Aplikace matematiky

Daniel Mayer
A contribution to the generalized formulation of the matrix methods of mesh

currents and node voltages
Aplikace matematiky, Vol. 15 (1970), No. 4, 255-270

Persistent URL: http://dml.cz/dmlcz/103294

Terms of use:

© Institute of Mathematics AS CR, 1970

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103294
http://dml.cz

SVAZEK 15 (1970) APLIKACE MATEMATIKY ClsLo 4

A CONTRIBUTION TO THE GENERALIZED FORMULATION OF THE
MATRIX METHODS OF MESH CURRENTS AND NODE VOLTAGES

DANIEL MAYER

(Received June 27, 1969)

1. DELIMITATION OF THE PROBLEM

In the basic formulation of the matrix method of mesh currents it is assumed that
the circuit to be analyzed contains only voltage sources; if the circuit contains also
current sources, they are converted to equivalent voltage sources. (This is described
in detail in literature, e.g. [1].) If, however, a branch of the circuit contains an ideal
current source (with zero internal admittance), it cannot — exactly speaking —
be replaced by an ideal voltage source (with zero internal impedance). Besides,
from the viewpoint of numerical computation this procedure is not advantageous
since the currents flowing in the branches with ideal current sources are actually
known, so that the only aim of the analysis is then the determination of currents
in the remaining branches. If we convert the current sources to voltage sources
and then analyze the circuit by employing the usual procedure, we do not make
use of the known information about branch current values (in branches with current
sources) and search for currents in all the branches of the circuit, which is, from the
viewpoint of computation, uneconomical.

In the dual case, the situation is quite analogous: if a circuit containing ideal
voltage source is analyzed by the method of node voltages, then — exactly speaking —
it is not possible, and from the viewpoint of numerical calculation even not advan-
tageous to replace these sources by ideal current sources.

In this article we shall generalize on the one hand the matrix method of mesh cur-
rents, and on the other hand the matrix method of node voltages for the case where the
circuit contains both kinds of sources. We shall not convert them to a single type
of sources (i.e. to voltage sources for the mesh method and to current sources for the
node method) and maximum use will be made of the information about mesh current
and node voltage values represented by the presence of these sources.
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2. GENERALIZATION OF THE MESH CURRENT METHOD

2.1 Analysis of the circuit containing only voltage sources. Since in literature
the matrix methods of circuit analysis are presented in a quite diverse manner we shall
acquaint the reader with the terminology and basic relations used in the following
text: we shall describe a practical procedure for an application of the mesh current
method in the basic formulation.

a) We orientate all the [ branches of the circuit analyzed, introduce a complete
oriented system of n independent meshes and establish the second incidence matrix
C(l; n); its rows correspond to the branches and its columns to the meshes of the
circuit. If the i-th branch is included in the j-th mesh and the orientation of the
branch coincides with that of the mesh, then the relevant matrix element has the
value ¢;; = 1; if the i-th branch is included in the j-th mesh but their orientation
is opposite, then ¢;; = —1 and, finally, if the i-th branch is not included in j-th mesh,
then ¢;; = 0. Now we introduce mesh currents into n independent meshes.

b) We introduce the column matrix of the branch voltage sources E(/; 1) and the
square matrix of the branch impedances Z(I). By their transformation we obtain
the column matrix of the mesh voltage sources E'(n; 1) and the symmetric matrix
of the mesh impedances Z'(n):

(1) _ E = 'CE, Z'='CZC.

¢) We determine the mesh admittance matrix by inverting the mesh impedance
matrix: '

(2 Y =Z"'.
d) From the so-called mesh equation

(3a) E=2ZI.

we calculate the mesh current matrix I'(n; 1):

(3b) I = YE.
e) The branch current matrix I(I; 1) is then

(4) I=cr.

f) If the branch voltage matrix U(l; 1) is of interest too, we determine it from the
equation

) U=1ZI-E.

From the above equation it is evident that the branch current matrix may be
expressed by the relation

(6) | = C (“CZC)™' 'CE
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and the branch voltage matrix by the relation
(7 U={ZC('CZC)"''C - J} E

where ) is the unit matrix.

2.2 Analysis of the circuit containing voltage sources and current sources. Topo-
logical part. Let the analyzed circuit have current sources in its p branches, and volt-
age sources, which may assume zero values, in the remaining g branches (p + g = [).
Later we shall show that for physically realizable circuits there is always p < n.
Evidently it will be advantageous to introduce such a complete system of independent
meshes that each of the p mesh currents will at the same time be the current in
a single branch containing a current source. Then these p mesh currents will be
known and the subject of the analysis will be to find the remaining n — p mesh
currents and finally the remaining / — p branch currents.

Fig. 1. Circuit with three current sources and Fig. 2. Circuit with three current sources and
with a complete system of independent meshes. ~ with a complete system of independent meshes.
Here the choice of meshes shown in Fig. 1 is

not advantageous any more.

As an example let us have a circuit with three current sources (1,4, 1,2, I ,,3) as shown
in Fig. 1. If we choose the complete system of independent meshes in accordance
with Fig. 1, the mesh currents I}, I5, I will evidently be known and it remains
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to determine the mesh currents I3, I5, I;. If, however, the current sources were located
in another triplet of branches, then the choice of the complete system of independent
meshes might be incorrect. For instance, for the circuit shown in Fig. 2 it is advan-
tageous to choose the meshes in the manner shown in the figure. By introducing
the complete system of independent meshes as shown in Fig. 1, the branches with
current sources would be incident to two meshes and we could not a priori declare
certain mesh currents to be known.

For simple circuits as are those used in the above example, the determination
of a suitable system of independent meshes is fairly easy. For circuits with complex
and particularly with spatial linear graphs, however, we cannot rely on it that the
estimation of a correct solution of the mentioned topological problem will be an easy
matter.

For brevity, let us introduce the term “current branches” for branches containing
currents sources. (Thus, the currents flowing in the “current branches’ are known.)
By ““voltage branches we shall understand branches with voltage sources. Thus
the linear graph consists of two types of branches: “current branches’ and “voltage
branches”. We shall assume it to be connected and denote it by %.

First we shall prove that the graph ¢ may always be decomposed to a complete
tree containing not even a single “current branch’ and a complete system of inde-
pendent branches that comprises all the “current branches’ of the linear graph 4. —
If we leave out all the “current branches” in the graph ¢, we obtain the subgraph 4’
which has the same set of nodes as the graph ¢, but its branches are a subset of the
set of branches of the graph %. Let us assume for a moment that in the general
case the subgraph ¢’ is not connected: let it consist of u components %; (i = 1,2, ...
..., ), each of which is connected. (This is to say that the subgraph ' is a unification
of disjoint subgraphs 2;.) It will be seen easily that this case is not physically realiz-
able. The component %; is connected with the other components only through the
omitted branches (i.e. “current branches”). However, from the generalized Kirch-
hoff’s current law (see [1], p. 80) there follows that the sum of all currents flowing
into the component #%; from the remaining components must be identically equal
to zero. In the case consirdered this condition is, of course, not satisfied, for the currents
in the “current branches’ are given by the values of the current sources, which may
have arbitrary magnitudes. The subgraph %’ must therefore be connected. If we
omit in the subgraph ¢’ the minimum number of its “‘voltage branches’ so that there
does not remain a single mesh, we obtain a complete tree of the graph ¥ composed
of “voltage branches” only.

From the above consideration it follows that p < n.

Let us note that this property of the linear graph ¢ follows directly from the
physical interpretation of the concept “complete system of independent branches”,
this being such a set of branches where the currents may be chosen independently
on each other (see [1], p. 32, par. 2). Hence it follows that the current sources may
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exist in n independent branches at most. (Thus, the proof just described confirms
once more the known property of a complete system of independent branches.)

Fig. 3. Linear graph of a circuit with three components (%, %#,, #;) composed of “‘current
branches”. (This linear graph has no physical significance.)

As an example, Fig. 3 shows a linear graph where the ‘“‘current branches’ are
shown by thin lines and the “voltage branches” by heavy lines. A circuit with this
linear graph has no physical significance: that is to say, if the “current branches”
are omitted we obtain three components 2, #,, #5. For instance, for the component
% there must hold, according to the generalized Kirchhoff’s current law, that

* L +1, +I;+1,+15=0.

However, since these branch currents may have arbitrary values (according to the
current sources used) the condition (*) is not generally satisfied, which is a contra-
diction.

Therefore, when choosing a complete system of independent meshes we proceed
as follows: We remove from the linear graph under consideration all ‘“‘current
branches” and such ‘“voltage branches” that a complete tree is obtained. By
successive addition of independent branches to the complete tree one can easily in-
troduce such a complete system of independent meshes that just one mesh will be
incident to each “current branch’ and none of the pairs of these branches will belong
to the same mesh.
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When numbering the branches we assign numbers first to the p “current branches”
and then to the g “voltage branches” (or passive branches). When numbering the
meshes, we number first the p meshes, each of them being incident to one of the p
“current branches”, and then mark the remaining n — p meshes.

The second incidence matrix may then be expressed as a partitioned matrix:

Cll C12

(8) c=

c21 C22

where C,(p), C1,(p; n — p), €24(q; p), C,a(gq; n — p). Since the first p branches
(i.e. “current branches”) are incident only to the first p meshes, it is evident that
C,, = 0. If the orientation of the first p branches and the first p meshes is coincident,
then C;, is the unit matrix, C{; = J.

Algebraic part. According to the above agreement on numbering branches and

meshes we may express the branch current matrix 1 and the mesh current matrix I’
as partitioned matrices:

(9) l= |, V= |

where the submatrix I;(p; 1) is known (its elements are the values of current sources,
I; = %I, (i =1,2,..., p); the sign is positive if the direction of source current I,
agrees with the orientation of the i-th branch and negative in the opoosite case),
so that the submatrix Ii(p; 1) is also known because, according to Eq. (4),

(10) I, =Culi + Cply =17

Suppose for a moment that the current sources I,; are not ideal; let their internal
admittance by Y/ (j = 1,i = 1,2, ..., p). They may then be replaced by equivalent
voltage sources E; = I,;Z! ~with the internal impedance Zi =Y, . Then the
branch impedance matrix of the circuit is

l Z,+12Z, z, }»”

(11) Z(l) =

’ zZ,, z,, }q

p q
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where Z,(p) is a diagonal matrix whose diagonal elements are Y,/ (j = 1, i =
=1,2,..., p). The matrix of branch voltage sources is

(12) E(i1) = |—

where the submatrix E;(p; 1) has the elements E; (i = 1,2, ..., p) and the elements
of the submatrix E,(q; 1) are the given values of voltage sources contained in ¢
“voltage branches’. Thus the circuit is converted to one containing voltage sources
only; its analysis is described in Section 2.1. The mesh equation (3a) of this circuit
where Eq. (1) holds for matrices E’ and Z’, is expressed by using partitioned mat-
rices:

E; z, | z, [l;

(13) -

E> Z), Z; [ I

This equation may also be expressed as a system of two matrix equations

ro__ ’ ’ ’ ’
E1 = lell + lelz B

’ ’ 4 ’ ’
Ez = 221|1 + Zzzlz .

(14)

Since there are ideal current sources in the circuit, we express E; and Z}, tor
lim ZJ, . This limiting process, however, does not concern the second of Eqs. (14)

j—to

which is fully sufficient for the determination of the mesh current submatrix 15:
(15) I, = Z5,(E; — Zy,1)
where
Z), = 'Cy,Z),C,,,
(16) Z,, ='C,,Z,, +'C,,Z,,C,,,
E, ='C,,E,.
The branch current matrix is determined according to Eq. (4): the submatrix 1,

whose elements are the currents in the first p branches (i.e. “current branches’)
is given by Eq. (10),
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and the submatrix 1, whose elements are the searched currents in the remaining
I — p branches is determined, according to Eq. (4), from the relation

(17) I, = Gyl + Cpul5.
Substituting for I3 from Eq. (15) we have
(18) I, =(Cy — szzlzglzn) I + C,,Z5'E)

where the matrices Z}, and Z}, are determined from Eq. (16).

3. GENERALIZATION OF THE NODE VOLTAGE METHOD

3.1 Analysis of the circuit containing only current sources. Mathematical opera-
tions involved in circuit analysis using the node voltage method do not differ from
those of the mesh current method described in Section 2.1, but in their physical
interpretation there appear dual quantities. We shall briefly describe the algorithm
of the calculation and confine it, for simplicity, to a circuit without inductive coupling.
(Matrix analysis of a circuit with inductive couplings using the method of node
voltages is described in [2]).

a) First the circuit is orientated and one node in each of its separate parts is chosen
as the reference node. In each separate part we introduce oriented paths between
the remaining nodes — we call them independent nodes — and the reference node.
Let the circuit considered have k nodes and s separate parts. As we know, the number
of orientated paths is then m = k — s. We orientate them in such a way as to be
always directed towards the reference node. Now we establish the first reduced in-
cidence matrix K,(I: m) with rows and columns corresponding to the branches and
the independent nodes of the circuit, respectively. If the i-th branch is incident to the
Jj-th independent node, this being its initial node, then k;; = 1; if the i-th branch is
incident to the j-th node, this being its terminal node, then k;; = —1 and, finally, if
the i-th branch is not incident to the j-th node, then k;; = 0.

We introduce the node voltages into m oriented paths.

b) We establish a column matrix of branch source currents I,(/; 1) and a square
diagonal matrix of branch admittances Y(I). By their transformation we obtain the
column matrix of node source currents Tv(m; 1) and a symmetrical matrix of node
admittances Y(m):

(19) 1,="K1,, Y="%YK,.

¢) By inverting the node admittance matrix we determine the node impedance
matrix:

(20) Z=Y".

262



d) From the so-called node equation

(21a) I,=-YU
we calculate the node voltage matrix U(m; 1):
(21b) U=-17ZI,.
e) The branch voltage matrix U(J; 1) is determined from the equation
(22) U=KU.

f) If the branch current matrix I(l; 1) is of interest too, we determine it from the
equation

(23) I=YU +1,.
Note that the node voltage matrix may be determined directly by the equation
(24) U= —-K(KYK) 'Kl
and the branch current matrix by the expression
(25) ={) - YK(KYK) K]} I,

where } is the unit matrix.

3.2 Analysis of the circuit containing current sources and voltage sources. Topolog-
ical part. If the circuit under consideration contains a voltage source with an
impedance connected in series we shall con- B B B
sider this arrangement as two branches in se- > (,\/j 2 — <
ries: one branch contains only the voltage ’ :
source—we shall call it “pure voltage branch™— "
and the other comprises only the im'ped.ance. voltage passive
In other words, as nodes of the circuit we branch branch
consider o'n the on‘e l?and nodes of the second Fig.4.1n the circuit analysis by the method
order, which are incident to the “pure volt- ¢ 4e voltages, the node B, is one of
age branches” and to the branches containing the nodes of the analyzed circuit.
only impedance, and on the other hand, of
course, all the nodes of the third and higher orders (F ig. 4).

Suppose again that the linear graph ¢ of the circuit is connected. We denote the
number of its “pure voltage branches’ by v and the number of all “current branches”
and passive branches by w (v + w = I). In comparison with the method of mesh
currents this situation is more complicated, for in the general case the reference
node incident to all v ““pure voltage branches” evidently can not be chosen. Let the
“pure voltage branches’ of the circuit be formed by v connected subgraphs: %',
A 5y ...y K. Each subgraph A", (i =1,2,...,v) must be a tree. If any of them
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contained a mesh, this mesh would be incident only to the “pure voltage branches”
and the Kirchhoff’s voltage law would not hold for it; thus the case would not be
physically realizable. This is the case dual to that analyzed in more detail in Section 2.2
where the component 4, is connected with the remaining components only through
“current branches”’.

The fact that each subgraph ", (i = 1,2, ..., v) must be a tree is directly evident
from the physical interpretation of the concept “complete tree”’, which is a system
of the minimum number of branches where the voltages between an arbitrarily chosen
(reference) node and the remaining (independent) nodes of the circuit uniquely de-
termine the voltages of the individual branches (see [1], p. 31). From this it follows
that if a circuit is to be uniquely determined the “pure voltage branches’ must
form a tree or a complete tree at most.

For the analysis of the circuit we shall use the principle of superposition: first
we analyze the partial circuit containing only the subgraph 4, (%’Z, Hzy ey A,
are removed), then the partial circuit containing only the subgraph A", (£ 'y, A 5, ...
..., &, are removed) etc. and superpose the results. The general i-th partial circuit
contains of the subgraphs 2, to A, only the subgraph £ ;; let this subgraph have v,
branches (v; + ... + v, = v). As the reference node we choose the node which is
incident to the subgraph & °; by maximum of its branches; let its degree with respect
to the branches of the subgraph be r;.

When numbering the [ circuit branches we number first the v, branches of the
subgraph 4, then the v, branches of the subgraph % ,, etc. up to the v, branches
of the subgraph ", and finally the remaining w branches (i.e. the “current branches”
and the passive branches). When numbering the k circuit nodes we number first all
h; nodes of the subgraph ', etc. up to the h, nodes of the subgraph ", and then
the remaining g nodes (h, + h, + ... + h, + g = k).

Thus the first incidence matrix has the form

(26) K(l; k) =

From this matrix we derive the first reduced incidence matrix for the i-th partial
circuit (K,;) as follows:
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— We determine the reference node by finding a column containing the maximum
(r;) of non-zero elements in the group of v; rows and h; columns (belonging to
branches and nodes of subgraph ;). This column corresponds to the node which
we choose as the reference node and therefore we remove it from the matrix K(l ; k).

Bﬁ
Xof” )
4 6 5
7 8
Bs 5 B,
8
9 0 "
12 13
B, B Bs
2
1 2 3
X\ Y,
B,
Fig. 5. Linear graph containing two subgraphs (#°; and #°,) composed of ‘“pure voltage
branches”.

— We replace the remaining “pure voltage branches™ (i.e. the branches of sub-
graphs A, ..., A i_y, A iry, ..., H,) by the internal impedances of their sources,
i.e. we short-circuit them. Consequently we omit the rows corresponding to the
branch groups vy, v, ..., V;_1, Viy1, ---, ,; We add up the columns corresponding
to each of the groups hy, hy, ..., hj_(, hiry, ..., h, and replace them by a single
column (the “sum column”).

— We arrange the sequence of columns as follows: first we put the h; — 1 columns
(corresponding to h; — 1 independent nodes of the “pure voltage branches”), then
the v — 1 “sum columns” follow and finally the g columns (corresponding tog
independent nodes of the “current branches”) are placed.

Therefore, the first reduced incidence matrix of the i-th partial circuit K,; is of the
type (v; + w; m;) where

27) my=g+v+h —2.

As an example, Fig. 5 shows an oriented linear graph of a circuit where I = 13,

=1,k=8,m=k—s="7. The “pure voltage branches” (drawn by heavy lines)
form two subgraphs: ", (v, = 3, hy = 4) and &, (v, = 2, h, = 3). Evidently,
w = 8, g = 1. The first incidence matrix is
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10 -1 1
11 -1 1
12 1 -1

a)
Fig. 6. Two linear graphs which are obtained from the linear graph in Fig. 5 where the subgraphs
Ay or A, are replaced by a ‘““short circuit”.
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The nodes B, and By are the reference nodes. The corresponding reduced first
incidence matrices are:

5
+6
12 3 +7 8 1aos
- +3+4 5 7 g
2 1 4 -1 _
3 1 5 -1
6 1| -1 6 -1
7 1| -1 7 ! -1
K, =8 L =1 K,Z—8 .
L ’ o —1] 1
10 | -1 1 o) ~1 :
1 | =11 ) ! !
nl 1‘: 12
5 ‘ 1 13

The linear graphs corresponding to these matrices are shown in Fig. 6a,b.

We express the reduced first incidence matrix of the i-th partial circuit as a parti-
tioned matrix: '

Krin } riiz }vi
(28) K,=r————"—"
K"in ‘ Krizz }m:
[ N ——
Vi mj
where
(29) mi=m;—v;=9g+v+h —v;,—2.

Since the new nodes corresponding to the “sum columns’ and the g nodes of the
“current branches” are not incident to the “pure voltage branches’ of the subgraph
A, we have K,; = 0.

rijz
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Algebraic part. For the i-th partial circuit we express the node voltage matrix
U,(m;; 1) as a partitioned matrix

(30) U= |

where the submatrix U;(v;; 1) is known (its elements are the values of voltage sources
of the individual paths between the independent nodes of the subgraphs ", and its
reference node) and U;,(mj; 1) is the submatrix to be determined. We proceed
in a way analogous to that used in the method of mesh currents described in Section
2.2 (but with dual quantities): let us admit for a moment that the voltage sources (E;)
are not ideal (i.e. their internal impedance ZJ, + 0) and convert them to equivalent
current sources I,, = E;Z,’ of internal admittance Y} =Z,/ (j=1,i=1,2,...
..., v;). The branch admittance matrix Y; and the matrix of branch current sources 1,
are then expressed as partitioned matrices:

Yill + Y'Ji Yilz }Ui ‘ lvil
() = ‘

v v || .

Y1) =

i21 i22 viz

and by their transformation we obtain, according to Eq. (19):

(31) Y, =K, YK, and T,="K,]l,.
The node equation (21a) and the mesh equation (13) are written by means of
partitioned matrices whence we obtain a system of two matrix equations:

(32) I, =-Y, U, -Y, U,

281 12 2

Il

1 _Yizluix - Yizzuiz .

viz

For an actual circuit (i.e. for one with ideal sources) these equations hold for

lim Y,/ . However, it is not necessary to calculate this limit, as it does not concern
Jj—t o

the second equation (32), whence
(33) uU,=Y_'(-Y,U
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where

(34) ?iu = tKrizz?izzKrizz P
win = tKriuY’m rizz 0
Iviz = tKrl'zz viz *
By suitable orientation of branches it is possible to make K,; = }J.

The branch voltage matrix of the i-th partial circuit is

(35) U, =

where, according to Eq. (22),

(36) U, =K, U,

i rigy

(37) U, =K, U, +K,,,U,,.

Then the branch voltage matrix of the circuit under consideration is, according
to the principle of superposition,

(38) U=YyU,.
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Souhrn

PRISPEVEK KE ZOBECNENE FORMULACI MATICOVE METODY
SMYCKOVYCH PROUDU A MATICOVE METODY UZLOVYCH NAPETi

DANIEL MAYER

Obsahem ¢ldnku je odvozeni algoritmu analyzy linedrniho elektrického obvodu,
pfi éemZ se vychdzi ze zdkladnich maticovych metod, tj. metody smy&kovych proudt
a metody uzlovych napéti. Dosavadni zndmé maticové metody feSeni (jsou popsdny
napf. v [1]) se tim zobectiuji i na obvody, které mohou soudasn& obsahovat oba typy
zdroji (tj. zdroje elektromotorického napéti a zdroje vnit¥niho proudu) a tyto zdroje
mohou byt téZ idedlni.

Nejprve jsou struéné zrekapitulovdny zdkladni postupy a vztahy maticové
metody smyCkovych proudid a maticové metody uzlovych napéti, jestlize feSeny
obvod obsahuje pouze zdroje jednoho typu. Pak ndsleduje popis obou zobecnénych
metod, jenZ ma dvé& &4sti: topologickou a algebraickou. V topologické ¢asti je zaveden
takovy zpisob indexovdni vétvi, uzll, popfipadé smydéek feSeného obvodu, aby pfi
jeho kompletni analyze byly v maximdlni mife vyuzity zndmé udaje obvodu,
tj. proudy ve vétvich, jestlize tyto vétve obsahuji zdroje vnitfniho proudu a napéti
vétvi, jestliZe tyto obsahuji pouze zdroje elektromotorického napéti; pro tento zpiisob
znaceni jsou pak obecné formulovdny incidenéni matice. V algebraické &dsti jsou
odvozeny maticové operace, jimiZ je obecn& provedena kompletni analyza elektric-
kého obvodu.

Vyznaénymi vlastnostmi popsanych algoritmi je jejich dobrd ptehlednost, obecnost,
relativni jednoduchost pfislusnych numerickych vypoétli a velmi snadnd progra-
movatelnost pro samocinné ¢islicové pocitace.

Author’s address: Prof. Ing. Daniel Mayer, CSc., Vysoka $kola strojni a elektrotechnicka,
katedra teoretické elektrotechniky, Nejedlého sady 14, Plze.
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