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SVAZEK 13 (1968) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

SOME APPLICATION OF SPLITTING-UP METHODS TO THE 
SOLUTION OF MATHEMATICAL PHYSICS PROBLEMS 

G. I. MARCUK (r. M. MapHyK) 

1. Splitting-up methods are becoming a powerful constructive mathematical tool 
for solving complicated problems in science and engineering. Originally applied to 
the solution of the simplest two-dimensional elliptic and parabolic equations, these 
methods are finding increasing use in solving major problems. Naturally, the applica­
tion of the splitting-up method to the solution of such problems involves formulation 
of a number of new theoretical problems which develop at different stages of formula­
tion of a general algorithm. 

The most essential thing is to choose a way of splitting a complicated problem into 
the simplest problems. Splitting of a problem is first of all an attempt to reduce 
a complicated problem to the simplest ones. Here, certainly, there arise a number of 
problems, and one of them is convergence of the solution of the splitted problem to 
the initial exact problem of algorithm optimization. Since we have now some experi­
ence in solving complicated mathematical physics problems, we can discuss the 
question concerning the reduction of the problems. First of all, it should be noted 
that the most efficient reduction of the problem becomes possible on the basis of 
profound understanding of the physical process described by the original system of 
equations with the corresponding boundary conditions and initial data. As a rule, 
analysis of the studied physical processes on the basis of the dimensionality and 
similarity theory prompts the most efficient way of splitting. It means that in the 
studied problem it is very important to find out the most essential relations which 
determine the fundamental features of the process and their interaction. Attempts to 
make formal reductions in solving physically complicated problems usually meet 
with failure. 

Another factor of importance of the splitting-up method is connected with imple­
mentation of conservation laws inherent in a given physical process. This means that 
reduction of a problem to the simplest ones must not violate the fundamental con­
servation laws. If the initial problem is reduced to a system of difference equations, 
then, also in this case, implementation of conservation laws written in a difference 
form is necessary. 

An essential factor of splitting is the reduction of the initial problem to such 
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a succession of the simplest problems which allow logically simple ways of realization 
and optimization of a numerical algorithm both in its components and as a whole. 
The problem of optimization of a numerical algorithm is a most complicated field of 
computational theory. It is potentially abundant in new ideas and constantly influ­
ences the formation of new algorithms for the solution of the problems. It is an essen­
tial feature of the splitting-up methods that they allow introduction of auxiliary 
parameters, functions as well as operators which may be used for the construction of 
efficient algorithms of the solution of the problems. It is natural that the problem of 
numerical algorithm optimization goes far beyond this scope because it is also 
inseparable from the problems of approximation, stability, and convergence which 
are fundamental in solving mathematical physics problems. 

Modern high-efficiency computers provide investigators with a powerful tool for 
the solution of a wide class of different problems in science and engineering. Mathe­
matical simulation has become a vital need rather than a fashion in the development 
of natural sciences above all. Therefore the problems of computational mathematics 
have attracted attention of a wide circle of researchers and engineers. An amount of 
scientific information processed by the computers is swiftly growing which inevitably 
provokes certain tendencies in the construction of new numerical algorithms. As an 
example we can take either the splitting-up method which is a constructive tool for 
the solution of complicated mathematical physics problems or the method of weak 
approximation whose development has been stimulated by practical needs. 

A wide search in the field of constructing new numerical algorithms necessarily 
involves considerable difficulties of their theoretical substantiation. Spectral theory of 
operators and methods of a priori estimates made it possible to consider, from the 
general point of view, numerical algorithms for certain classes of problems and to 
construct efficient numerical algorithms. But, as a rule, these classes of problems do 
not go beyond linear positively definite operators while, as we know, major scientific 
and engineering problems necessarily involve operators of a more complicated struc­
ture including non-linear operators. In this connection it is necessary to evolve such 
methods for the construction of algorithms and their optimization which would be 
based upon a posteriori estimates of the solution or functionals of the solution in the 
process of realization of the numerical algorithm by the computer. This means that 
the functionals of the solution of the problem, obtained in the process of the solution, 
must be used for automatic adjustment or reconstruction of the algorithm for more 
optimal operating conditions. The tendency to a wide use of the functional analysis 
and general theory of operators for studying methods of the numerical solution of the 
problems stands out distinctly against the background of the constructive search for 
new algorithms. And this is natural because by this time a large amount of rather 
general results have been accumulated which are successfully used in computational 
mathematics and applications. 
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2. Besides the usual requirements of approximation and stability, difference 
schemes must satisfy some additional conditions such as economy, higher order 
accuracy, divergence and so forth. Therefore the construction of difference schemes 
on the basis of the conventional homogeneous approximations met with difficulties 
which could be overcome by employing the splitting-up method which uses, generally 
speaking, non-homogeneous approximation. The first results in this connection have 
been obtained by D . PEACEMAN, H . RACHFORD and J. DOUGLAS who suggested an 

alternating direction method. 
The Soviet authors have based their investigations of the method of splitting the 

operators into the simplest ones. In this case integration of a given equation reduces 
to a successive integration of simpler equations, and only at the end the obtained 
difference schemes must satisfy the conditions of approximation and stability. As 
a matter of fact, this permits a flexible construction of schemes for all the basic equa­
tions of mathematical physics. 

Beginning with the Janenko's works, the splitting-up method has been developed 
in the U . S. S ,R. by many scientists. Very important ideas in the splitting-up method 
are due to JANENKO, SAMARSKII, D'JAKONOV, SAUL'EV and others. The general results 

connected with the splitting-up method have been used for different applications and 
for solving some problems of the mathematical physics. 

By this time, the splitting-up methods seem to have considerably developed. A range 
of problems effectively solved by these methods have been formed and simultaneously 
such problems have taken shape whose solution is of paramount importance for the 
further development of the theory. It appears that the main problem at present is 
associated with the choice of optimal parameters, functions and operators occurring 
in the splitting-up methods. It is hoped that the solution of these questions will be 
found as a consequence of the use of the best approximation theory, variational 
principles and probability methods. 

Let us now formulate some results of the splitting-up theory. 

3. When we solve stationary problems there arises a problem of finding a solution 
of the equation 

(1) Acp=f, 

wherq A is a differential or an integro-differential operator, f is a given function, and cp 
is the solution sought for which satisfies the corresponding boundary conditions. Let 
us note that A may be a matrix operator, and cp and f may be vector functions. In this 
case (l) is a formal representation of a system of equations. 

The solution of (l) in the case of complex operators A is usually carried out by 
means of relaxation methods determined as follows: 

(2) cpJ+1 = cpJ -T(AcpJ - / ) , 
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where x is an arbitrary parameter and j is the number of a successive approximation. 
The parameter t may also be changed with the number of iteration. In this case T must 
be replaced by Xj. The iterative process of the form (2) may be convergent only under 
definite conditions, the formulation of the latter being, apparently, the most difficult 
part in organizing the relaxation process. As a rule, the rate of convergence of the 
successive approximation method essentially depends on the choice of the parameter 
Xj. Sometimes it is optimal. Construction of the computational schemes, possessing 
in a sense the best characteristics of convergence, will be called optimization of 
a numerical algorithm. 

Let us write the relaxation scheme (2) as follows: 

(3) ^ - ^ ' + V=/. 
X 

In this form the iterative process (2) is a difference analogue of the following non-
stationary problem: 

(4) ^ + A„=/ 
ot 

with just the same range of definition of the solution according to geometrical 
coordinates as in (1). The auxiliary independent variable t in (4) may be interpreted 
in different ways. For example, it may be prescribed a sense of time if the dimen­
sions Acp and / , by multiplying them by the same auxiliary constant, are preliminarily 
coordinated with that of the time derivative dcpjdt. In (4) the operator A and the func­
tion / are certainly independent of t. Naturally, the iterative process (2) will be of 
interest only if 

lim cpj -= cp , 
J*-+oo 

where cp is an exact solution of (1). The same is true of the solution of Eq. (4), namely, 
the solution of (4) is of interest only if, at t -> oo, its limit is a solution of the stationary 
problem (l). This fact imposes certain requirements on the operator A which we shall 
discuss later. Consider now only one important property, that is, a close connection 
between stationary problems for, at least, a large class of the operators A which have 
a unique solution of the form (1) as their asymptotic solution. This means that at 
least for such problems the stationary and non-stationary problems may be considered 
in a uniform aspect (4) on the assumption that the solution of stationary problems is 
a particular case of a general algorithm when t ~> oo. 

We may note, however, that the relaxation process (2) is not a most general and 
effective form of organizing the iterative process. Some authors in the works con­
cerning linear algebra problems suggested more general universal iterative processes 
which, if properly chosen, essentially improved the convergence of the iterative pro­
cess. By analogy with them it is possible to organize the following generalized re-
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laxation process: 

(5) ^ + 1 = <p* - TA(A<P> - f) , 

where A is an operator chosen from the condition of the speed of the iterative process 
convergence. In the case when A = E is a unit operator we come to the classical relax­
ation process (2). Let us consider another limiting case when A = A"1. Here, what­
ever is the function cp°, the first approximation yields an accurate solution of (l) 

(6) <P = A^f. 

The generalized relaxation process (5) may be rewritten in the form 

(7) B ^ l ^ + V= / , 

where B = A *. This scheme may be considered as realization of a more general 
non-stationary equation 

(8) B8^ + A<p=f. 
ct 

All the above considerations with regard to (4) are valid in this more general case 
as well. One must remember only that there is a chance here to choose the operator B 
so as to make the algorithm (5) converge more rapidly. If one chooses A to stand for B, 
the problem will not be simplified because it again reduces to the calculation of the 
inverse operator A"1. Yet, it can be shown that for a wide class of the operators A it 
is possible to construct the operators B which approximate the operator A sufficiently 
well and which are effective in realization. 

Consider now a more general problem 

(9) Acp=f, 

where A is a linear operator which can be either differential or integral, or a matrix. 
The functions cp and / satisfy certain conditions which make possible the realization 
of the operator A of cp and the expansion of cp a n d / i n t o the Fourier series. 

Let us now introduce into consideration the scalar product (a, b), and a conjugate, 
in the Lagrangian sense, operator A* by means of the identity 

(10) (cp*, Acp) = (cp, A*cp*) . 

Here, for the sake of simplicity, the operators A, A* and the functions cp, cp* are 
supposed to be real. 

Consider now two eigenvalue problems 

(11) At// = # , 

(12) A*\1J* = # * . 
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Note that in the case when A is a differential operator and Eq. (9) determines 
a boundary value problem with homogeneous boundary conditions, the class of the 
functions \\i from which the solutions of Eqs. (9) and (11) are chosen, satisfies the 
given boundary conditions. As for the boundary conditions for the function \p* 
defined by Eq. (12), they are obtained from the requirement to satisfy the conditions 
(10). 

Let us suppose that Eqs. (11), (12) determine two complete systems of the eigen-
functions {i/JM} and {i//*} orthonormalized in the following way: 

t n \ / / fl , » = m , 
(13) ^n^m = L 

( 0 , n 4= m . 

Represent the functions / and <p in the form of Fourier series 

(14) jW = E j A W ' <P(r) = 1<PnUr) > 
n n 

where /„, cpn are Fourier coefficients determined by 

(15) fn = {f,*t)> <P« = (</>> <P«) • 

Thus the problem is reduced to finding the unknown Fourier coefficients for the 
function {cp}. Let us substitute the series (14) into Eq. (9) and scalarly multiply the 
result by i/J*, and use the following equalities: 

A\\fn = Xn\\fn 

resulting from (13) and (10). 

Then, for the Fourier coefficients cpnJ we obtain the equality system 

(16) K^m = fm • 

Hence 

(17) (Pm = ^mlfm-

In accordance with the second relation (14) we get 

(18) (p(r) = ^n%Ur)-
n 

Further, let us substitute the stationary problem (9) by the following non-stationary 
problem 

(19) 8JL+A(p=f, (p(r,0) = 0 
ot 
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with the same boundary conditions as in (9). The solution of (19) will be sought in the 
form of Fourier expansion 

(20) /(t) = M t ) . <p(r,t) = Z(Pn(t)Ur)-
n n 

Substitute (20) into (19) and scalarly multiply the result by i/C Then we are led to 
a system of equations with the initial data 

(21) d ^ + L<p„, = / „ , <Pm(0) = 0 . 
dt 

Since fm does not depend on t, the solution of (21) is obtained trivially 

(22) cpm{t) = {\-e-^)Xm"fm. 

Analysis of the relation (22) reveals that, when t -> oo, Fourier coefficients cpm{t) 
will tend to the solution (17) if the spectrum {X} of the problems (11), (12) is positive, 
i.e. all 

Xn>0. 

Let us substitute now Eq. (22) for the Fourier coefficient into the second relation of 
(20). Then we get 

(23) cp{r,t) = ^-^;nt)^1fncpn{r). 
n 

If A is a positively definite and symmetrical operator, then, at t -> oo, the solution (23) 
becomes 

(24) ^,<») = E t U W , 
n 

which coincides with the solution of the stationary problem (18). Thus we are led to 
the conditions under which the limiting element of a non-stationary problem yields 
a solution of a stationary problem. 

It can be easily shown that the difference approximations of (19) lead to an accurate 
solution of a stationary problem when j -» oo. However, in this case the conditions 
of positivity of the spectrum {Xk} can prove insufficient. In fact, let us consider an 
explicit scheme of solving the problem (19) in the form 

(25) f ! l l ^ + A<pJ=f. 

Let us assume then that the solution of this problem may be sought in the form of 
a Fourier series 

(26) <pJ(r) = V>/A(r) 
n 
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on condition that the function f(r) may be represented in the form 

(27) f(r) = YJMr) • 
n 

Here ij/Jr) are eigenfunctions of (11). Let us substitute the series (26) and (27) into 
Eq. (25) and scalarly multiply the result by *A*.(r). Then we come to the difference 
equations for the Fourier coefficients 

(28) f^l^J^i + AM = f„ 
T 

if 

(29) < = 0 . 

Represent now (28), (29) in a more suitable form 

(30) q>i+1 =(l-TAn)cpi + Tfn, cp°n=0. 

By successive elimination of the unknown quantities, we come to the geometrical 
progression 

(31) H+1 = ( 1 +<}n + 12n+-- + li)^L, 

where 

qn = 1 - Tkn 

is a common ration of the progression. 

By summing the series (31), we get 

1 - aj+1 

(32) ^ = L-3*-xfn 
1 - an 

or, using the notations for qn, 

(33) ^ + 1 = [1 - 0 - T A „ y + 1 ] A " V B . 

From this relation it follows that the limiting element, a t j -> oo, will coincide with 
the Fourier coefficient of the corresponding stationary problem provided that 

(34) |1 - TA„| < 1 

or, which is the same, 

(35) 0 < TXn < 2 . 

Thus in this case instead of the condition 

Xn>0 
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it is required to satisfy (35). Though, there is one more arbitrary parameter T here. 
However, if the spectrum Xn is fixed, the condition (35) imposes some additional 
requirements limiting the choice of the time step T. One can note that (35) is a condi­
tion of the calculating stability of the difference scheme (25) corresponding to the 
non-stationary problem (19). At the same time it is the criterion of convergence of 
the relaxation process for solving a stationary problem. Thus the approach considered 
establishes a close relationship between stability and convergence in solving mathema­
tical physics problems. 

In conclusion it should be pointed out that the condition of the type (35), when 
using a universal algorithm, can be made much easier by a proper choice of the stabi­
lizing operator B. Consider now the stationing theory from a more general point of 
view. For this purpose, let us consider the universal algorithm 

(36) B(p' + l - 9 ' + A<p>=f, 
T 

where B is an arbitrary operator for the present. Eq. (36) will be solved with respect 
to <pj + i, then we obtain 

(37) q>j + 1 = (E - TB-1A)(P
J + TB'1/. 

Assume that 

(38) <p° = 0 . 

Let us analyse (37) and (38) in more detail. Supposing that at j -> oo the successive 
approximation method is convergent, then the limiting element of the problem satis­
fies the equation 

<p°° = (E - TB"1 /!)^0 0 + TB'1/. 

From this it follows that 

A<px=f, 

i.e. the limiting element is a solution of the stationary problem. Here we assume B to 
be a nonsingular operator. Let us find further the conditions under which the succes­
sive approximation method (37) is convergent. For this purpose the recurrence rela­
tion (37) will be rewritten as 

(39) oJ+1 = Pcpj + F, 

where 

P = E - rB~lA, 

(40) F = TB~1f. 
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Using the recurrence relation (39) under the condition (37) we get 

(41) <pj+1 = (E + P + P2 + ... + Pj) F 

by successive elimination of the unknowns. Let us consider further the spectral 
problem 

(42) Pi// = fii)/ 

and the conjugate problem 

(43) P*ip* = fnp* . 

Let (42), (43) determine the complete biorthogonal and normalized systems of the 
functions {t/^} and {V*}. Then we can make the following expansion 

(44) F = Y?Mr)> 
k 

where 

Fk = (F,rk). 

Let us represent the function (pJ+i in the form of a Fourier series 

(45) <PJ+1 = lcpi+lW)-
k 

Then substitute the Fourier series (44) and (45) into Eq. (41) and scalarly multiply 
the result, term by term, by ij/m(r). Then, applying biorthogonality and normalization 
of the functions i//n and */>*, we get the system of equalities 

(46) (pj
m

+1 = (1 + iim + ii2
m + .. . + /Li) Fm , (m = 1, 2, ...) . 

Summing the geometrical progression (46), we have 

(47) ^ ^ V ^ ^ ' 
1 ~ Vm 

Now, substituting (47) into (45), we are led to the solution of the problem in the form 

(48) yJ + 1 - . E 1 - ^ X FJm{f). 

m 1 — \Xm 

Analysis of (48) shows that the series converges at j -> oo provided that 

(49) \fim\ < 1 

is satisfied. Thus the condition is found under which the universal algorithm leads to 
the solution of the stationary problem. 
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4. In solving stationary problems we often deal with the complex operators which 
are not readily realized on the computers. Particularly it concerns multi-dimensional 
equations of mathematical physics. On the other hand the modern computers permit 
an enormous amount of information to be handled in no time. This new quality of 
the computers ought to be used in constructing efficient algorithms for solving the 
problems. Such methods are associated with a peculiar organization of the universal 
algorithm based on a generalized relaxation process. Some authors give the folowing 
formulation of the numerical algorithm for the problems with complex operators. 
Let us solve the equations 

(50) Acp=f, 

where 

(51) A = YA> 
a 

and Aa are operators of a simple structure. The function / is supposed to be given 
and cp is the solution sought for from the corresponding class of functions satisfying, 
probably, certain boundary conditions. For simplicity, these conditions are con­
sidered to be homogeneous. Let us formulate then the successive approximation 
method according to 

(52) n(fi + i^)?^v + v--/. 

where x is an arbitrary relaxation parameter. The difference equation of the form (52) 
was formulated by D'jakonov, Douglas Jr. and GUNN, and Samarskii. 

The author and N. N. JANENKO considered (52) from the point of view of the scheme 
for the construction of different universal realization methods. This means that the 
scheme (52) has become a constructive apparatus for constructing difference schemes 
by the splitting-up method. This idea is considered here rather systematically and in 
detail. Obviously, Eq. (52) is a particular case of the general algorithm 

(53) B ^ ^ - + Acp^f. 
T 

\ 

Here the stabilizing operator is of the form 

(54) B = n(E+T-A)j. 

Represent the realization scheme corresponding to every step of the iterative 
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process (52) as 

(55) [E + -Ay )£J+1?n = - T F J , 

2 
E + ~Л2\Є+2ln = ^ ' + 1 / " 

E + ~2Any
j 

cpJ + l = cpJ + £J+l, 

where FJ is the discrepancy of the relaxation process determined by the equation 

(56) FJ = AcpJ - f. 

Analysis of the equation system (55) shows that each equation has a simple structure 
as it is connected with realization of the elementary operators of which the operator A 
is made up. 

Discuss now the formulation of the generalized splitting-up scheme on the basis of 
the universal algorithm. In some works it has been shown that (52) may be substituted 
by a more general scheme 

(57) n(E + | A V J + 1 - ~ ^ + v - / = o , 

which has an advantage over (52) since it contains n + 1 arbitrary parameters Ta, z 

which may be used for constructing an optimal numerical algorithm. In this case the 
realization scheme has the form 

(58) (E + T^A1\^
J + lln= - T F J , 

E + X-±A2 

E + ^Anj? + 1 =? 

cpJ+i = cpJ + £1 + 1 . 

Here FJ is the discrepancy of the relaxation process determined by 

(59) FJ = AcpJ - / . 
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Let us consider theoretically the generalized universal algorithm in the case when 
the operators Aa commute and have a common basis. In this case we consider n 
particular spectral problems 

(60) Aai/a = A(a)wa (a = 1, 2 , . . . , n) 

and, similarly, 

(61) AX* = * W " * ( a - l , 2 , . . . , n ) . 

Now, let the spectral problems (60) and (61) form n complete orthogonal and 
normalized bases of the functions {uak}, {ual}. Then the solution of Eq. (57) is sought 
in the form of a series 

00 

(62) <pJ = Y J ( p J
k U i k u 2 k . . . u n k . 

k=l 

Here we assume that the function / may also be extended into a series according to 
the eigenfunctions of the problem 

00 

(63) / = Y,fkulku2k... unk. 
k=i 

Substitute the series (62), (63) into Eq. (57) and scalarly multiply the result by 
u*lu*l . . . u*j. Then, for the Fourier coefficients cp{, we come to the simplest equation 

(64) - nfi + ̂ xtYk+1~<pi + w - A = 0, 
a \ 2 / T 

where 

(65) Xk = £tf> . 
a 

Solve Eq. (64) with respect to the unknown cpk
+i. Then we obtain 

f+i ; V 2 / , , xfк (66) <pt+» = - * - ^ - '— ęí + 

п(i+f4->) Гj(i + f4->) 

Assume the spectra {/lk

a)} to be positive, then it is easy to formulate the criterion of 
convergence of the iterative process (66). To this end, consider a common ration of 
the progression 

Y[(l+^XkA-rXk 

(67) qk = • V 

П(l+|AГ 
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It is easily seen that the convergence of the iterative process (qk < 1) takes place 
when the inequality 

Ař> (68) n(- + ̂ tf>)>i 

is satisfied. 

Obviously, 

(69) Ta ^ T > 0 

is a sufficient condition to solve the inequality. Thus we come to the criterion of the 
choice of the parameters for the relaxation process. It is understood that the con­
dition (69) allows us to conduct a wide search for the optimal parameters of the relaxa­
tion process ra, T. This problem is always solved independently starting from the con­
crete structure of the operators of the problem. If the solution of the problem is 
repeated, such parameters can be chosen once and for all. 

In conclusion let us formulate a more general iterative process which can be applied 
to the solution of the stationary problems 

(70) U(E + X~Ax)
(pJ + 1 - ( p J + AcpJ = / . 

a \ 2 / T 

Here Aa are arbitrary operators. The structure of the operators Aa is chosen so that 
the realization scheme of the iterative process might be as simple as possible and 
could be effectively realized on computers. 

5. Now we shall consider non-stationary problems. It is necessary to formulate 
the splitting-up method applicable to the problems of such kind. First of all we shall 
start from the requirement that the numerical algorithm must be effective in realiza­
tion and absolutely stable. The problem of approximation is of essential importance 
because it is closely connected with economy of the numerical algorithm. Actually, 
if the schemes of the first order accuracy are used for the approximate solution of 
a non-stationary equation, then, for the required accuracy of the result, it is necessary 
to make calculations with small time and space steps. However, in many cases, it is 
reasonable to use schemes of the second and higher order accuracy. In this case the 
time and space steps can be taken large, which can considerably save the calculation 
time. Though this fact is obvious, the application of the schemes of the second order 
accuracy leads sometimes to insuperable difficulties since, in many cases, the difference 
schemes of the second order accuracy prove unstable, which makes calculation by 
them impracticable. When calculation is stable, for example, if centred implicit 
schemes are used, the method appears to be algorithmically ineffective because no 
suitable and economical algorithms of realization are available for it. Thus the choice of 
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efficient algorithms for the solution of non-stationary problems is one of the central 
problems in numerical mathematics. 

Let us consider the non-stationary equation 

(71) 51 + A<p=f, cp(Q,r) = g(r). 
ct 

Break up the interval 0 ^ t ^ Tinto the partial intervals T = At and substitute (71) 
by the difference equation 

(72) n U + 1 A \ <pJ+1~ g-J + v = f/+i/2 • 

Here Aa are parts of the operator A, £ A a = A. For the sake of simplicity, we assume 
a 

that A and Aa are independent of T, but this assumption is of no importance to us. 
The realization scheme for Eq. (72) coincides with (55). Let us show that Eq. (71) is 
approximated by (72). 

In fact, let us consider Taylor's series 

(73) ^ - + i = <p3+i<2 + cpi+i<2 - + cpi;1'2 - + . . . 
2 8 

2 o 

If (73) is substituted into (72), we obtain 

(74) ^ + A(p=f + 0(r2) at / = tJ+1/2 . 
at 

Hence, the difference scheme (72) approximates Eq. (71) with the order r2. 

For stability we must choose T from the condition 

max \>!p\ ^ 1 , 
n 

where Tis the operator considered in the case of stationary problems. 

Consider now another scheme of the splitting-up method, considered by E. G. 
D'jakonov, which is also a scheme of the second order accuracy 

(75) n (E +1 A.} ^+i = n (E - \A) ^m • 

If we substitute Taylor's series (73) into (75), we obtain (74) as the result. The scheme 
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of realization is as follows: 

(76) cpi + *'2n = ( E - - A \ <pJ + <*- ^ , 

^ •+1 /2 = ÍE _ lAl\<p' + ̂ 'l»2n + Ifi+U* 

E + l A, \cpi+2ln = (p^1 7" + - E + 1 / 2 

2 Г 

j + Oi/n __ Ѓnj + (0L-1)/П E +

 2

лл 
where 

a = 1, 2,.. ., n — 1 , 

In order to test the stability of Eq. (75), we shall consider the homogeneous equation 

(77) n ( E + ^ . ) e ^ + i = n ( E - ^ a ) ^ , 

where £° is an error in the function cp° given at t — 0. Find the solution of the equation 

(78) e> = nJ iA„(r) , 

where rj = const., j is an exponent, g„(r) is a solution of the homogeneous problem 

(79) Ai,„ = A A . 

Taking into account that A and Aa have a common basis, we obtain 

(80) Ajd. = tfty. • 

Let us substitute (78) into (77) and take account of (79) and (80). As a result we 
obtain 

1 - r; (a ) 

If A*a> ^ 0, then |fj„| rg 1 for all the values of n. Therefore, in this case, the difference 
scheme (75) is stable. 

Consider the particular case when A = At + A2. We have 

(82) (fi + 1,1.) ( E + ^ A 2 ) e' + 1 = (E - I„.) (£ - ^ 2 ) .* . 
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Solving (82) with respect to eJ+1, we get 

(83) eJ+i =[E + -Л 
- i 

2 1 í E + ІЛ.Ţ^-ІЛ^E-ІЛ^. 

Let 

J E + -A2)eJ . 

In this case Eq. (83) becomes 

(84) y + 1 = (E + -Лv 'E-ІЛ\U-ÏЛ(E + 12ЛУ 

In accordance with the property of a Hilbert norm, we get 

(85) цø;+ i _ E + - A ! 
2 

E - - A , 
2 

S-UME + UІ \&> 

and, on the basis of Kellog's lemma, assuming the positivity of the operators At 

and A2 we determine the computing stability of the difference scheme 

Let us consider the non-stationary problem 

d<p 
(86) 

дt 
+ Лę = f, ę = g at í = 0. 

First of all, let us find the solution of (86) in the interval tj 5_ t _ fj+i/2 where 
O+1/2 = 0 + 2T by the splitting-up method 

(87) 
„J + 1/2П V 

r/2 
+ A1<P

1 + 1 / 2 " = / ^ 1 / 2 , 

j + l/2/i _ џj+Ц2n 

т/2 
+ л 2 <p J ' + 2 n = 0 , 

(ï>.' + 1 / 2 - (pl + П-ЦlП 

'/-
+ A„Ф/+1/2 = 0 . 

If the solution of (87) is obtained, then we find the solution of Eq. (86) for t =-= tJ + 1 

using the difference scheme of the second order approximation 

(88) 
ґfìJ+í — ҐПJ 

Ф Ф . л.J+1/2 __ fj + 1/2 + Лф J : / Я 
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The scheme of realization of the system (87) is 

(89) (E + X~A\U + \A\...U + ̂ n V + 1 / 2 = <PJ + \f-

Eq. (89) is a scheme of the first order approximation for (86) in the interval tj ^ 
^ t :g O+1/2 f ° r a c * a s s °f snaooth solutions. In fact, 

(90) (E + ^ ) ( E + %-A2)...(E + l A „ y E + \A + T~R, 

where 

R = (A!A2 + ...) + ^(A !A 2 A 3 + .-.) + ... + ff/li/12-4-

From (89) and (90), we obtain 

fJ
 + i/2 - mJ 

(91) t V- + AcpJ+i = fJ + 112 + 0(T) . 
T/2 

Then, correct the solution of (86) by means of Eq. (88). We have 

(92) cpJ + i = ^ - T ( _ V + 1 / 2 - fJ'+1/2) . 

Substitute (pJ + i/2 from (91) into (92). Then we arrive at the conclusion that the scheme 
(92) has the second order approximation. In order to find the condition of stability 
for (87) and (88), let us consider the homogeneous equations (89) and (90) and assume 
that (p — e is the error. As a result we get 

(93) (E + \A^J [E + X-A2y.. (E + X

2Any
j+i/2 - eJ

 % 

eI+i _ ej _ TAsJ + i/2 . 

If we substitute eJ+1/2 from (93), we have 

(94) eJ+i = rieJ , 

where 

n - E - xAB'1 

and 

--п(- 4 
Now we have the condition of stability 

(95) max \Xn

m\ < 1 , 
n 
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where X[n) are eigenvalues of the spectral problem 

(96) mn = « „ . 

If we consider the non-homogeneous problem (87), we are led to the scheme 

(97) (pj + i =ncpJ + G , 

where 

(98) G - T(E-X-AB~1\FJ+XI2 . 

Discuss now a more general problem of the splitting-up method. Let us consider 
a non-stationary problem of the solution of the linear equations 

(99) ? + Z ^ = o, «Ko)=j\ 
Ot < z = l 

In the interval tj :g t g tj+1 this problem yields 

(100) dJE± + Al(pi = o , <pl(tJ) = cp\ 

-~r + A2<p2 = o , <p2(tj) = <PI(O+I) > 
Ct 

- ~ i + *̂<P,. = 0 , cpn(tj) = ^ - . - i ^ + O . 
Ct 

Such kind of splitting is considered in general in the works by A. A. Samarskii and 
N. N. Janenko. 

Let us assume now that the problem considered is periodical for all geometrical 
variables Aa (a = 1, .,., n), and all the operators Aa have a common basis. In this 
case we find the solution of (100) in the form of a series 

<Pa = X ^ v M , 
^ v 

where \j/v(r) is the solution of the homogeneous problem 

Aij/ = ty. 

Consider a conjugate problem 

A*jf/* = ty* . 
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Since Aa have a common basis we get 

Aj\i = A(aV (a = 1,2,..., n ) . 

The function 

9 = Z<pv *Av(r)> 
V 

is a solution of (100) in the interval tj ̂  t ^ tJ + 1 where cpv are solutions of the 
simplest problems 

^ + Av</ = 0 , <p\tj) = q>%) . 
at 

The solution of these problems is 

(101) cpXt) = tpXtj)e-^'-<*(t*tj). 

Let us consider the system (100). Again, analogously to the foregoing, we obtain 

(102) M + j u y ^ o , rib) = <p", 

M + Atv2 = o, ^foWik+i). 
dl 

^ + ЯV"V
V = 0 , <p'J(tj) = ęl-Ùj+J . 

át 

Solving the problem (102), we have 

(103) <p\=<p\(h)e-W-"\ 

<pl-cp\(tj+1)e-^^\ 

rov _ v (f \ -A v (» ) ( t -0) 
^n — (Pn-l\lj+l) e 

By successive substitutions, we obtain the solution of the problem at the mo­

ment tj+l 

(104) <pl{tj+l) = <p\tj)e-^, 

where 

AV = V>V"\ x = At. 
a. 

Consider the exact solution (101) and put t — tj+1. Then we obtain 

(105) <p%+l) = q>XtJ)e-^. 
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Comparing the results, we have 

<Pl(tj+l) = <p\tj+l)-

This means that the system (100) provides for the exact solution of (99) when t = tj9 

tj+1,.... Certainly, the equivalence of the problems takes place provided that the 
commutative operators Aa have a common basis. Generally, when the operators are 
non-commutative, there are some important theorems proving the convergence of 
the approximate solution to the exact one (refer to Demidov-Janenko's theorem). 

To conclude with, we shall make some remarks on a weak convergence of the 
schemes for the solution of stationary problems. 

Let us consider a more general problem 

(106) Aq>=f, 

where the operator A is positively definite. 

To solve this problem, let us consider a non-stationary problem 

(107) ^ + / l iA= f , ^ =- ^ = . . . == ̂ " - 1 } = 0 . 
df 

Here A and fare the functions independent of t. Let us assume that the non-stationary 
problem is solved and the solution of (107) belongs to the space {\j/}. Let us suppose 
further that all the functions of {i/>} have continuous and bounded derivatives up to 
the order n inclusive and satisfy 

\\j/\ < M = const , 

where M does not depend on t. In this case the solution of (106) may be obtained as 

a functional of the solution of (107). 

Actually, let us consider 

(108) <p^ = £ fdf. [dt2 ... \'""dtnHr, tn) = S<rty , 
-* Jo Jo Jo 

where Tis a parameter connected with the interval 0 _ f _ T. Integrate Eq. (107). 
We get 

(109) S(T>^ + AcpW =f. 

Consider the relation 

V ) df T")0 'J0 J0 df„ T"n J 
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Use here the first condition from (107). As a result (109) is rewritten as 

(in) V r > -/-^*<r, . r) . 

Since we let |i/>(r, T)\ < M, we obtain 

(112) - V w ) « / , 

when 

T-> oo . 

Therefore, on this assumption, the solution of the stationary problem is obtained 
as a result of the solution of the non-stationary problem. In the case n = 2, some sug­
gestions in this connection are given in Saul'ev's work. 

6. By this time a great number of methods have been developed for the solution of 
the Boltzmann linear kinetic equation. The well-known of them, namely, the method 
of a Gaussian quadrature, spherical-harmonic method, Vladimirov's method of 
characteristics, Carleson's S,.-method, are widely used in solving various problems of 
nuclear physics, astrophysics, meteorology and so on. 

At present, owing to the intensive development of computational techniques and 
creation of high-efficiency computers as well as to the progress in computational 
mathematics, it became possible to work out new methods based on splitting of the 
complex operators of the problems into the simplest ones. Different aspects of the 
splitting-up method have been considered in many investigations. The author and 
N. N. Janenko in their work have discussed basic points of the construction of vari­
ous splitting-up schemes for the solution of non-stationary and stationary transport 
equations. The formulated algorithms are being used for the solution of multi­
dimensional kinetic equations in the region with complex boundaries. This study has 
been a starting point for the research connected with the splitting-up method in the 
field of the kinetic equations. A stationary problem has been considered in some 
studies by the author, V. V. PENENKO, U. M. SULTANGAZIN and in A. A. SAMARSKII'S 

work, and by B. I. GOLDIN. 

Let us consider a mathematical formulation of a problem. Let G be an open 
connected set in an n-dimensional Euclidean space. 

Let the boundary F of the set G be convex and piecewise smooth (i.e. let a normal n 
be in every point of the boundary except for the finite set of points). Let Q cz Rn be 
a set of all unit vectors of the directions Q. 

Consider a one-velocity equation describing the transport of neutrons in a medium 
with isotropic scattering 

( 1 1 3 ) ldJp + Q(p + (r(p = ^ 
v v dt 4TI 
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For Eq. (113) we pose a Cauchy problem with boundary conditions 

(114) cp(r, Q, t) = 0 ; (O, n) < 0 ; r,Q,tey ; 

cp(r, Q, 0) = #(r, O) ; r , O e f l x G 

in the cyhndric range IT = Q x G x Twith the basis Q x G, and the side boundary 
y = F x T. Together with the non-stationary problem (113) —(114), we shall con­
sider the stationary problem 

(115) QVcp + acp = ----- | dO cp(r, O) + (r, Q) ; 

<p(r, O) = 0 ; (O, n) < 0 ; r, Q e T . 

Let the functions a = O-(r), a s = as(r) characterizing the properties of the medium 
be measurable, positive, piecewise continuous and bounded on G. As for the functions 
f(r, Q, t) or f(r, O) which characterize the radiative source strength, we let them be 
piecewise continuous in the region II or Q x G. For further consideration, it is 
convenient to introduce the operators 

(116) Лx = QV, Л2 = <JE - - ^ 
4n 

d Q . 

Following V. S. VLADIMIROV, introduce the variable £, by the formula 

(117) r' = r - (^O. 

Then, along the ray Q, the kinetic equation and the boundary conditions are written 
accordingly, as follows: 

(118) — cp(r' + £Q, O) + o(p(r' + £Q, O) 

= ^ L ( r ' + (̂ O, O) dQ + f(r, O) , cp(rf + .J0Q, O) = 0 , 
4;r J 

where Co ^s t n e value of t; at which the radius vector r crosses the boundary of the 
region G. The formula (117) yields, at each O, a representation of the set G as 
a Cartesian product of the two-dimensional set nQ and one-dimensional set nQr, 

G = nQ x nQr, . 

The solution of (118) will be sought in the class D of the real functions. The function cp 

is said to belong to the class D, if it possesses the following properties. 

1. At almost all values (r', Q) from O x nQ the function cp(r' + £Q, O) is absolute­
ly continuous in the closed set nQr,. 

125 



2. At almost all values (r\ Q) from Q x nD the function cp satisfies the condition 

cp(r' + £0Q, Q) = 0 . 

3. The function cp must be such that 

Lcp = — cp(r + £Q, Q) + as cp(rf + £Q, Q) e L2(Q x G) for o ^ 0 . 
d£ 

The set D of functions is compact in L2(Q x G). The conditions 1) — 3) define the 
class D of the generalized solutions of Eq. (118). In this case, any function of D, 
satisfying Eq. (118) almost everywhere, will be called a generalized solution of Eq. 
(118). 

The assumptions regarding the functions a(r), as(r) and f(r', Q) being made, we 
can establish some properties of the operators Ax and A2 considered above in (116) 
in the space L2(Q x G). 

Lemma 1. The operator A2 at as > 0 is positively definite. 

Lemma 2. The operator A1 is positive. 

Lemma 3. The operator (E + ^xA^)'1 exists and is bounded from L2(Q x G) 
in D, whereas 

E + -Ax 

2 
S (1 - e~2d/x) HFII , FeL2, 

where d is the diameter of the region G. 

In the linear set D, introduce the norm setting 

IMk = 

and point out the inequality 

E + -Л1)ę , cp e D (cpeD2) 

< ( i - -2d/t )IMk 
which takes place for all values cp e D. 

Hence, the convergence in D2 follows, accordingly, from the convergence in L2. 
Setting that the range of definition of the operator Ai constitutes the functions of 
the set D, we can write the boundary value problem (118) in the operator form 

(119) (A1 + A2)cp = / , A, + A2 = A. 

For the solution of (119), let us construct the iterative process representing the 
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universal algorithm 

(120) B9^1 Z*L + v = / . 
T 

where B is an operator chosen as follows: 

T is a time step or the iterative parameter. Let us prove the convergence of the iterative 
process (120) to a unique solution of the stationary boundary value problem (119). 
Uniqueness of the solution of the boundary value problem for the transport equation 
follows from the maximum principle proved by T. A. GERMOGENOVA. The proof of 
convergence of the iterative process (120) for the case (as > 0) can be found in a 
number of studies. 

In our further discussion we shall not go beyond this limitation. In order to prove 
convergence, we shall need only bounded, positively definite or semi-definite opera­
tors Ax and A2 in L2. Consider representation of an arbitrary linear operator as a sum 
of the two operators 

A = C + D, 
where 

C = i (A + A*) , D = \(A - A*) . 

Here A* denotes a conjugate operator with respect to A. Let us introduce the scalar 
product as usual and assume that 

M-V(*.«0; Ml2 = - p ^ ^ 
11*11 = 1 ((p,(p) 

are the norms in L2 of the function (p and the operator A respectively, and N(A) is 
the zero space of the operator A. 

By virtue of the relation 

(A(p, (p) = (C(p9 (p) 

in the real vector space with a scalar product, instead of the operator A, one can 
consider the operator C which is self-adjoint in contrast to A. 

Lemma 4. If0<a</?<co and the operator A satisfies, in L2, the condition 
(A(p, (p) ^ OfOr any (p, then there exists X (0 < X ^ l) such that for any a ^ a ^ 
S b S P the operator (E + bA) has the inverse operator, and 

||(E + aA)(E + bA)~1l S A. 

If (A(p, q?) > 0 for (p =t= 0, then X < 1. 

The p r o o f is based on Kellog's lemma. 
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Lemma 5. Let 0 < a < p < co and A, A! be linear operators in L2 such that the 

operators C and C1 satisfy the conditions (Ccp, cp) ^ 0, (Ctcp, cp) ^ 0 and N(C) n 

n N(C) = 0, t/ien tliere exists a positive number y < 1 such that for euch a < a < 

< b < p, \\(E - aA)(E + bA)"1 (F - aAt)(E + b/lO-1! < y. This lemma is 

a generalization of the Douglas-Pierce lemma. 

Theorem 1. For any initial approximation <p° e D the iterative process (120) 

converges in L2 to the unique solution of the problem (119). 

Proof. By identical transformations, we rewrite Eq. (120) 

П J + I = Tę! + g , 

where 

(121) ( E + H ' ( E + H " ' ( - E " H ( E " 2 Л ) ' 
a = т l E + ~ л l 

- 1 

F + - A 2 

2 
/-

Obviously, Tis a linear transformation and maps the set D into itself. 

Let cp E D, then 

l->U-

F + - A 2 

2 

where 

£ + - Л 1 ) T ç > 

E - -Л2 

2 

< P 

-Лt 

E + -Лí)ę 

E + -Лt 

2 

Mm • 

E + - A ! )(p < 

E + 2A2 
E - - A 2 

9 
F - - A F + -лx 

2 

By virtue of lemma 5, we get 

(122) 1 - 1 * = «P« < -
Convergence follows from the inequalities (122), and uniqueness of the solution 

follows from the maximum principle. The result of Theorem 1 holds directly, in 

consequence of lemma 5, for the case of non-increasing sequence of the iterative 

parameters. 
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Theorem 2. Let a g fi be certain positive numbers, then, for any sequences of the 

relaxation parameters Ty, s = {/? = xx ^ T 2 ^ . . . ^ rno = a, ij = Xj (mod n0) for 

j > n], the iterative process (120) converges to the unique solution of the problem 

(119). 

Setting v At = T, we see that the algorithm (120) is applicable to the solution of 
the non-stationary problem (113), whereas T (121) is an amplification operator. 

The range of definition of the operator T is compact in L2{Q x G). The fulfilment 
of the inequality 

||T|| < 1 at any T > 0 

provides that the family of operators Tn, for all n > 0, is uniformly bounded. Besides, 
after the fulfilment of the conditions of lemma 5, the inequality 

E + 2Al) \ E + \ Á 2 
< 1 at any т > 0 

holds. The facts mentioned above provide for the stability of computation. A direct 
test reveals that there is an approximation in T. By a corresponding choice of the 
finite-difference schemes we provide for approximation in spatial variables. Then, 
according to the Lax equivalence theorem, we obtain convergence of the solution of 
the approximate problem (119) to that of the initial non-stationary problem (113) 
and (114). 

There are various schemes and their modifications for a practical realization of the 
algorithms of the numerical solution of the multi-dimensional kinetic equation by 
means of the splitting-up method. Above we have considered a general philosophy of 
the construction of such schemes and discussed a question of formulating boundary 
conditions for the schemes of complete splitting. We shall construct realization 
schemes on the basis of the formula of a universal algorithm. Rewrite Eq. (120), 
carrying out obvious transformations, as 

(123) (E + '2A2\ (E + lA,\ {<pJ + 1 - <pJ) = T ( V - / ) . 

Introduce the subsidiary functions <pt and cp2 and represent Eq. (123) as a system of 

equations 

(124) (E + ^A2\<pi+1'2 = F<, 

T ' J+l _ rJ+li2 E + - Ax j (pJ

2 = cp 

cpJ+i = cpJ + V 2

+ 1 , 

where FJ = A(ps — fis the discrepancy of the iterative process. 
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7. The mathematical apparatus, discussed in the previous section, has been used 
for the solution of a non-linear system of hydrodynamical equations. Since the system 
of hydrodynamical equations is quasilinear, it is internally closely connected with 
linear equations with variable coefficients obtained from the first time linearization 
at each time interval. The theory of a system of partial differential equations with 
variable coefficients has been thoroughly studied and can be used for substantiation 
of the numerical algorithms which are being developed. 

Consider a system of prognostic equations in the form 

(125) — = + lv , 

dt dx 

dv _ _ dH _ 

dt dy 

du dv dx 
— + — + — = 0 , 
dx dy dp 

dt g p 

T= -LdJL 
R dp 

with the boundary conditions 
i+r,r\ P SH p dH 
(126! T = at p = p0 - i" = at p = 0 . 
V JRT dt RT dt 
Here w, v, x are components of the velocity vector u in the x, y, p coordinate axes, H is 
the height of the isobaric surface p = const, Tis temperature, p = 0 is the "upper 
boundary" of the atmosphere, p = p0 is the isobaric surface corresponding to the 
level of the day surface of the Earth. 

The initial data of the problem will be chosen in the form 

(127) u = u° , v = v° , T= T° at t = 0 . 

In order to split the formulated problem into the simplest ones, we must imagine the 
fundamental factors determining evolution of the fields of meteorological elements. 
In our opinion, there are at least two such factors, namely, transfer of meteorological 
substancies along particle trajectories and adjustment of the fields of meteorological 
elements. One can represent the following simplified scheme of evolution of meteoro­
logical fields. Consider an elementary time interval At. For this time interval, meteo­
rological substancies, fixed at the initial moment with respect to this interval, will 
shift along trajectories so that the initial vector of the position of the particles, r0, 
will change to r = r0 + u At with velocity u. Naturally, this will cause a certain 
redistribution of the meteorological fields which will disturb the dynamic adjustment 
of the fields described by the system of the basic equations (125). 
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It may be assumed that the mentioned adjustment can be fulfilled if we solve the 

equation of adaptation in the same interval by taking, as the initial state of the 

fields of meteorological elements, the obtained fields after their shift along trajec­

tories. In this case we can consider the adjective terms in the corresponding equations 

(125) to be missing, since the shifting of the fields has been taken into account at the 

first stage of consideration. At the second stage adjustment of the fields will take place 

after their shifting along trajectories. Mechanisms allowing such adjustment are 

wave processes which asymptotically develop into gravitational and sonic waves. 

Through the wave processes, discrepancies of the adjustment will be distributed in the 

fields of meteorological elements and will be corrected in accordance with the laws 

of dynamics. So, instead of the continuous interaction of all the factors in the process 

of evolution of meteorological fields, we consider a simplified scheme of a discrete 

representation of each mechanism separately on condition that each time we can 

assume the fields of meteorological elements to be additive with respect to the effect 

of the two factors considered. Naturally, this is a certain simplification of the nature 

of dynamics of the atmospheric processes. However, such a model roughly represents 

the fundamental constantly operating factors the better the less is the time interval At. 

According to the adopted model, let us formulate a splitting-up scheme of the 

dynamics equations (125) in the time interval (tj9 tj+1), At the first stage, along tra­

jectories of the air particles, 

/<™\ &u du au 
(128) — + u — + v — = 0 , u = uJ at 

= 0 , v = vj at t = tj 

дu ôu ôu 
— + u — + V  

дt ôx õy 

дv дv дv 
— + u — + v — 
дt õx Õy 

дT ÕT ÔT 
— + u + v — 
дt ôx Õy 

0 , T = V at t = tj . 

After the solution of (128) is found in the interval tj __ t = tJ+l9 let us solve the 

problem 

(i29) r-to--f-
ct ox 
dv , dH 

h lu = , 
dt dy 
дu 
— + 
õx 

дv дт л — + — = 0 
õy ôp 

дT _ 

~дt ~ 

Уa ~ 

9 p 

T = _ p_ дH 

R õp 
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with the boundary conditions 

(130) T - — at P = P0, t = — at p = 0 , 
V FT at RT Llx 

the solution of the problem (128) at the time interval tj _ t ^ t7 + 1 being taken as the 
initial data for the solution of the system (129). Thus, the problem of weather predic­
tion has been reduced to the two simpler problems which are solved by the splitting-up 
method described in detail in the author's monograph "Numerical methods in weather 
prediction". G. V. DEMIDOV has substantiated this splitted algorithm theoretically. 

On the basis of the Demidov-Janenko theorem on a weak approximation and by 
introducing a special norm, he has found out that, if the initial data belong to 
Sobolev's W™'*0 class, i.e. to a set of functions having generalized derivatives up to the 
order m ^ 3 in x, y and k0 = 2 in p, then the solution of the problem (128) —(130) 
exists for small values of t, and tends, by the norm, to the solution of the initial 
problem (125)-(127) when At -> 0. 

Similarly, we can solve other complicated problems of mathematical physics: those 
of hydrodynamics, theory of elasticity, filtration, ocean dynamics, etc. 

For references concerning application of the splitting-up method to the solution of 
mathematical physics problems, see papers and monographs. Some of them are 
mentioned in the present study. 
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