yy + )] O} dX + j (s + Aang) Sus + (u; — ) 6y} dS —
I

- j (P; — Ayny) 0u; dS .
re

2) The method of orthogonal projections was used by the author to derive an analogous
principle in the linear viscoelasticity (see [4]).
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Now choose among the conditions which follow from 6H = 0 only the following
conditions:

(6) QigtmTim — Am) = 0 on Q,
(7) Aux +Ki=0 on Q,
®) fi+ Agn, =0 on T,,
©) ‘ —Apny + P, =0 on Tp.

We have omitted just the conditions (1) and (4). The condition (6) implies, using
that the matrix @, (considered e.g. with double subscripts [ik], [Im]) is regular,

(10) A = Ti -

Insert (7), (8), (10) into H(u, Tie i ;). We are led to a new functional
H1(“i, )vik) = J‘ {%aiklm}'ikllm + Wik x — QiimAictim T+
Q

+ %/{ik(u,"k + uk,i)} dX + J

e

— Pu,;dS + j — damu; — u;)dS .

Tu
Integrating by parts

j Udy dX = — J u; pdy dX + j udyn, ds,
o r

Q

we obtain

Hl(ub Aik) = — J 1agumAidim AX + J‘ ('—Pi + A'iknk) u;ds +
r

Q P

+ J Auhyti; dS .
Tu

Using (9) the functional becomes

(11) Hl(ui’ /'Lik) = yl()u,-k) = — J\

Y pimhidim AX + J Ayl ; dS .
Q

Ty

It holds the following

Lemma. If the problem
ZL(u;, £4) = min,

with the side conditions (1) and (4) has the solution i, eu, for which Z(i;, &) = d,
then the dual problem

&1(Ay) = max
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with the side conditions (7), (9) has a solution Lix with the same extreme value

Pi(Ag) = d,
where
(12) Dk = ouum(thip + ) -
Proof. The problem Z(u,, ¢;) = min., (1), (4) admits the representation
L' (usy ti) = L(us ea(ti)) = min
with the side conditions (1) and

(4,) AigimTim = %(ui,k + uk,i)

expressing the components of strain by means of the components of stress according

to (5).

It is well-known from the theory of the extrema with side conditions, that there
exist functions i, y; such, that the solution ;, t; of this problem together with
g i satisfy all Euler’s equations and the natural boundary conditions (1), (4,
(6) to (9) of the problem 6H = 0 without side conditions.®) For these functions all
transformations are valid, on the base of equations (6) to (9), by means of which

the functional H was transformed into %;(4,) in (11). Thus we have

H(tty, T Ao 1) = Hi (i 2) = F1(Ly) -

On the other hand, since the conditions (1), (4') and the relations (5) are fulfilled,

too, it holds
H(ﬁh ofna j»iln ;h) = g,(ﬁi’ fcik) = g(f‘n oﬁik) =d.

Consequently
& l(j‘ik) =d.

Now choose fixed functions

'{ik(X) = Zik(X) s ﬂi(X) = lji(X)-

Suppose, that for each 1, fi; from a certain neighbourhood of Aiks ﬁi there exist

functions [, Ty, which minimize the functional H(u;, Ty Aas i) %)
Then it holds obviously
min H(u;, Too Au B) < min H(u,, vy Ay f) = min L(u;, 14) =
"i,Tik (1),(47) (1),(4")
= min L(u;, &3) = d,
(1),(4)

3) For the side conditions which involve partial derivatives, however, such an assertion prob-

ably was not yet proved, but it can be doubtless accepted — see [1], I., chapt. IV., § 7/3.

4) This assumption will be accepted without any further comment in the next theorem, too.
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where (1), (4') or (1), (4) means, that the minimum is bounded with the side conditions
(1), (4) or (1), (4) respectively.
At the same time we may write
min H(“i» Tiks Iik’ ﬂi) = H(ﬁi’ Tiks Zikv .ai) = H1(ﬁz, Zik) = «71(1,':() s
UiTik
because for derivation of (11) only conditions (6) to (9) were used and the latter
are satisfied by the minimizing functions. Consequently

Fi(ly) £d

for any 1, from the neighbourhood of i, mentioned above, which meet (7) and (9).
The relations (10) for A, 74 and (5) imply (12) and the proof is completed.

If we substitute in (11) A, according to (10) by the components of stress t; and
change the sign of the functional, we obtain the principle of the minimum of com-
plementary energy (Castigliano-Menabrea) in the form of the variational problem

(13)  Pay) = —Fi(ey) = % j

AipgmTikTim AX — f Tiil; dS = min
Q

Ty
with side conditions

(14) Tik,k + Ki =0 on Q ’
(15) Tuty = P; on Tp.

The lemma implies immediately a

Theorem. Let the problem Z(u;, ¢,) = min with side conditions (1), (4) has the
solution @, &y for which .5?(12,-, °8ik) = d. Then the dual Castigliano’s variational
problem #(t,) = min with the side conditions (14) and (15) has a solution Ty,
corresponding to u; by the relation

g o .
Tik = fciklm(ul,m + um,x) .

Remark. We shall mention the Castigliano’s principle once more later in con-
nection which the principle of Reissner-Hellinger.

3. GENERALIZED PRINCIPLES

Recently, in the fifties, new variational principles, applicable to the theory of
elasticity, generalizing the classical principles of minimal potential or complementary
energy, were suggested. These are the principle of Hu Hai-Chang [6] — Washizu [7]
and the principle of Hellinger-Reissner [8]. We shall show here, that both these
principle may be derived from the classical principles using the analogous method
as that used for derivation of Castigliano’s principle from the principle of Lagrange-
Dirichlet.
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3.1 Principle of Hu Hai-Chang and Washizu

Let us add the conditions (1) and (4) to the functional &(u; €,) by means of
coefficients A;, y; in the same way as in the previous section, but keeping here the
original expression by means of the strain components ¢;. The new functional has

the form

(16) f1(“i, s Aiks l‘i) =

= j {%Cikzmsikglm — Ku; + }"‘k[_gik + %(ui.k + uk,i)]} dx —
Q
—.[ Pu;dS +-[ pu; — ;) ds,
rp T

where all variable functions are mutually independent, 4;, = A,;. Integrating by parts,
we obtain for the variation 6,

67, =f {(Ciklmelm = )‘ik) 0y, — (K.' + Aik,k) ou; +
Q
3+ e — ] S} X + f (=Pi + Auny) 6u; dS +
e
+ J {(ui + Aumy) Su; + (u; — ;) 6p;} dS .
I

If we set 6,7, = 0, then the following must hold:
(17) Ak = CikimEim
and (7), (8), (9), (1) and (4). By virtue of (17), it is obvious, that 4, has the sense of the

stress component ;. Substituting A, = t; and according to (8) g, = —1T,m
into (16), we derive the functional :

(18) j(“i: Eiks Tik) = f {%Ciklmsikglm — K; — T8y + %Tik(”i,k + uk,i)} dx —
Q

——f Pu;dS +f tami; — u;) dS,
e I

which was suggested by Hu HAI-CHANG in [6] and by WasHIZU in [7]. Hu Hai-
Chang calls the principle 6 # = 0 the principle of the generalized potential energy.
Using the integration by parts for the term 4t,(u; , + u, ), the functional admits

21



the alternative representation
(18,) f(uza €k Tik) ZJ‘ (%Cikzmgikslm — Ky — Ty — Tik,kui) dX +
Q

+J‘ (taene — Pi)u;dS + J Tyhi; dS .
e r.

Hu Hai-Chang calls the principle 5} = 0 the principle of the generalized comple-
mentary energy. -

In the equation 0,¢ = 0 or 6# = O respectively altogether 15 independent func-
tions are varied: 3 components of displacements, 6 components of stress and 6
components of strain tensor. The resulting Euler’s equations are the relation of the
generalized Hooke’s law, furthermore (4) and (14) on the region Q. The natural
boundary conditions are (1) on T, and (15) on T'p.

3.2 Principle of Hellinger-Reissner

Proceed similarly to the derivation of Hu Hai-Chang’s principle, but start with
the dual Castigliano’s principle. Add the side conditions (14) and (15) to the functional
&(t4) by means of multipliers 2;, ;. We obtain the functional

(19) ‘%l(rika Ao ) = J {%aiktm‘f.’kﬁm + )w'(fik.k + Ki)} dX —
Q

—J T il; dS + '[ (tane — Py p; dS,
I re

where all variable functions are mutually independent. Integration by parts leads
in the variation 6%, to

ORy = J {[aiktmflm - %()»i,k + ’J"k,i)] 0Ty + (Tik,k + K)) 5/11'} dX +
Q

+ J n—u; + ;) 0ty dS + J {(wi + 4) ndty + (taemy — P;) S} dS .
Ty

Tp

If we set 3%, = 0, then besides (14) and (15)

(20) AigimTim = 12‘(/1,',1( + ) on Q
(209 A= 1; on T,,
(21) w = —x on Tp

must hold. From the relations (20), (20') we conclude that A; have the sense of the
components of displacements, provided the generalized Hooke’s law holds. By
substituting 4; = u; and according to (21) g; = —u; into (19) and changing the
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sign, we obtain the functional

(22/) "%(ui, Tik) =J {"%aiktm‘fikfzm = Tiali — Ki”-‘} dXx +
Q

+ Jrik’lkai ds -|—j (tane — P u;dS .
e

Ly

Finally, integrating the second term by parts, we derive the functional
(22) (%(“i» Ty) = J‘ {—LaumTiTim + %(“i,k + Uy ) T — Kiui} dx +
Q .

+ f Ty (it — u;)dS —J Pu;dsS,
| % I'p

which was suggested by HELLINGER and REISSNER (see e.g. [8]). In the equation
0% = 0 or 6% = 0 respectively, altogether 9 independent functions are varied:
3 components of displacements and 6 components of stress. In contradistinction
to the Hu Hai-Chang’s principle here either (A) the relation (4) between strain and
displacements or (B) the Hooke’s generalized law (5) is supposed “a priori”. The
resulting Euler’s conditions are

(23) %(“i,k + uk.i) = AiktmTim »

(which have to be comprehended in the case (A) as relations (5') of the generalized
Hooke’s law or, in case (B), as the strain-displacement relations (4)), furthermore
the equations of equilibrium (14) and the boundary conditions (1), (15).

Remark 1. At the same time we have derived, that the Eulers’ conditions, cor-
responding to the Castigliano’s principle, are the relations (20) and (20'). The equ-
ations (20) involve the generalized Hooke’s law (5') and the strain-displacement
relations (4) They are equivalent to the assertion, that there exists a vector-function
of displacements such, that from its gradient the strain components are formed
according to (23).

Remark 2. The Reissner’s functional %(u;, t;) follows directly from the Hu Hai-
Chang’s functional #| (u » €k Tye) DY the elimination of ¢;, according to the generalized
Hooke’s law (5), which may be, as we have just mentioned, supposed “‘a priori’ for
the Reissner’s principle. It is impossible to derive 2(u;, 7;) from #(u;, gy, 14) using
the second starting assumption-(A), i.e. the strain-displacements relations (4).

4. SPECIAL VARIATIONAL THEOREMS

From the generalized principles, mentioned above, it is easy to derive not only
the classical principles of the minimum of potential or complementary energy (sce
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[8]) but also a series of the variational theorems, which may be useful in some parti-
cular problems. These are

Theorem 4.1. “For the boundary conditions”, see [8]. From the relation
5@2(“,'» ) =0,
where

R, 7) = J

re

u(dtyn, — P)dS — j tam(du; — ;) dS
Lu
and u,, vy satisfy on Q the equations (4), (5), (14), the boundary conditions (1),
(15) follow as Euler’s conditions.
Further, it is possible from the Reissner’s principle by substituting the equations
of equilibrium to derive the

Theorem 4.2. Suppose (A) the relations (4) or (B) (5') hold. Then from the condi-
tion
0F5(uyty) =0,
where

yz(uia Tik) = y(rik) + J ui(Pi - Tik"k) ds

I'e

and t; satisfy the the equations of equilibrium (14) on Q, (A) equations (5) or (B)
equations (4) on Q and both the boundary conditions (1) and (15) follow as Euler’s
conditions.

From the Hu Hai-Chang’s principle by substitution of some side conditions
we may derive the following theorems:

Theorem 4.3. From the condition
0 3(en Tae) = 0,

where

ys(eik» Tik) = J {%Cikzmgikezm - Tikﬁik} dx + f Tuhydl; dS
Q

Ty

and v, satisfy the equations of equilibrium on Q and the boundary conditions (15)
on T'p, the relations (4), (5) and the boundary conditions (1) follow as the Euler’s
conditions.

Theorem 4.4. From the condition

5y4(8ika Tik) =0,
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where

ytt(giks Tik) = yS(aika Tik) + f (Tik"k - Pi) u; dS
I'p
and 1, satisfy the equations of equilibrium (14) on Q, the equations (4), (5) and
the boundary conditions (1), (15) follow as Euler’s conditions.

If we substitute (4), (5) into the Hu Hai-Chang’s functional (18), or insert the
relation (4) or (5) respectively into the Reissner’s functional (22), we obtain the
functional

(24) 3’1(“,-, 8ik) = f {‘%Ciklmsikﬁxm - Kiui} dx +
Q

+ f ContmErmmi(i; — u;) dS — J Pu,dS = L(u;, e3) +
I

Fp
+ J Ciklmslmnk(ﬁi - “i) ds.
r,
Hence it follows the

Theorem 4.5. From the condition 6% (u;, &3) = 0, where % (u,, &,) is defined
through (24) and u,, & satisfy (4), the equations of equilibrium (14) and both the
boundary conditions (1)-and (15) follow as Euler’s conditions.

5. PROOF OF CONVERGENCE OF THE APPROXIMATE SOLUTION
ACCORDING TO THE THEOREM 4.1

Let us consider the boundary-value problem for prescribed tractions on the whole
boundary and for zero body forces. Let the boundary I" consists of a finite number
of regular (smooth) surfaces. The equations of equilibrium may be written in the
form

(25) (Cortmtim)x =0 on Q
and the boundary conditions (2) as

(26) Cittmymty = P; on T
(Tp=T.T, = 0,K; =0).

Let the conditions of statical equilibrium of the whole body, namely

[P,dS:O, jrdeS:O
r r
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be satisfied. We shall subject the displacements u to additional conditions, which
exclude the possibility of small rigid body motions, (see [3], § 26), i.e. assume

(27) fudX———[rotudX=0.

Q v Q
Consider the linear manifold M of vector-functions u(X) with all the components
u; € C1(Q) i.e. with continuous partial derivatives of the first order on Q, extendible
continuously on T, satisfying the equations (25) and (27). Let

(u, v) Ejuivids, ueM, veM
r

be the scalar product on M. This definition is justified, because the corresponding
Dirichlet’s problem (u eM, u=0on F) has only trivial solution.

Completing M in the associated norm, a Hilbert space arises, which may be
interpreted as a subspace of Lz(l"), i.e. as a subspace of the space of vector-functions
with each component square-integrable on I'. Let us define the operator A through

(Au)i = CiktmU,mNk >
i.e. mapping M into L,(T). Then, because of the integration by parts together with
(23)

(Au, v) = f (Au); v;dS = j CittmMitty m; dS = f Coutmimbix dX = (u, Av),
r o

r

which implies that the operator 4 is symmetric. Moreover,

(28) (Au, u) = J ContmU 1 mli x dX = f CotmEiéimdX =0 on M,
Q

Q

because the density of the strain energy is a positive definite quadratic form of the
strain components (see e.g. [11] § 39). Hence the operator is positive.

Assume there exists a (classical) solution u, € M of the problem (25) to (27).
Then it holds, that

(At ug) = 2(P. ws) = min [(du, ) — 2P, )],

Z(u) E_[ (3Ciummitty mit; — Piu;)dS = min, for u = u,,
r

which corresponds exactly to the functional 2,(u;, t,) if I, = 0. In this case the
condition 6%, = 0 of the theorem 4.1 expresses the condition of the minimal value
and each minimizing sequence (constructed e.g. by means of Ritz’s or some other
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method) converges to the solution u, in the norm, derived by extension of the product
(Au, u). By virtue of (28) and of the Korn’s and Poincaré’s inequalities, holding
for the functions from M (see [11] § 42), it is easy to prove that the sequence converges
even in the space [Wi(Q)]* %), i.e.

3 3
!"n - "ol[zwzm(m]3 = Z (uni - '40.')2 dXx + z (uni,k - “0i,k)2 dX - 0.
i=1Jg ik=1 Jq

Remark. The method of proof used here is analogous to the “method of minimal
surface integrals” as was presented by Michlin in [3], § 47.

6. APPENDIX- SURVEY OF VARIATIONAL PRINCIPLES AND THEOREMS

We shall try to sketch a systematic survey of all variational theorems and prin-
ciples, mentioned above. In the following schedule we use the notation:

a ... for the relations, supposed “a priori”,
E ... for the relations, following from the variational theorems as Euler’s conditions.
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Relations, holding in Q Boundary conditions
- Notation
P r:}r:c:ple of the Hooke’s strain- equi- for dis- for trac-
or theorem functional law displace- librium placements tions
(5) or (5) | ment (4) (14) [€)) (15)
Hu Hai- | N f
Chang, AT E E E E E
Washizu
. ~ a E
He.llmger, 2, % E E E
Reissner \ E a !

_ 1 — —|
Lagrange, £ a a E a E
Dirichlet J

o a E
Castigliano, & f o a E a
Menabrea E a 1»

S ‘ - _— i
':hleorem 2, a a } a E | E

! a E ” l -

i Theorem { 7, ; a E E

| 4.2 ; E | a

;”;eorem Sy ‘ E ‘ E a E a

[ ‘, | :‘

e — | ‘ -
| Theorem 3 |

\ 5 ! E E a E E

| 4. 4

I | | .

| | |

i I};eorem ‘ £, | a 'l a . E E E

Vytah

ODVOZENI NEKLASICKYCH VARIACNICH PRINCIPU V TEORII

PRUZNOSTI

IvAN HLAVACEK

Zobecnéné principy, navrzené Hu Hai-Changem a Washizu, resp. Hellingerem
a Reissnerem, jsou v Elanku odvozeny z klasickych principii minima potencidlni
resp. dopliikové energie. Ddle je poddn prehled specidlnich variaénich vét, které
plynou z obecnych principti a diikaz konvergence pro metodu zaloZenou na jedné

z nich.

28




Pesrome

BbIBO/I HEKJTACCUYECKHNX BAPMAIIMOHHBIX TTPYMHIIUIIOB
B TEOPUU VIIPYT'OCTH

NBAH TI'JTABAYEK (IvAN HLAVACEK)

B cratbe BbIBeicHBI OOOOLICHHBIC BapUAMMOHHBIC MPUHIUIBI, IPEIIOXKCHHBIC
Xy Xaii-Yanrom, Bammusy u PeiicHepoM, U3 KJIACCUYECKUX MPUHIMIIOB MUHUMYMa
TTOTCHIMAILHOM MITH KOMILTIEMEHTapHOM 3Hepruu. Jajpiire npyuBeaeH 0630p crenuaib-
HBIX BapUAIMOHHBIX TEOPEM, KOTOPBIC CIIEAYIOT M3 OOIMX MPHHIUMIIOB, U J0Ka3a-~
TEJILCTBO CXOJUMOCTH IS METOJa, OOOCHOBAaHHOTO Ha OJHOW U3 3THX TEODEM.

Author’s address: Ing. Ivan Hlavdcek C.Sc., Matematicky ustav CSAV, Opletalova 45, Praha 1.
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