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SOME VERY EFFECTIVE METHODS OF SEARCHING IN TABLES

JArROsLAV KRAL

(Received February 23, 1967)

1. INTRODUCTION

In many areas of automatic programming the following problem must be solved.
Some source A generates a sequence of items Xx;, X,, X3, ... which will be called
keys. It is assumed that on the set of keys x; a relation of equality (=) is given. We
have to construct a table T in the following manner: For every m = 1 T contains
just all distinct keys from the set {x,, x,, ..., X,,}.

1.1. Example. During the translation of an Algol program a table of constants
in the program without repetition must be constructed. In this case the source is the
scanning part of the translator, the keys being scanned numbers.

1.2. Example. In mechanical translation of natural languages, keys are the words
appearing during the reading.

1.3. Example. Automatic stock administration. In this case the customers,
giving their demands, form the source in question. The keys are the names of items
in the stock.

Every key is a head (or key) of further information. For example in 1.1. the in-
formation is the key itself, in 1.2. an equivalent of a given word, in 1.3. an information
needed for the stock administration. The question of formation of this information
or obtaining some will not be discussed further.

The usual examination of a table T is a successive examination of all keys in T.
Then the mean value of examination under the condition that x # x; for all keys
x;in T is just n. In the opposite case the mean value is equal (under certain conditions)
to (n + 1)/2. In [1] an algorithm was proposed needing approx. log, (n) (1/2 log, n)
examinations. But in [2], [3], [5] and [6] there were introduced and studied methods
which, as we shall see below, need a bounded number of examinations if the number
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n of items in the table T tends to infinity. This fact is proved in section 3. In section
2 three types of algorithms for constructing tables are given. In section 4 exact
formulac for the mean value of a number of examinations are given. In chapter 5
the situation, when a backing store is used, is discusscd. Some numerical results
will be given and discussed in a subscquent paper.

2. DEFINITION OF ALGORITHMS

2.1. Method. A (sce [1]) This method assumes that on the set of keys a relation <
of full ordering is defined. During the forming of the tabel T the so called admissible
tree is constructed. The admissible tree is a rooted finite binary tree (i.e. if an vertex
of a tree is not an end-vertex, then it has just two successors: the left and the right
one) the vertices of which are labzlled by
keys placed in the table. The tree fulfils two
additional conditions:

a) If the keys x4, x,, x5 denote labelling
of three vertices from figure 1 and x;, = x,
(xg = x3) or x (xg) is accessible from x,
(from x3) then x;, < x, < xg. The set of
labels of all vertices is just the set of all
items in T.

b) If I(x;, x;y, ...) denotes the length of
the longest path in the tree, the first two
vertices of which arelabelled by x;, x;,, then
for every vertex V in the tree labelled by x

(1 ]l(x, Xp .. = I(x, x, )| <1,

x; or x, denotes the labelling of the left or of the right successor of ¥V respectively.

Fig. 1

It can be shown that for the length I, of the longest path in an admissible tree
ly < 3/21log,n where i is a number of vertices in the tree and that the fact that the
key x does not label any vertex in the tree can be discovered by examining just one
path in the tree. In [7] it was proved that the mean value of lengths of paths leading
from the root to the end vertices in admissible trees is log, n. If x is not found, the
vertex labzlled x is added and the tree is reconstructed by a very simple manner in
order to save the property of admissibility. In the computer an admissible tree is
coded as a table each member of which contains two keys pointing to the left and right
SUCCESSOT.

2.3. Definition. Key function f(a, n) is a single valued function defined on the
set K of all keys, with values from 1, 2, ..., n i.e. a function which to every key a
assigns just one positive integer not greater than n.
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2.4. Definition. Consider a table T. We shall assume that the table T is an array
of length n, T = {Ty, ..., T,}. T; has cither an undefined value or its value is a key.
It is understood than T'is formed by means of a key function f by method Bif at the
beginning of the formation of T the value of every member of T is undefined and if
for every key x generated by the source the following operations are carried out:

(i) The value t = f(x, n) is evaluated.

(if) The value of T, is examined. If the value of T, is undefined, we put the value of T,
equal to x, these operations being thereby completed. The operations also end if
the value T, is x. If the value of T is not x, ¢ is put equal to ¢ 4 1 and (ii) is repeated.
Here, as well as below, + (=) denotes addition (substraction) modulo n. T; will

further be called the i-th member of Tand n — the number of T; in T — the length
of T.

2.5. Example. The method of searching in T, as was stated in the introduction,
is method B with f(a, n) = 1.

2.6. Definition. A key function f(x, n) is, for the given source 4 of keys, a random
key function is and only if for the sequences x;, x,, ... generated by the source 4
the sequence f(xy, n), f(x,, n), ... is a sequence of independent random variables
uniformly distributed on 1,2, ..., n i.e. P(f(x, n) = i) = 1/n.

2.7. Definition. The table T'is created by the method C if
(v) at the beginning of the formation of T the table T contains members Ty, ..., T,

n’
the values of which are undefined, and r = n, each member T; of T contains besides
the value of a key, which can be undefined, a pointer part, the value of which can

be undefined or is an integer s > n.
(iv) The value t = f(x, n) is evaluated

(iiv) The value of the key part in T, is examined. If the value of the key in T, (value
of T,) is not x, then the pointer part of T, is examined. If its value is not defined,
a new member T, , is added to T, the value of the key part in T, is put equal to x,
then r, which is the length of T, is increased to r + 1 and the value of the pointet
part in T; is put equal to r + 1. If the value of the pointer part in T; is s, the member
T, is examined according to (iiv).

2.8. Proposition. If a sequence xy, x5, ..., X, of keys does not contain more dif-
ferent keys than n, then all the methods A, B, C form a table T without repetitions
containing all different keys in x, x,, ..., X,

Proof can be easily carried out by induction.

2.9. Terminology. The table T contains k keys if just k members of T have defined
values. The table T has parameters (n, k) if its length is equal to n and it contains

3



k keys. A key x is introduced into the table T'if the value of some T; is put equal to x.
T does not contain x if no value of T, is equal to x; in the opposite case T contains
x. In the remaining part of the paper we shall assume that a random key function is
used.

3. SOME THEOREMS FOR MEAN VALUES OF THE NUMBER
OF EXAMINATIONS

3.1. Theorem. Let T have parameters (n, k). Let k < n.d (where 0 < d < 1)
for every n. Then the mean value of the number of examinations before finding
that a key x must be introduced into the table T is bounded as n — oo for methods
B and C.

Proof. Denote the dependence of events and its probabilities on k and n by the
upper subscripts. Let P(A) denote a probability of 4 and let A}, be the event that,
beginning with the examination of T;, just m examinations are done.

n—m

(1) P(Ak’n) = Z P(B -J m+1) = Z P(B, m+j) = Z Pl‘n’g—i

where P(B}}) is the probability of the event B} that values of T;_,, T}, are undefined
and values of Tj,..., T;;,-, are defined. The probability P(B};) obviously does
not depend on i, so P(B}7) is equal to some number p™". But

©) P(B3) = p(Cig)
C" 2 is the event that during the formation of T the value of the key function f equal
toi = 1and i 4 g was not obtained and for keys which appear in the sequence for
the first time just g-times the value of the key function equalto i, i + 1,...,i + q =
= 1.

We have

0 n g (JO O

If q remains constant for b — oo and lim kfn = d < 1 we obtain

n— o
q k= _
4) 1imP(ci.‘;;)=1imq—(1—l+—2 thk IV (k_az1)_
n—o n—o q! n n\n n n n
- d( (qa)
= e q+2) M7
q!
A generating function for probabilities (4) is
0 —-d m
(S) G(x) - e._zdz (d .m.e . x)
‘ m=0 m!



where we put
P(Ci,) = e

Now, using the independence of probabilities on i, we obtain from (1)
(6) P(A7n) = Pp =3 Pt
j=0

The mean value E(n, k) of examinations in (ii) in 2.4. under the condition that x
is not in T'is equal to the number of examinations before the T; of an undefined value
is found plus one, i.e.

k k k k of =
. . . J+1) wn
™ E(n:k)—1=211Pj=ZJZP’i’ =ZJ( )P'I-
j= i=1

j=1t=j 2

From (5) for great n using Stirling’s formula together with (2) and (4) we get

(8) . W< (de™®* )" e < (de= )" .e” 92

"7 J(amm) V(@)

so for n — o, kfn > d < 1 and L = 4 denoting S, = Y p}”" . i
=1

© o —d+1\7\
(9) E(d) = lim E(n, k) < S;, + (Z em2a S+ 1) (de )) x 1:02
e i=L 2 J(2mj)

. —3d+1 )
1-02e ;(ij+l);:d31_d

\/L. 2. \/(271 =1

= PL

and the theorem is proved. For method C the conclusion of the theorem follows
from proposition 3.3.

3.2. Remark. It is clear that (9) does not estimate E(d) too well. For example for
d = 0-5 we obtain E(d) < 11,5. Taking into consideration, however, that the number
of cases when the value of a key function fis equal to i, i + 2,...,1 + 1/2 cannot
be less than the number of cases when f is equal to some number from i 4 l/2,
... i 4 1 = 1 plus one we can find out that E(1/2) < 60.

3.3. Proposition. For the mean value Ec and the dispersion D¢ of the number of
examinations according to method C before finding T; of an undefined value it is
true

(1) Ec(d) = Dc(d) = d

Proof. The number of examinations for n — oo, k/n — d has the Poisson’s
distribution with parameter d. The proposition remains true also in the case that

d = 1 (see [6]).



3.4. Lemma. Let T be a table with parameters (n, k) formed by method B. Then

(1) P(Biy) = py" = _k > = > ———
0

where

(2) Qr,s = {(ala Aps e ney a,)

,
a; 20, a; is an integer for i=1,...,r, Za,— = s,
] =

Y a;<hh=12..r—1}

{x | 2(x)} denotes the set of all x for which a proposition 2(x) is true.

Proof. We note that the considered probabilities are given by the polynomial
law, i.e.

) . k! 1 t _ k!
(3) P(B?.’q) = ok (IT a;) N H a;)! "
cagldayl...aln Q1 j=i Q2 i<t
Jj>t

It can be shown by simple combinatorial considerations that @, @, are just the sets
given in (1), (2).

3.5. Lemma. If we denote
(1) Dk a) =3 -
“* T1ay
then -
@) pi = (k!fn*) D(q, q) D(n — q — 2, k — 4)

where D(i, j) are defined for i,j 2 0, D(i,0) = 1 for all i = 0, D(i,j) = 0 for j > i
and for 0 < k < q it holds

1%

G D(k, q) =_i ]—' Dk — 1,4 — 1)

ji=0]

Proof.

o g

where
0. = {(az ... @)| a; = 0, a;is an integer for i = 2, 3k

k

k
zai=q—a1a Z aiéh}
i=2

i=k—h+1



SO

Qig = Qi—1,9-a, and (1) is proved .

3.6. Theorem. The mean value E(n, k) of examinations in table T for method B,
before a member of T of an undefined value is found fulfils the equality

) E(n, k) = zl B2 o —j - 2,6~ ) D)

Proof. Immediately from 3.1.7. and 3.5.2.

3.7. Theorem. For the dispersion S(n, k) of the number N of examinations in
the table T before finding T, of an undefined value it holds

() stiy=y UFDEFDE Y,

—j =2k —j)D(j,j) — (E(n,k))?

Proof. the same as in 3.6. but instead of 3.1.7. we use

& LA, LG+ D@ +1)
i2p. — -2 ko _ ](] + g k,n
jZ'l] ! j§=:1] :ijt jzl 6 bi

3.8. Definition. The average price Q(n, k) of forming a table T with parameters
(n, k) is the mean value of the random variable

o) L YN

@

where N(x) is the number of examinations before finding that the key x is not in T
yet.

3.9. Corollary. For methods A, B and C (note that the using of a random key
function is assumed).

(1) o(n, k) = éoE(n, ). 1)k + 1

3.10. Corollary. For the method C and for a random key function

kik + 1
(1) Qc( k) —~———( ) 1
2n.k
therefore
(2 limQc=dl2+ 1, d=Ilimk/n < o



3.11. Remark. Approximate values of Qg(n, k) for the method B will be given in
a subsequent paper.

3.12. Lemma. If a source A generates a sequence of mutually independent random
variables X, X5, ..., X,, ... with the same discrete distribution and for a table T
with parameters (n, k) M(n, k) denotes the mean value of examinations before
a key x in T is found (i.e. it is assumed that the key x was already placed in T)

then for methods B and C (and a random key function)
1) M(n, k) =Y le,-(x) E(n, i) P(x | xeT)

where P(x|x € T) is the probability for x to be generated by the source under the
condition that x was already placed in T. p(x) is the probability that the key x
was generated by the source A under the assumption that i different keys have
already been produced before.

Proof. The value of the number of examinations before the key x is found is
equal to the number of examinations carried out when the key x was placed into
table T. Then, however, the same is true for mean values and (1) follows from inde-
pendence of x, because the random key function is used.

3.13. Remark. In many situations the table T'is previously formed and then used.
In this case 3.12.1 remains true, but P(x[x € T) has different meanings at the time
of forming and using.

3.14. Theorem. If for a source the assumptions of 3.12. are valid, P(x|xe T)
has the same meaning as in 3.12, and a random key function is used, then

(1) M(n, k) < Q(n, k)

and the equality holds for the probability distribution of X ; for which P(Xj = x) =
= ¢ where c is a constant independent from X (we say that produced keys are
“uniformly” distributed). We assume that a random key function can be con-
structed for the given probability “distribution” of X ;.

Proof. Let the keys are uniformly distributed and let T contain k keys. Then
the probability p{(x) for x from T'is independent on x, therefore

pdx) = 1]k
and equality (1) follows from 3.12.1 as ) P(x | xe T) = 1. In case of the general

probability “distribution” of X ; we note that a key x with greater probability is placed
into T earlier and is used more often. Consequently, the mean value of examinations
cannot be greater than in case of the uniform probability distribution.

8



3.15. Remark. Theorem 3.14. remains true if, during the use of table T (see 3.13),
the probability of the generation of a key x is just P(x [ x € T) while forming T.

3.16. Theorem. For method A the mean value M(n) of the number of examina-
tions, before a vertex labelled x is found, is for a source with uniform probability
distribution equal to 1/2(log, n + 1).

Proof. In [7] it was proved that the mean length of path in an admissible tree
is log, n. But the probability that x labels the i-th vertex in a path cannot depend on x
so the mean value of examinations is 1/2(log, n + 1)

3.17. Remark. A variant of inequality 3.14.1. for method A, i.e. that the uniform
distribution of keys is the worst one for searching in the table T, is not true. In fact,
let the keys which are extreme in ordering have great probabilities. In an admissible
tree they would be near to the ends of the paths, so variant of M (n, k) for the method 4
is near to log, n.

4. SOME MODIFICATIONS OF THE DESCRIBED METHODS

The main advantage of the method A is the fact that it allows variable length of
the table T. We shall suggest a variant of methods B and C allowing variable length
of table.

4.1. Remark. Let us assume that we have a key function f (x, n), where n = 2™
is a sufficiently large power of two and let its values be expressed in binary system,
i.e. values of f(x, n) are given by sequences (dy, ds, ..., d,,) of zeros and ones. Then
all the functions fi(x, 2), 1 < i < m, the values of which in the binary system are
given by sequences (d,,— ;41 ..., d,,) are also random. This fact follows directly from
the assumption that f(x, n) is random.

4.2. Definition. Let us choose some d,0 < d < 1. We shall say that a table of
length n is overcrowded if it contains k keys and k > d . n. A table T of the length
2% is extended to the table T" of the length 2! ! by the following operations:

(i) At the beginning of the algorithm the values of all members of T” are undefined

(if) The members of T are successively scanned. If a member T; contains a key x
then f;,4(x, 2°*') is evaluated and x is put into T” according to the definition 2.4.
or 2.7.

It can be easily shown that T has the same structure as in case when unmodified
methods B or C with the key function f;,; are used for the construction of T’ and
that the extension of T needs the same number of examinations as forming T’ without
extension. '



4.3. Remark. The operation on T'described in 4.2. can be modified in the following
manner. Let T = {T\, Ty, ..., T,}, T' = {T4,.... T5,}, T; be identical with T; for
i = n. At the beginning the extension the values of T are identical with the values
of T, for i < n and the values of T}, i > n are undefined. We now use the fact that,
if fir (x,271) =(0,d,, ..., d,) and if x is the value of T} and T, then k = j so that

we can proceed in the following way:
(i) Examine successively Ty, Ty, ..., T,
(i) If the value of T; is undefined, examine T, , else make the value of T; undefined
and a key x which was the value of T; put into T” according to 2.4. (or 2.7. if method C
is used).

It can be shown that this modification preserves all properties of the original
algorithm 4.2. We shall call the operation 4.2. (4.3.) the operation of extension.

4.4. Remark. Probably any “better’” method of extension preserving the properties
of structure of nonextended table does not exist.

4.5. Corollary. If — during the construction of table T — the operation of exten-
sion was used once and the extension was realized immediately after the table
was overcrowded, then for the average price QF of creation of T, i.e. for the mean
value per one key in T of examinations made during forming T with parameters
(2i+1, k) we have

(1) R CAILIE I RN

where [ ] denotes the integer part. In case that the operation of extension was used
s-times we have similary

+s5—-1

Z k;0(2, k) + Q2% k)

; 1°¢
*21+s,k:_
@ el =1 %

where k; = [d . 27] + 1.

4.6. Theorem. For great j and a table T with parameters (2/, k) created with s
extensions by methods B or C, we have

(1) M+e)2(1 —27%) Q2 [d. 2]+ 1) + Q2,[d.2) + 1]) =2 02/, k) =
> 02, [d.27"]))
where [d. 2" < k < [d.2'],e > 0,e - 0 for j > , s is a constant.

Proof. From 3.10.2. we know that

) lim Qc(n, [d . n]) = 1 + dJ2

n— oo
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The existence of the limit for Qu(n, [dn]) follows the fact that there exists the limit
Ey(n, [dn]) as the sequence {Ey(n)} is bounded and asymptotically not decreasing.
Now we use the fact that

Jj-r ni-r
(3) i L1270 2
j=o [d. 21] -1 jow [d . 21] -1

But 0 < Q(n, k) < Q(n, k + 1) so if s extensions were carried out then

@ el 2 )= oeny =3 LTI gty s a2 4
+ Q(Zj , k)

and the theorem is proved.

4.7. Corollary. For great j the operation of the extension of T increases the price
of the construction of table T no more than three times. M(n, k) (see 3.12) remains
unchanged.

5. SITUATION WHEN A BACKING STORE IS USED

In many situations a table T must be placed on a backing store. Let us assume that
an information from a backing store can be called in tracks of the length L.

We shall assume that tracks have fixed bounds, i.e. every track always contains
the same “location” of a backing store. One call of a track is equivalent to several
hundreds or thousands of examinations according to the time needed. Therefore,
it is important to find the mean value of the number of the tracks called before an
item x in T is found, or before it is established that x is not in T yet.

5.1. Theorem. Let a table T be placed on a backing store and let the tracks have
the length L. Then the mean value E° of the number of track calls, before finding
that a key x is not value of any member of T, is for method B equal to

1 1 X
1 14+ = E(n k) — = Y ipt"
() L ( ) Li=21p

where p" has the same meaning asin3.1.7.and n=s. L, s > 1, Tis in s succeeding
tracks.

Proof. We prove the following lemma:

5.2. Lemma. Let i be uniformly distributed on {1 :n} and let n = s. L. Then
the mean value R of numbers of j which fulfils the conditions i < j < i + (¢ — 1),
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j=r.L, where } denotes addition mod n and X denotes that j < i+ q~1

ifitq—1=n, nadj<nor1<}<1+q—1tft+q——1>n fulfils the
following equality

(1) R =

Proof.
1 Ti+qg-1 i—1 q
R =-— - ==,

[ ] denotes the integer part

Proof of 5.1. We remark that if, on carrying out the examinations, some locations

Ti» Tis1s -+ Tii(g-1) are examined then i is uniformly distributed on {1 : n}. Using
5.2. in a similar way as in 3.1. we obtain

k "i—l
EC=1+3 %
r=1 i=r L

E(n k) — = z iph"

k
Here 1/L(E(n, k)) — Y ip}™ is the mean value of the number calls of the second track
i=1

and of the following ones.

5.3. Remark. Theorem 5.1. is not true when n % s. L or when T is placed so as
to cover more tracks than necessary, But. 5.1.1. remains true asymptotically.

5.4. Corollary. For the mean value E* of track calls before x which is already
a member T is found, it is true

1) == Q(n k) — t‘; é:l ipy”"

hl'-
Lol Bl

Proof. is similar as for 5.1. if we use 3.9.

5.5. Theorem. If E° or E* has the same meaning as in 5.1. or 5.4. and lim (k/n) =
= d then for method C and great n ne

E®=1+d(1—e™
and if the keys are uniformly distributed then
cetad(oo e
2
For the method A we have for great n

2 E° = log, n
(3) E* = llog, n

12



Proof. For method C the mean value of the number of keys, having the same value
of a key function as another key in T is k/n. On the other hand, the number Q of
segments is not less than n[Lso lim Q = oo and (k/n)/Q — 0. The probability that

a generated key is in the given track is independent on the key. Therefore the mean
value of track calls is asymptotically equal to the mean value of the number of keys
having the same value of the key function. Conclusion for Ej results from the fact
that the mean value of the number of examinations is d[2(1 — e~%?). (2) and (3)
is obtained similarly, because lim log, (n)/n = 0.

n—o

5.6. Remark. The following variant of using the backing store for the method B
or C is possible. A table T with parameters (n, k) is created in the core store. When
it is overcrowded Tis left unchanged and the new keys are placed into the table T°
which is on a backing store. A key x is found in the following manner. Members
of Tare examined as decribed on 2.4. or 2.7. by using a random key function f(x, n).
If x is not found in 7, the table T° is examined by using a random key function
S°(x, ny). Then the number of examinations before discovering that the key x is not
in Tand T, is given by the following expression

1 E(n, k) + E(no, k)

and the number of calls of tracks is less than
1
(2) 1+ iE(no, ko)

but the mean number of examinations before a key x is found is

® 2(p(x) (Q(n, k) Pfx) + (1 = Pix)) Q(no, ko))

and the number of track calls is less than

@ Tt~ P() 7 Qs ko) P

P,(x) is the probability that a key x is placed in T'under the condition that T'contains,
k keys, p(x) the probability that x is produced. This modification can give great
profit if some x are frequently produced.

5.7. Remark. It can be easily verified that one operation of extension needs N,
calls of tracks from a backing store and N, writings of tracks on a backing store.
N, denotes the number of tracks in which T is placed before extension and N, has
the same meaning for the table after the extension.
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6. Conclusion. If a random or almost random key function can be constructed,
then the best method for a table T in the core store is method C. Method B, taking
into account that for method C a rendundant information ‘“the pointers” is placed
in T so the ration (numbers of keys) (number of locations occupied by T) is smaller
has for /</n < 0,75 also reasonable properties. For table T on the backing store, the
best method is method B which needs for great n and for a great length of tracks
(hundreds of locations) practically one call of track per one call of table. The main
advantage of method A is that a random key function need not be constructed. For
great n, however, this method has worse properties than methods B or C.
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Souhrn
NEKTERE VELMI RYCHLE METHODY HLEDANI V TABULKACH

JArROSLAV KRAL

V &lédnku jsou studovdny tfi methody rychlého hleddni v tabulkdch, jedna zaloZznd
na konstruovdni bindrniho stromu a dvé pouZivajici tzv. ,,ndhodnou klicovou
funkci umozZiujici nalezeni informace v tabulce libovolné délky s dobou vyhleddvani
shora omezenou Cislem nezdvislym na délce tabulky. Jsou ddny piesné vyrazy pro
stfedni hodnoty délky vyhleddvdni a jsou studovdny vlastnosti method p¥i pouZiti
vedlej§ich paméti a pfi zvétSovdni délky tabulky.
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