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SVAZEK 12 (1967) APLIKACE MATEMATIKY ČÍSLO 1 

DERIVATION OF NON-CLASSICAL VARIATIONAL PRINCIPLES 
IN THE THEORY OF ELASTICITY 

IVAN HLAVACEK 

(Received December 27, 1965.) 

1. INTRODUCTION 

Methods of approximate solution of boundary-value problems in the mechanics 
of solids are often based on the variational principles, concerning the extreme (RITZ'S 
and TREFFTZ'S method) or merely the stationary value (BUBNOFF-GALERKIN'S method) 
of certain functionals. Hence the effort follows to derive the variational principles 
also in the newer fields of the mechanics of solids, as e.g. in the geometrically or 
physically non-linear theory of elasticity, theory of viscoelasticity, theory of plasticity 
a.s.o. 

It is the object of the present paper to suggest a certain scheme for deriving the 
complete group of variational principles, which is known already in the linear 
theory of elasticity. This group is composed partly of four fundamental principles: 
classical principles of the minimum of potential energy (LAGRANGE-DIRICHLET) and 
that of the minimum of complementary energy (CASTIGLIANO-MENABREA), generalized 
principles of Hu HAI-CHANG-WASHIZU and of REISSNER-HELLINGER, partly of a series 

of the special variational theorems, following from the generalized principles. An 
analogous scheme would be possible to use for deriving similar variational principles 
in the newer branches of mechanics, too. 

The group of variational principles, mentioned above, could, however, incite 
a research of the possibilities to define newly the weak (generalized) solutions of the 
boundary-value problems in the theory of partial differential equations. These 
definitions are based (for the elliptic equations and systems) solely on the principle 
of the minimum of potential energy. A question arises about the suitability of other 
definition following from some of the further three fundamental principles. 

Finally the questions about the convergence of the approximate methods, based 
on the non-classical variational principles and theorems, stand out. The answer 
to one of them only — that of the "theorem for boundary conditions" — is presented 
here in the last section. 
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2. CLASSICAL P R I N C I P L E S 

Let us consider the mixed boundary-value problem in the classical theory of 
elasticity for the body, occupying a bounded region CI of the three-dimensional 
Euclidean space, having sufficiently smooth boundary F . Suppose that 

V = ru u rP 

where rM and TP are two mutually disjoint parts of the boundary. Let the displace­
ments be given on the part FM, i.e. 

(1) Ui = Hi on Tu 

and the surface charge be given on the part YP, i.e. 

(2) Tiknk = P( on TP , 

where Tik are the components of the stress tensor, nk the components of the unit 

external normal-vector to T and the sums over repeated indices are implied; i, k = 

= 1, 2, 3. 

For this problem the well-known classical principle of the minimum of potential 

energy (Lagrange-Dirichlet) — see [3], § 26 — holds in the form 

S£ = min., 

where 

(3) &{Џh 8ik) = {ìCiкlm^lm ~ KЏІ) àX - PІUІ dS . 
JQ J Г p 

In (3) the components of the strain tensor are given by 

( 4) £ik = KM-.* + "*.«") 

on the class of sufficiently smooth vector-functions u(X) of the displacements, which 
satisfy the boundary condition (1), ciklm are coefficients of the generalized Hooke's 
law in the relations 

(5) ?ik = Ciklmeim ) 

and uik = dUijdXfr Kt are the components of the vector of body forces. 

The second classical variational principle is the principle of the minimum of 
complementary energy (Castigliano-Menabrea), It corresponds to the principle 
of the minimum of potential energy in the following sense: the components of stress-

3 
X) It holds Calm ^ ckilm = Clmik> Ciklm£ikelm ^ l*0 Z 8lk 0-0 = C O n S t > ° ) ' 

i,k- 1 
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tensor correspond to the components of displacements, the equations of equilibrium 
to the equations of compatibility and the statical boundary conditions to the geo­
metric boundary conditions. It is possible to derive this principle directly on the 
base of the positive-definiteness of the quadratic form, expressing the density of the 
strain energy by means of the stress components (see [5]), or by the method of or­
thogonal projections in the corresponding Hilbert space (see [3], § 54).2) With 
respect to the further procedure it is suitable, however, to show here the derivation 
of this principle from the principle of the minimum of potential energy using the 
Friedrichs' method (see e.g. [1] or [2]). The latter way of derivation is in the linear 
theory of elasticity more tedious than the method using positive definiteness of the 
energy, but only the Friedrichs' method is convenient for the non-linear cases of 
statical and dynamicalproblems of the theory of elasticity (see [9], [10]). 

Let us sum up (4) and (1) as the side conditions with coefficients Xik(X), fit(X) 
to the functional £P(uh eik) according to the Lagrange's method of multipliers and 
let us express the components eik everywhere by means of the components Tik ac­
cording to the generalized Hooke's law in the form inverse to (5): 

(5 ) £ik = aiklmXlm • 

We obtain the functional 
/% 

H(uh Tik, *&> Vi) = {iaikimtiktim - Kiui + Aik[-aiklmTlm + \(uitk + uktl)]} dX -
J a 

- I PiUidS + J Hi(ui - Ut)dS, 
JrP J rM 

where all variable functions are independent except the relation 

"ik = ^ki -

Let us form the corresponding variation and use the symmetry 

aiklm ~ almik 

and the integration by parts. Hence we obtain 

SH = {aiklm(Tlm - Xlm) dTik - (kikyk + Kt) dUi + [-aiklmTlm + 
Ja 

+ j(ui,k + w*,i)] ^ik} dK + {(to + hk^k) $Ui + (ui - «i) $Ht} dS -
J r M 

~ f (Pi-Xiknk)SUidS. 
JrP 

) The method of orthogonal projections was used by the author to derive an analogous 
principle in the linear viscoelasticity (see [4]). 
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Now choose among the conditions which follow from 3H = 0 only the following 

conditions: 

(6 ) aiklm(llm ~ Xlm) = 0 On Q , 

(7) Xiktk + Kt - 0 on Q , 

(8) iii + Xiknk = 0 on Tu , 

(9) -Aífcnfc + P, = 0 on Г Р . 

We have omitted just the conditions (l) and (4). The condition (6) implies, using 

that the matrix aiktm (considered e.g. with double subscripts [xfc], [/m]) is regular, 

(10) Xik = Tik . 

Insert (7), (8), (10) into H(ut, Tik, Xik, ^ . We are led to a new functional 

Hi(ut, Xik) 3 J \2aiklm^ik^lm + Ui^ik,k ~ aiklm^ik^lm + 
Jfi 

+ iXik(
ui,k + "*,*)} <*K + | - -P|«i dS + J - Xiknk(ut - 5,) d5 . 

J Tp J rM 

Integrating by parts 

uiXik,kdX ~ "" ui,kXik 

Ja 
dX + utXiknkdS 

we obtain 

Hi(wiДifc) = - iaikimXikXlmdX + ( - P , + Xiknk)UidS 
Ja Jгp 

+ ^ikWfctiidS. 

Using (9) the functional becomes 

(11) Hi(wi,Att) = ^i(Affc) = - i f l i U m ^ m d K + A / f cn,u fd5. 
J Q JrM 

It holds the following 

Lemma. If the problem 

&(uh eik) = min , 

with the side conditions (1) and (4) has the solution ut, 8ik, for which J£(fib eik) — d, 

then the dual problem 

^ i ( ^ i f c ) = m a x 



with the side conditions (7), (9) has a solution Xik with the same extreme value 

where 

(12) \ik = $ciklm(uitk + uhtl) . 

Proof. The problem ££(ub eih) = min., (1), (4) admits the representation 

£"(ub Tik) = &(ui9 eik(Tik)) = min 

with the side conditions (1) and 

(40 alklmTlm = i(uifk + ukfl) 

expressing the components of strain by means of the components of stress according 
to (5'). 

It is well-known from the theory of the extrema with side conditions, that there 
exist functions \ik9 Jii such, that the solution ub Tik of this problem together with 
\ i r iii satisfy all Euler's equations and the natural boundary conditions (1), (4'), 
(6) to (9) of the problem SH = 0 without side conditions.3) For these functions all 
transformations are valid, on the base of equations (6) to (9), by means of which 
the functional H was transformed into ^i(lik) in (11). Thus we have 

H(ub Tik, \ik9 /J;) = Hy(ub \ik) = ^ ( i j • 

On the other hand, since the conditions (l), (4') and the relations (5) are fulfilled, 
too, it holds 

H(ub Tik9 \ik9 fi) = <£'(ub Tik) = $£(tib °eik) = d . 

Consequently 

Now choose fixed functions 

lik(X) = lik(X) , fii(X) = filX) . 

Suppose, that for each lih9 fit from a certain neighbourhood of \ik9 fii there exist 
functions fib Tik9 which minimize the functional H(ub Tik9 lik9 fit).

 4) 
Then it holds obviously 

min H(ub Tik9 lik9 fii) g min H(ub Tik9 lik9 fit) = min <£'(ui9 Tik) = 
Ui,xik O),(4') O),(4') 

= min J£(ub eik) = d , 
(D,(4) 

3) For the side conditions which involve partial derivatives, however, such an assertion prob­
ably was not yet proved, but it can be doubtless accepted — see [1], L, chapt. IV., § 7/3. 

4) This assumption will be accepted without any further comment in the next theorem, too. 
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= min 

where (1), (4') or (1), (4) means, that the minimum is bounded with the side conditions 
(1), (4') or (1), (4) respectively. 

At the same time we may write 

min H(uh xik9 lik9 fi) = H(ui9 fik9 lik9 fit) = H1(fib lik) = ^x(lik) , 
Ui,Tik 

because for derivation of (11) only conditions (6) to (9) were used and the latter 
are satisfied by the minimizing functions. Consequently 

^x(lik) S d 

for any lik from the neighbourhood of Xik mentioned above, which meet (7) and (9). 
The relations (10) for Xifi, °Tik and (5) imply (12) and the proof is completed. 

If we substitute in ( l l ) Xik according to (10) by the components of stress Tik and 
change the sign of the functional, we obtain the principle of the minimum of com­
plementary energy (Castigliano-Menabrea) in the form of the variational problem 

(13) 9>(xik) = -y^x^) = - aiklmxikxlmdX - xlknkut dS 
2 J n J ru 

with side conditions 

(14) T . M + K. = 0 on Q , 

(15) xiknk = Pt on TP . 

The lemma implies immediately a 

Theorem. Let the problem J£(uh eik) = min with side conditions (1), (4) has the 
solution ui9 sik for which if(wi? °sik) = d. Then the dual Castigliano's variational 
problem ^(xik) = min with the side conditions (14) and (15) has a solution xik, 
corresponding to ut by the relation 

?ik ~ 2Ciklm(Ul,m + Umtl) • 

Remark . We shall mention the Castigliano's principle once more later in con­
nection which the principle of Reissner-Hellinger. 

3. GENERALIZED PRINCIPLES 

Recently, in the fifties, new variational principles, applicable to the theory of 
elasticity, generalizing the classical principles of minimal potential or complementary 
energy, were suggested. These are the principle of Hu Hai-Chang [6] — Washizu [7] 
and the principle of Hellinger-Reissner [8], We shall show here, that both these 
principle may be derived from the classical principles using the analogous method 
as that used for derivation of Castigliano's principle from the principle of Lagrange-
Dirichlet. 
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3A P r inc ip l e of Hu H a i - C h a n g and Wash izu 

Let us add the conditions (l) and (4) to the functional S£(u{, sik) by means of 
coefficients Xik, fit in the same way as in the previous section, but keeping here the 
original expression by means of the strain components sik. The new functional has 
the form 

( 1 6 ) / i ( w / , fi», Xik, Vi) = 

{iCikimZikZim ~ Ktut + Xlk[-sik + i(uifk + uM)]} dX -
2 

- P^idS + jU/(uf - ut)dS, 
JrP Jru 

where all variable functions are mutually independent, Xik = Xki. Integrating by parts, 
we obtain for the variation d/1 

V l = {(Ciklm^lm ~ kik) Ssik ~ (Kt + Xik>k) Sut + 
Jfi 

+ [i(uitk + uKi) - sik] SXik} dX + f (-Pt + Xiknk) Sui dS + 
JrP 

+ {J>. + ^knk) <5u/ + (uz - u/) 5/xJ dS . 
Jru 

If we set O"^! = 0, then the following must hold: 

(17) Att = ciklmslm 

and (7), (8), (9), (l) and (4). By virtue of (17), it is obvious, that Xik has the sense of the 
stress component Tik. Substituting Xik = Tik and according to (8) jit = —Tiknk 

into (16), we derive the functional 

(18) f(ui9 sik, Tik) = {iciklmsikslm - Kiui - Tiksik + iTik(uitk + uktl)} dX -
J Q 

- f PiUidS + f Tiknk(ut - uf)dS, 
J rP Jru 

which was suggested by Hu HAI-CHANG in [6] and by WASHIZU in [7]. Hu Hai-

Chang calls the principle bf = 0 the principle of the generalized potential energy. 
Using the integration by parts for the term iTik(uijk + uki), the functional admits 
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the alternative representation 

(18') ý(uh Sik, Tik) = (iciUmF,ikElm - K{Ut - Tik8ik - T ^ u i ) dX + 

(*ik"k - Pi) ui dS + T^ui dS . 
P J r u 

+ 

Hu Hai-Chang calls the principle 5f = 0 the principle of the generalized comple­
mentary energy. 

In the equation 3/ = 0 or 5/ = 0 respectively altogether 15 independent func­
tions are varied: 3 components of displacements, 6 components of stress and 6 
components of strain tensor. The resulting Euler's equations are the relation of the 
generalized Hooke's law, furthermore (4) and (14) on the region :Q. The natural 
boundary conditions are (l) on FM and (15) on TP. 

3.2 P r inc ip l e of H e l l i n g e r - R e i s s n e r 

Proceed similarly to the derivation of Hu Hai-Chang's principle, but start with 
the dual Castigliano's principle. Add the side conditions (14) and (15) to the functional 
£f(rik) by means of multipliers Xh jih We obtain the functional 

(19) 0tx(ri]o Xh /Li) == I {iaiklmTikTlm + Xt(Tiktk + Kt)} dX -
Jo. 

^ik^Ui dS + (Tiknk - P^ \i{ dS , 
J r« J r P 

where all variable functions are mutually independent. Integration by parts leads 
in the variation 50tl to 

5*i = [ {\aikimzlm - \(Xiik + Xkfi)] dTik + (Tiktk + KO SXi} dX + 
J o 

+ nk(-~Ui + At) dTik dS + {(/if + Xt) nkSTik + (Tilcnk - Pt) 8ft} dS . 
J rM J r P 

If we set 6Stx = 0, then besides (14) and (15) 

(20) aiklmTlm = i(Xik + Xktl) on Q , 

(20') Xt = ut on T u , 

(21) fii — —Xi on r F 

must hold. From the relations (20), (20') we conclude that Xt have the sense of the 
components of displacements, provided the generalized Hooke's law holds. By 
substituting Xt = ut and according to (21) \ii = — ux into (19) and changing the 
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sign, we obtain the functional 

(22') m(ub Tik) = {-haiklmTikTlm - TiktkUi - Ktu,} dX + 
Jn 

+ TtfcufcutdS + (Tiknk - Pf) utdS . 
J rM J YP 

Finally, integrating the second term by parts, we derive the functional 

(22) m(u{, Tik) = {-\aiklmTikTlm + ±(uifk + ufc>t.) Tik - Kt.ut.} dX + 
Jn 

+ *iknk(ui - ut)dS - PtufdS, 
J rM J r P 

which was suggested by HELLINGER and REISSNER (see e.g. [8]). In the equation 

3M = 0 or b0l = 0 respectively, altogether 9 independent functions are varied: 
3 components of displacements and 6 components of stress. In contradistinction 
to the Hu Hai-Chang's principle here either (A) the relation (4) between strain and 
displacements or (B) the Hooke's generalized law (5') is supposed "a priori". The 
resulting Euler's conditions are 

(23) \(uuk + uk>i) = aihlmTlm , 

(which have to be comprehended in the case (A) as relations (5') of the generalized 
Hooke's law or, in case (B), as the strain-displacement relations (4)), furthermore 
the equations of equilibrium (14) and the boundary conditions (l), (15). 

R e m a r k 1. At the same time we have derived, that the Eulers' conditions, cor­
responding to the Castigliano's principle, are the relations (20) and (20'). The equ­
ations (20) involve the generalized Hooke's law (5') and the strain-displacement 
relations (4). They are equivalent to the assertion, that there exists a vector-function 
of displacements such, that from its gradient the strain components are formed 
according to (23). 

R e m a r k 2. The Reissner's functional M(ub Tik) follows directly from the Hu Hai-
Chang's functional f(ui3 eik, Tik) by the elimination of eik according to the generalized 
Hooke's law (5), which may be, as we have just mentioned, supposed "a priori" for 
the Reissner's principle. It is impossible to derive £%(ub Tik) from f(ut, eik, Tik) using 
the second starting assumption-(A), i.e. the strain-displacements relations (4). 

4. SPECIAL VARIATIONAL THEOREMS 

From the generalized principles, mentioned above, it is easy to derive not only 
the classical principles of the minimum of potential or complementary energy (see 
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[8]) but also a series of the variational theorems, which may be useful in some parti­
cular problems. These are 

Theorem 4.1. "For the boundary conditions'9, see [8]. From the relation 

bm2(uhTik) = o , 

where 

®i(ub Tik) = ut(iTiknk - Pi)dS - Tiknk(iui - ut) dS 
J rP Jru 

and uh Tik satisfy on O the equations (4), (5), (14), the boundary conditions (l), 
(15)fO//Ow as Euler's conditions. 

Further, it is possible from the Reissner's principle by substituting the equations 
of equilibrium to derive the 

Theorem 4.2. Suppose (A) the relations (4) Or (B) (5') hold. Then from the condi­

tion 

5y2(ui,xik) = 0, 

where 

Sr2{uu Tik) = ^(tik) + f ulPi - Tikn*) dS 
Ji> 

and Tik satisfy the the equations of equilibrium (14) on £1, (A) equations (5) or (B) 
equations (4) on Q. and both the boundary conditions (1) and (15) follow as Euler's 
conditions. 

From the Hu Hai-Chang's principle by substitution of some side conditions 
we may derive the following theorems: 

Theorem 4.3. From the condition 

SPzfak, Tik) = 0 , 
where 

^3\eik^ Tik) = {iciklmeikslm - Tikeik} áX + TiknkUiáS 
a Jrw 

and Tik satisfy the equations of equilibrium on Q. and the boundary conditions (15) 
on TP, the relations (4), (5) and the boundary conditions (l) follow as the Euler's 
conditions. 

Theorem 4.4. From the condition 

S^4(eik, Tik) = 0 , 
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where 

^4\£ik, Tik) — ^3\sik, Tik) + (xiknk - Pf)wfdS 

and xik satisfy the equations of equilibrium (14) on £1, the equations (4), (5) and 
the boundary conditions (l), (15)/O//Ow as Eulefs conditions. 

If we substitute (4), (5) into the Hu Hai-Chang's functional (18), or insert the 
relation (4) or (5) respectively into the Reissner's functional (22), we obtain the 
functional 

(24) &l(Ui, tik) = {iCiklm^ik^lm ~ KiUi} dX + 
JQ 

+ Ciklm^lmMUi - Ui) dS - PtUi dS = Se(u{, sik) + 
J ru J rP 

+ Cikim£imnk(ui - ul)dS. 
JrM 

Hence it follows the 

Theorem 4.5. From the condition bS£\(ut, sik) = 0, where ^x(ui, sik) is defined 
through (24) and ut, ^ik satisfy (4), the equations of equilibrium (14) and both the 
boundary conditions (l) and (15) follow as Eulefs conditions. 

5. PROOF OF CONVERGENCE OF THE APPROXIMATE SOLUTION 
ACCORDING TO THE THEOREM 4.1 

Let us consider the boundary-value problem for prescribed tractions on the whole 
boundary and for zero body forces. Let the boundary T consists of a finite number 
of regular (smooth) surfaces. The equations of equilibrium may be written in the 
form 

(25) (cikimUi,m),k = 0 on Q 

and the boundary conditions (2) as 

(26) ciklmul)mnk = Pt on T 

( r F - = r , r M = 0,Ki = o) . 

Let the conditions of statical equilibrium of the whole body, namely 

PІ dS = 0 , г x P d S = 0 
г 
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be satisfied. We shall subject the displacements u to additional conditions, which 
exclude the possibility of small rigid body motions, (see [3], § 26), i.e. assume 

(27) j u dX = J rot u dK = 0 . 
J n J a 

Consider the linear manifold M of vector-functions u(X) with all the components 
Ui e C(1)(Q) i.e. with continuous partial derivatives of the first order on Q, extendible 
continuously on T, satisfying the equations (25) and (27). Let 

(«,*) u-VidS, UEM, VEM 

be the scalar product on M. This definition is justified, because the corresponding 
Dirichlet's problem (u e M, u = 0 on T) has only trivial solution. 

Completing M in the associated norm, a Hilbert space arises, which may be 
interpreted as a subspace of L2(T), i.e. as a subspace of the space of vector-functions 
with each component square-integrable on I \ Let us define the operator A through 

(Auji = ciklmulmnk , 

i.e. mapping M into L2(T). Then, because of the integration by parts together with 

(25), 

(Au,v)= (Au)iVidS = ciklmnkultmVidS = ciklmultmvitkdX = (u, Av), 
J r J r J Q 

which implies that the operator A is symmetric. Moreover, 

(28) (Au, u) = ~ CiklmSik 

Jn 
CikimUi,muitkdX = ciklmeikelmdX ^0 on M , 

because the density of the strain energy is a positive definite quadratic form of the 
strain components (see e.g. [11] § 39). Hence the operator is positive. 

Assume there exists a (classical) solution U0E M of the problem (25) to (27). 
Then it holds, that 

(Ati0, u0) - 2(P, u0) = min [(Au, u) - 2(P, u)] , 

ì.e. 

(u) = (\ciklmnkultmUi - PiU^dS &(ú) = (ҺC^П^І^UІ - PiU^dS = min. for u = u 0 , 

which corresponds exactly to the functional M2(uh xik) if r u = 0. In this case the 
condition bM2 = 0 of the theorem 4.1 expresses the condition of the minimal value 
and each minimizing sequence (constructed e.g. by means of Ritz's or some other 
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method) converges to the solution u0 in the norm, derived by extension of the product 

(Au, u). By virtue of (28) and of the Korn's and Poincare's inequalities, holding 

for the functions from M (see [11] § 42), it is easy to prove that the sequence converges 

even in the space [ J V ^ . Q ) ] 3 5 ) , i.e. 

ltVa<i>(ьrø = í (и.i " "o.Y dX + £ (uni>k - u0ІЛ)2 dX -> 0 . 
í = 1 J n '•~"1Jn 

Remark . The method of proof used here is analogous to the "method of minimal 

surface integrals" as was presented by Michlin in [3], § 47. 

6. APPENDIX- SURVEY OF VARIATIONAL PRINCIPLES AND THEOREMS 

We shall try to sketch a systematic survey of all variational theorems and prin­

ciples, mentioned above. In the following schedule we use the notation: 

a. ... for the relations, supposed "a priori", 

E . . . for the relations, following from the variational theorems as Euler's conditions. 
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5 ) I.e. in the space of vector-functions each component of which has all first partial derivatives 
in the generalized sense, these components and all first derivatives being square-integrable in Q. 
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Theorem 
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sex 
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a . E E E 

Výtah 

ODVOZENÍ NEKLASICKÝCH VARIAČNÍCH PRINCIPŮ V TEORII 

PRUŽNOSTI 

IVAN HLAVÁČEK 

Zobecněné principy, navržené Hu Hai-Changem a Washizu, resp. Hellingerem 
a Reissnerem, jsou v článku odvozeny z klasických principů minima potenciální 
resp. doplňkové energie. Dále je podán přehled speciálních variačních vět, které 
plynou z obecných principů a důkaz konvergence pro metodu založenou na jedné 
z nich. 
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Резюме 

ВЫВОД НЕКЛАССИЧЕСКИХ ВАРИАЦИОННЫХ ПРИНЦИПОВ 
В ТЕОРИИ УПРУГОСТИ 

ИВАН ГЛАВАЧЕК (1УАМ НЕАУАСЕК) 

В статье выведены обобщенные вариационные принципы, предложенные 
Ху Хай-Чангом, Вашизу и Рейснером, из классических принципов минимума 
потенциальной или комплементарной энергии. Дальше приведен обзор специаль­
ных вариационных теорем, которые следуют из общих принципов, и доказа­
тельство сходимости для метода, обоснованного на одной из этих теорем. 

Ашког^з аМгезз: 1п^. 1\ап Шауасек С 8 с , Магета1юку йз̂ аV С8АУ, Ор1е1а^а 45, Ргапа 1. 
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