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(Received October 17, 1968)

1. INTRODUCTION

The complicated relations in the economic system were the reason for forming
models which try to describe the reality both as accurately and as simply as possible.

Let us assume that the economic system we intend to deal with is composed of n
branches.

We require that the quantity of the i-th product produced by the i-th branch be
sufficient to cover, on the one hand, the demand of this product in all branches
(including the i-th branch) and, on the other hand, the final demand. We introduce
the following notation:

w; the whole production of the i-th product,
fi; thefinal demand for the i-th product,
w;; the quantity of the i-th product necessary for the production of w;,

all taken for a chosen unit of time (e.g. one year).
w;, w;; and I; are expressed in the same units (for example monetary units).
The above mentioned quantities are related as follows:

Wi = Wi+ Wit oy, +
(M Wi =Wy Wi o+,

and it is clear from their introduction that all the quantities are non-negative.
Leontieff considered the linear relation between w; and w;;

(2) Wi = a;w;

where every a;; is non-negative and less than 1.
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The relations (1) and (2) together form Leontieff’s static economic model. If we
further assume that

©) "Zai,- <1

holds for every j, we deal with the open model. In what follows we shall assume that
(3) holds.
Substituting (2) into (1) we get the system of linear equations for the unknowns w;:

4) W, = agw; + ...+ auw, + f;

where a;; are given constants whose values are determined by means of econometrics,
and also f; are given.

It is possible to express this system in the matrix form. Let A be the matrix with
elements a;;, W the column vector with elements w;, F the column vector with ele-
ments f;, and E the unit matrix. Instead of (4). we can use then this matrix equation:

(5) (E—A)W=F.

From the knowledge of A and F we are, by means of (5), to determine W so that
W > O, W & O. The condition (3) guarantees the existence of W with these required
properties.

The matrix M = E — A is called Leontieff’s matrix. It is evident that it has the
following properties:

a) The diagonal elements of M are positive.

b) The off-diagonal elements are non-positive.

c) A certain norm of M is less than 1.

d) The inverse matrix M™" exists and M™' > O.

The property b) implies that matrix M belongs to the class of Z-matrices (m;; < 0 for
i = j), and property d) together with the property b) implies that it belongs to the
class of K-matrices [1].

I shall mention here, without proof, several theorems which hold for K-matrices.
The proofs are given in [1].

Let be P € K. Then

1) All real eigenvalues of P are positive.

2) All principal minors of P are positive.

3) There exists a vector x = O so that Px > O.

4)If BeZ, B 2 P (ie. b;; = p;; for every i, j), then B™! exists and O < B~'<
<P 1, '
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5) There exists a diagonal matrix D with d; > 0 such that the matrix W = PD
has a dominant positive principal diagonal (i.e. w; > Y. |w;;]).
i+

Note that matrices A originating from econometrics are mostly of high orders
(several hundreds and more) and most of their elements are zero.

2. ECONOMY STORING OF MATRICES WITH MANY NULL-ELEMENTS

The accuracy and speed of compurtation in a computer is usually not essentially
affected by operations where one (or both) operands are zero. This is because nor-
mally the wiring in the computer skips these operations. A different matter is the
occupation of storage. It seems obvious to store only the non-null elements. This
leads to the rather interesting problem how to store in the best way and most econom-
ically their position in the matrix. It appears that a system convenient for binary
computers is less convenient for decimal computers and that the necessary subroutines
are rather complicated (viz [5], [7], [13], [15]). Decisive for the choice of the system
of Economy Storing will be the volume of storage needed for the subroufines as well
as for the matrix elements and their position, along with the computing time necessary
for handling the elements in the system.

3. TRANSFORMATION OF A MATRIX INTO THE QUASITRIANGULAR FORM

From the way the problem was put it is evident that the numeration of the branches
does not change the problem. For the matrix A (and therefore for the matrix M as
well) a numeration means a simultaneous permutation of rows and columns. On the
other hand it is well known that inverting a quasitriangular matrix is essentially
easier than inverting a full matrix [2]. We shall concern ourselves with the problem
how to transform a matrix into the quasitriangular form by a simultaneous permuta-
tion of rows and columns.

The transformation into this form is, by itself, meaningful for the economists.
From it, they can see directly certain relations between particular branches.

One of the possibilities how to solve this problem is given by the graph theory.

Let us assign one node of a certain oriented graph to every row of the matrix.
In this graph G, the edge from the i-th node to the k-th one exists iff the element
with the row index i and column index k is non-null. Now we shall assign to the
graph G another graph G’, the reduced graph corresponding to G, whose nodes
correspond to the quasicomponents of G. By a “quasicomponent’ we mean a sub-
graph the transitive closure of which is complete [4]. We number the nodes in G’
so that its edges point always from a node with a lower number to a node with
a higher number. This is always possible because the reduced graph is acyclic [4].
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After that we shall carry out a simultaneous permutation of rows and columns of the
matrix so that the rows which belong to one quasicomponent adjoin each other
(the ordering of rows within each quasicomponent is irrelevant), while the quasi-
components are ordered in an increasing order. As a result we get an upper (right)
quasitriangular matrix with irreducible diagonal blocks.

In [4] this algorithm is described in considerable detail and is given in a form
applicable to computers.

4. INVERSION OF A QUASITRIANGULAR MATRIX

Let us assume that the matrix M is quasitriangular and has the following form:

M, N, ]
M; N,
(6) M=

The matrix M is of the type (n, n) the matrix M, is of the type (n;, n;), the matrix N;
is of the type ( Z ng, ;4 ) Where Z ng = n.

We shall descrlbe here a method for the inversion of the matrix M; it is essentially
a generalization of a method for the inversion of a matrix divided into blocks using
the quasitriangular form of M.

If we invert a quasitriangular matrix U divided into 4 blocks as follows:

o[22

we obtain Z, the inverse to U, in the form

o [31]

where Z; is a matrix of the same type as U;, and

Z = U;!
9 Z, = -U;'y,u;!
zZ,= U;!

holds.
Now we shall use relations (9) for constructing finite iterative formulae for the
inverse of the matrix M.
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If we introduce the matrices T; by

(10) - T, = M{!
and
—Ml N1 It
M, N,
(1 1) T, =|
M, N._,
L M, |
and therefore
(12) T, =M1,
then, using (9), we obtain
T, —TNM !
(13) Ti+1= i l_; i+1 .
’ M
Then there holds that
M7 C, N
M;! C,
(14) L
M:—ll Cl‘l

where the matrices C; are of the same type as the corresponding N;. We may write

MG, 7
Ml c,
(15) C=-| NM:L
M7, €y
L M
and therefore the inverse matrix M~! = T, has the following form:
FM;I c1 —
M’ ¢,
(16) mo=| T
M Cy
m:!

5. INVERSION OF LEONTIEFF’'S MATRICES

It was shown in the preceding paragraphs how to reduce the problem of inverting
a matrix of order n to the problem of inverting several matrices the sum of whose
orders equals n. It is evident that these matrices are again of Leontieff’s type . ‘
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For the inversion of the M, defined in (16) it is possible to use several different
methods. Here the Hotelling method will be described.
The Hotelling method is an iterative method given by the formulae

(17) X+ = X0 4 XORG)
(18) RO = E — MX® |

This method is convergent iff the initial approximation X is so close to the solution
that a certain norm of the initial residual matrix R(® is Jess than one:

(19) ”R(O’l] <1.

We choose for the initial approximation the unit matrix:

(20) XO -~ E.
For R, we obtain the relation
(21) R? =A.

From the property c) of paragraph 1 there follows that the condition (19) is satisfied.

If we use formulae (17) and (18) we can watch in each step of the iteration, without
any further computation, the residual matrix R®) (which determines how the product
MX® differs from the unit matrix) and also the product X®”R® (which determines
how two consecutive iterations differ from each other).

The process can be stopped when the obtained accuracy is either equal to the
required one, or is the best obtainable (that means when the matrix X® does not
change when adding the matrix X®”R®),

It may be shown that for the i-th approximation X of the matrix M™!

2i-1

(22) X0 = Y A
k=0

holds and therefore

(23) M~ XD = A2 AR = APMTE
k=0

By denoting [|A]| = u. i < 1 we obtain for the norm |M™"| the relation

(29 L
1—u
Using (23) we get
2‘
5 xo - mo1] < L
L—n
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where

(26) IR < '

It is, of course, possible to obtain the inverse matrix by other methods as well.
First of all the Gaussian elimination without pivoting must be considered. The
diagonal elements of M™! are the quotients of principal minors of M which are
positive in view of property 2) of K-matrices (cf. paragraph 1).

Further, there is also the Gauss-Seidel iteration.

It might be well worth trying to construct some new methods using the remarkable
properties of Leontieff’s matrices, if only for comparison with Gaussian elimination,
the Hotelling method and other known methods. This comparison would concern
accuracy, speed and storage requirements. For higher accuracy, the use of double-
arithmetics in certain parts would be suitable.

6. CONCLUSION

From this paper there follows that for the inversion of Leontieff’s matrices the
following process can be recommended:

1. The elements of the matrix A are stored in a special form.

2. The matrix is transformed into the quasitriangular form using the method of [4].

3. The algorithm of paragraph 4 is used.

4. The matrices M; ! of the relation (16) are obtained by the Hotelling method.
The unit matrix is used as the initial approximation. This algorithm is explained in
paragraph 5.
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Souhrn

O VYUZITI NEKTERYCH VLASTNOSTI LEONTJEVOVSKYCH
MATIC PRI JEJICH INVERTOVANI

MARKETA NOVAKOVA

V ¢ldnku je popsdn postup vhodny pro invertovani leotjevovskych matic vysokych
fadi na samocinnych pocitacich. V § 1 je zaddni problému, § 2 se nabyvd Gspornym
vkldddnim prvkl matice do paméti pocitace, § 3 struéné popisuje prevedeni matice
do kvazitrojuhelnikového tvaru. Jddro prédce je v § 4, kde je odvozena novd metoda
pro inverzikvazitrojihelnikové matice. V § 5 je popsdna Hotellingova metoda, které
se pouZije pii aplikaci metody popsané v § 4. § 6 je zdvéredny.

Author’s address: RNDr. Markéta Novdkovd CSc., Katedra numerické matematiky na Mate-
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