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SVAZEK 15 (1970) AP LI KAC E MATE MÁTI KY CISLO 4 

A CONTRIBUTION TO THE GENERALIZED FORMULATION OF THE 
MATRIX METHODS OF MESH CURRENTS AND NODE VOLTAGES 

DANIEL MAYER 

(Received June 27, 1969) 

1. DELIMITATION OF THE PROBLEM 

In the basic formulation of the matrix method of mesh currents it is assumed that 
the circuit to be analyzed contains only voltage sources; if the circuit contains also 
current sources, they are converted to equivalent voltage sources. (This is described 
in detail in literature, e.g. [1].) If, however, a branch of the circuit contains an ideal 
current source (with zero internal admittance), it cannot — exactly speaking — 
be replaced by an ideal voltage source (with zero internal impedance). Besides, 
from the viewpoint of numerical computation this procedure is not advantageous 
since the currents flowing in the branches with ideal current sources are actually 
known, so that the only aim of the analysis is then the determination of currents 
in the remaining branches. If we convert the current sources to voltage sources 
and then analyze the circuit by employing the usual procedure, we do not make 
use of the known information about branch current values (in branches with current 
sources) and search for currents in all the branches of the circuit, which is, from the 
viewpoint of computation, uneconomical. 

In the dual case, the situation is quite analogous: if a circuit containing ideal 
voltage source is analyzed by the method of node voltages, then — exactly speaking — 
it is not possible, and from the viewpoint of numerical calculation even not advan­
tageous to replace these sources by ideal current sources. 

In this article we shall generalize on the one hand the matrix method of mesh cur­
rents, and on the other hand the matrix method of node voltages for the case where the 
circuit contains both kinds of sources. We shall not convert them to a single type 
of sources (i.e. to voltage sources for the mesh method and to current sources for the 
node method) and maximum use will be made of the information about mesh current 
and node voltage values represented by the presence of these sources. 
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2. GENERALIZATION OF THE MESH CURRENT METHOD 

2.1 Analysis of the circuit containing only voltage sources. Since in literature 
the matrix methods of circuit analysis are presented in a quite diverse manner we shall 
acquaint the reader with the terminology and basic relations used in the following 
text: we shall describe a practical procedure for an application of the mesh current 
method in the basic formulation. 

a) We orientate all the / branches of the circuit analyzed, introduce a complete 
oriented system of n independent meshes and establish the second incidence matrix 
C(/; n); its rows correspond to the branches and its columns to the meshes of the 
circuit. If the i-th branch is included in the j-th mesh and the orientation of the 
branch coincides with that of the mesh, then the relevant matrix element has the 
value cu = 1; if the i-th branch is included in the j-th mesh but their orientation 
is opposite, then cu = — 1 and, finally, if the i-th branch is not included in j-th mesh, 
then c(j = 0. Now we introduce mesh currents into n independent meshes. 

b) We introduce the column matrix of the branch voltage sources E(/; 1) and the 
square matrix of the branch impedances Z(/). By their transformation we obtain 
the column matrix of the mesh voltage sources E'(n; 1) and the symmetric matrix 
of the mesh impedances Z'(n): 

(1) E' = <CE , Z' = CZC . 

c) We determine the mesh admittance matrix by inverting the mesh impedance 
matrix: 

(2) Y' = Z '" 1 . 

d) From the so-called mesh equation 

(3a) E' = ZT . 

we calculate the mesh current matrix l'(n; l): 

(3b) I' = Y'E'. 

e) The branch current matrix l(/; 1) is then 

(4) I = CI' . 

f) If the branch voltage matrix U(/; 1) is of interest too, we determine it from the 
equation 

(5) U = Zl - E. 

From the above equation it is evident that the branch current matrix may be 
expressed by the relation 

(6) I = C ( 'CZC)-1 fCE 
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and the branch voltage matrix by the relation 

(7) U = {ZC ('CZC)"1 fC - J} E 

where J is the unit matrix. 

2.2 Analysis of the circuit containing voltage sources and current sources. Topo­
logical part. Let the analyzed circuit have current sources in its p branches, and volt­
age sources, which may assume zero values, in the remaining q branches (p + q = l). 
Later we shall show that for physically realizable circuits there is always p ^ n. 
Evidently it will be advantageous to introduce such a complete system of independent 
meshes that each of the p mesh currents will at the same time be the current in 
a single branch containing a current source. Then these p mesh currents will be 
known and the subject of the analysis will be to find the remaining n — p mesh 
currents and finally the remaining I — p branch currents. 

Fig. 1, Circuit with three current sources and 
with a complete system of independent meshes. 

Fig. 2. Circuit with three current sources and 
with a complete system of independent meshes. 
Here the choice of meshes shown in Fig. 1 is 

not advantageous any more. 

As an example let us have a circuit with three current sources (Ivi9 Iv2, Iv3) as shown 
in Fig. 1. If we choose the complete system of independent meshes in accordance 
with Fig. 1, the mesh currents I'i9 l'l9 V3 will evidently be known and it remains 
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to determine the mesh currents I'4,1'5,1'6. If, however, the current sources were located 
in another triplet of branches, then the choice of the complete system of independent 
meshes might be incorrect. For instance, for the circuit shown in Pig. 2 it is advan­
tageous to choose the meshes in the manner shown in the figure. By introducing 
the complete system of independent meshes as shown in Fig. 1, the branches with 
current sources would be incident to two meshes and we could not a priori declare 
certain mesh currents to be known. 

For simple circuits as are those used in the above example, the determination 
of a suitable system of independent meshes is fairly easy. For circuits with complex 
and particularly with spatial linear graphs, however, we cannot rely on it that the 
estimation of a correct solution of the mentioned topological problem will be an easy 
matter. 

For brevity, let us introduce the term "current branches" for branches containing 
currents sources. (Thus, the currents flowing in the "current branches" are known.) 
By "voltage branches" we shall understand branches with voltage sources. Thus 
the linear graph consists of two types of branches: "current branches" and "voltage 
branches". We shall assume it to be connected and denote it by ^ . 

First we shall prove that the graph ^ may always be decomposed to a complete 
tree containing not even a single "current branch" and a complete system of inde­
pendent branches that comprises all the "current branches" of the linear graph ^ . — 
If we leave out all the "current branches" in the graph @, we obtain the subgraph *Sf 

which has the same set of nodes as the graph ^ , but its branches are a subset of the 
set of branches of the graph ^ . Let us assume for a moment that in the general 
case the subgraph <&' is not connected: let it consist of ju components J^ (i = 1,2, . . . 
. . . , //), each of which is connected. (This is to say that the subgraph <&' is a unification 
of disjoint subgraphs J*;.) I* will be seen easily that this case is not physically realiz­
able. The component $t is connected with the other components only through the 
omitted branches (i.e. "current branches"). However, from the generalized Kirch-
hoff's current law (see [ l ] , p. 80) there follows that the sum of all currents flowing 
into the component ^t from the remaining components must be identically equal 
to zero. In the case consirdered this condition is, of course, not satisfied, for the currents 
in the "current branches" are given by the values of the current sources, which may 
have arbitrary magnitudes. The subgraph <§' must therefore be connected. If we 
omit in the subgraph 0 ' the minimum number of its "voltage branches" so that there 
does not remain a single mesh, we obtain a complete tree of the graph ^ composed 
of "voltage branches" only. 

From the above consideration it follows that p :g n. 

Let us note that this property of the linear graph 0 follows directly from the 
physical interpretation of the concept "complete system of independent branches", 
this being such a set of branches where the currents may be chosen independently 
on each other (see [1], p. 32, par. 2). Hence it follows that the current sources may 
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exist in n independent branches at most. (Thus, the proof just described confirms 
once more the known property of a complete system of independent branches.) 

Fig. 3. Linear graph of a circuit with three components (&t, ^ 2 , ^ 3 ) composed of "current 
branches". (This linear graph has no physical significance.) 

As an example, Fig. 3 shows a linear graph where the "current branches" are 
shown by thin lines and the "voltage branches" by heavy lines. A circuit with this 
linear graph has no physical significance: that is to say, if the "current branches" 
are omitted we obtain three components 0tu ^ 2 , J^. For instance, for the component 
J*! there must hold, according to the generalized Kirchhoff's current law, that 

(•) /, + h + Һ + Һ + Һ = o. 

However, since these branch currents may have arbitrary values (according to the 
current sources used) the condition (*) is not generally satisfied, which is a contra­
diction. 

Therefore, when choosing a complete system of independent meshes we proceed 
as follows: We remove from the linear graph under consideration all "current 
branches" and such "voltage branches" that a complete tree is obtained. By 
successive addition of independent branches to the complete tree one can easily in­
troduce such a complete system of independent meshes that just one mesh will be 
incident to each "current branch" and none of the pairs of these branches will belong 
to the same mesh. 
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When numbering the branches we assign numbers first to the p "current branches" 
and then to the q "voltage branches" (or passive branches). When numbering the 
meshes, we number first the p meshes, each of them being incident to one of the p 
"current branches", and then mark the remaining n — p meshes. 

The second incidence matrix may then be expressed as a partitioned matrix: 

(8) 

where C n ( p ) , C 1 2 ( p ; n — p), C2l(q; p), C22(q; n — p). Since the first p branches 
(i.e. "current branches") are incident only to the first p meshes, it is evident that 
C 1 2 = 0. If the orientation of the first p branches and the first p meshes is coincident, 
then C u is the unit matrix, C u = J. 

C u c 1 2 

c 2 1 C 2 2 

Algebraic part. According to the above agreement on numbering branches and 
meshes we may express the branch current matrix I and the mesh current matrix V 
as partitioned matrices: 

(9) ľ = 
i; 

where the submatrix \x(p; 1) is known (its elements are the values of current sources, 
It = ±Ivi (i = 1, 2, ..., p); the sign is positive if the direction of source current Ivi 

agrees with the orientation of the i-th branch and negative in the opoosite case), 
so that the submatrix \[(p; 1) is also known because, according to Eq. (4), 

(Ю) C ľ 4- C ľ — ľ 

Suppose for a moment that the current sources Ivi are not ideal; let their internal 
admittance by YJ.. (j = 1, i = 1, 2,. . ., p). They may then be replaced by equivalent 
voltage sources £ , = IviZ

J
Vii with the internal impedance ZJ

Vii = YV~J. Then the 
branch impedance matrix of the circuit is 

(11) z(0 
-11 + z„ z1 2 

z2 1 ^ 2 2 

г 
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where Zy(p) is a diagonal matrix whose diagonal elements are Yv.f (j~ 1, i 
= 1, 2, ..., p). The matrix of branch voltage sources is 

(12) E(/;l) = 
E, 

where the submatrix Ex(p; 1) has the elements Et (i = 1, 2, ..., p) and the elements 
of the submatrix E2(q; 1) are the given values of voltage sources contained in q 
"voltage branches". Thus the circuit is converted to one containing voltage sources 
only; its analysis is described in Section 2.L The mesh equation (3a) of this circuit 
where Eq. (1) holds for matrices E' and Z', is expressed by using partitioned mat­
rices: 

(13) 
Z'„ Z ' 1 2 

z 2 1 z 2 2 

i; 

i; 

This equation may also be expressed as a system of two matrix equations 

(14) 
E' — Z' ľ 4- Z' ľ 
c l — ^ l l Ч т- -Ь-12'2 > 

E' — Z' ľ 4- Z' ľ 

Since there are ideal current sources in the circuit, we express E^ and Z ' u for 
lim Z{... This limiting process, however, does not concern the second of Eqs. (14) 

j-++ 00 

which is fully sufficient for the determination of the mesh current submatrix I 2 : 

(is) i2 = z2V(E2 - z2 1i;) 

where 

^ 2 2 = C 2 2 Z 2 2 C 2 2 , 

(16) Z 2 1 = C 2 2 Z 2 i + C 2 2 Z 2 2 C 2 i , 

E' — tC E 
c 2 ~ v " 2 2 c 2 • 

The branch current matrix is determined according to Eq. (4): the submatrix \x 

whose elements are the currents in the first p branches (i.e. "current branches") 
is given by Eq. (10), 

i x = i; 
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and the submatrix l2 whose elements are the searched currents in the remaining 
/ — p branches is determined, according to Eq. (4), from the relation 

(17) l2 = C21li + C22l2 . 

Substituting for l2 from Eq. (15) we have 

V.-*°) '2 ~ (^21 ~~ ^22-^22 Z 2 1 ) l i + C 2 2 Z 2 2 E2 

where the matrices Z22 and Z21 are determined from Eq. (16). 

3. GENERALIZATION OF THE NODE VOLTAGE METHOD 

3.1 Analysis of the circuit containing only current sources. Mathematical opera­
tions involved in circuit analysis using the node voltage method do not differ from 
those of the mesh current method described in Section 2.1, but in their physical 
interpretation there appear dual quantities. We shall briefly describe the algorithm 
of the calculation and confine it, for simplicity, to a circuit without inductive coupling. 
(Matrix analysis of a circuit with inductive couplings using the method of node 
voltages is described in [2]). 

a) First the circuit is orientated and one node in each of its separate parts is chosen 
as the reference node. In each separate part we introduce oriented paths between 
the remaining nodes — we call them independent nodes — and the reference node. 
Let the circuit considered have k nodes and s separate parts. As we know, the number 
of orientated paths is then m = k — s. We orientate them in such a way as to be 
always directed towards the reference node. Now we establish the first reduced in­
cidence matrix Kr(/; m) with rows and columns corresponding to the branches and 
the independent nodes of the circuit, respectively. If the i-th branch is incident to the 
j-th independent node, this being its initial node, then ktJ = 1; if the i-th branch is 
incident to the j-th node, this being its terminal node, then ku = — 1 and, finally, if 
the i-th branch is not incident to the j-th node, then ku = 0. 

We introduce the node voltages into m oriented paths. 

b) We establish a column matrix of branch source currents lv(l; 1) and a square 
diagonal matrix of branch admittances Y(/). By their transformation we obtain the 
column matrix of node source currents Ty(m; 1) and a symmetrical matrix of node 
admittances Y(m): 

(19) T, - = < K r ! u , Y = ' K r Y K r . 

c) By inverting the node admittance matrix we determine the node impedance 
matrix: 

(20) Z = Y 1 . 
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d) From the so-called node equation 

(21a) T„ = - YU 

we calculate the node voltage matrix U(m; 1): 

(21b) U = - Z l , . 

e) The branch voltage matrix U(Z; 1) is determined from the equation 

(22) U = K/U . 

f) If the branch current matrix l(l; 1) is of interest too, we determine it from the 
equation 

(23) B = YU + 1 , . 

Note that the node voltage matrix may be determined directly by the equation 

(24) U = -Kr('KrYKr) ^K r ly 

and the branch current matrix by the expression 

(25) I = {J - YKr('KrYKr)-! <Kr} l„ 

where J is the unit matrix. 

voítage 
branch 

passive 
branch 

3.2 Analysis of the circuit containing current sources and voltage sources. Topolog­
ical part. If the circuit under consideration contains a voltage source with an 
impedance connected in series we shall con­
sider this arrangement as two branches in se­
ries: one branch contains only the voltage 
source-we shall call it "pure voltage branch"— 
and the other comprises only the impedance. 
In other words, as nodes of the circuit we 
consider on the one hand nodes of the second 
order, which are incident to the "pure volt­
age branches" and to the branches containing 
only impedance, and on the other hand, of 
course, all the nodes of the third and higher orders (Fig. 4). 

Suppose again that the linear graph ^ of the circuit is connected. We denote the 
number of its "pure voltage branches" by v and the number of all "current branches" 
and passive branches by w (v + w = l). In comparison with the method of mesh 
currents this situation is more complicated, for in the general case the reference 
node incident to all v "pure voltage branches" evidently can not be chosen. Let the 
"pure voltage branches" of the circuit be formed by v connected subgraphs: X\, 
JT2,..., Jfv. Each subgraph Jf f (i = 1, 2, ..., v) must be a tree. If any of them 

Fig. 4. In the circuit analysis by the metíюd 
of node voltages, the node B2 is one of 

the nodes of the analyzed circuit. 
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contained a mesh, this mesh would be incident only to the "pure voltage branches" 
and the Kirchhoff's voltage law would not hold for it; thus the case would not be 
physically realizable. This is the case dual to that analyzed in more detail in Section 2.2 
where the component J^. is connected with the remaining components only through 
"current branches". 

The fact that each subgraph X\ (i = 1, 2, ..., v) must be a tree is directly evident 
from the physical interpretation of the concept "complete tree", which is a system 
of the minimum number of branches where the voltages between an arbitrarily chosen 
(reference) node and the remaining (independent) nodes of the circuit uniquely de­
termine the voltages of the individual branches (see [1], p. 31). From this it follows 
that if a circuit is to be uniquely determined the "pure voltage branches" must 
form a tree or a complete tree at most. 

For the analysis of the circuit we shall use the principle of superposition: first 
we analyze the partial circuit containing only the subgraph X1 (X\, X3, ..., Xv 

are removed), then the partial circuit containing only the subgraph X\ (Xu X3, ... 
..., Xv are removed) etc. and superpose the results. The general i-th partial circuit 
contains of the subgraphs Xx to Xv only the subgraph X{, let this subgraph have vt 

blanches (i\ + ... + vv = v). As the reference node we choose the node which is 
incident to the subgraph X\ by maximum of its branches; let its degree with respect 
to the branches of the subgraph be rt. 

When numbering the I circuit branches we number first the vx branches of the 
subgraph Xl9 then the v2 branches of the subgraph X\, etc. up to the vV branches 
of the subgraph Xv and finally the remaining w branches (i.e. the "current branches" 
and the passive branches). When numbering the k circuit nodes we number first all 
hx nodes of the subgraph X\ etc up to the hv nodes of the subgraph Xv and then 
the remaining g nodes (hx + h2 + ... + hv + g = k). 

Thus the first incidence matrix has the form 

(26) Щ k) -Щ k) -

}v 

From this matrix we derive the first reduced incidence matrix for the i-th partial 
circuit (Kri) as follows: 
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— We determine the reference node by finding a column containing the maximum 
(rf) of non-zero elements in the group of vt rows and ht columns (belonging to 
branches and nodes of subgraph Jf;). This column corresponds to the node which 
we choose as the reference node and therefore we remove it from the matrix K(l; fc). 

вR 
X-

ß, 

9* 

1 i 

J\rA 

6 

10 4 

12 

2ł 

ł5 

ßя 

13 

в? 

111 

в3 

fз 

Bu 
Fig. 5. Linear graph containing two subgraphs (tf1 and JT2) composed of "pure voltage 

branches". 

— We replace the remaining "pure voltage branches" (i.e. the branches of sub­
graphs Jf i, ..., <>f j_i, $Cl+l9 ..., JTV) by the internal impedances of their sources, 
i.e. we short-circuit them. Consequently we omit the rows corresponding to the 
branch groups vl9 v2, ..., v^l9 vi+1, ..., vv; we add up the columns corresponding 
to each of the groups hl9 h2, ..., hi_1, hi+1,..., hv and replace them by a single 
column (the "sum column"). 

— We arrange the sequence of columns as follows: first we put the ht — 1 columns 
(corresponding to ht — 1 independent nodes of the "pure voltage branches"), then 
the v — 1 "sum columns" follow and finally the g columns (corresponding to g 
independent nodes of the "current branches") are placed. 

Therefore, the first reduced incidence matrix of the i-th partial circuit Kr- is of the 
type (v; + w; mf) where 

(27) Шi = g + v + ҺІ — 2 . 

As an example, Fig. 5 shows an oriented linear graph of a circuit where / = 13, 
5 = 1, fc = 8, m = k — s = 1. The "pure voltage branches" (drawn by heavy lines) 
form two subgraphs: Jf\ (vx = 3, h± = 4) and JT2 (v2 = 2, h2 = 3). Evidently, 
w = 8, g = 1. The first incidence matrix is 
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к = 

1 2 3 4 5 6 7 8 

1 1 - 1 

2 1 - 1 

3 1 - 1 

4 - 1 1 

5 1 -1 

6 1 - 1 

7 1 - 1 

8 1 - 1 

9 - 1 1 

10 - 1 1 

11 - 1 1 

12 1 - 1 

13 - 1 1 

«ж < «ж *-, 

Fig. 6. Two linear graphs which are obtained from the linear graph in Fig. 5 where the subgraphs 

Xx or Jf 2

 a r e replaced by a "short circuit". 

266 



The nodes B4 and B6 are the reference nodes. The corresponding reduced first 
incidence matrices are: 

Krl = 

1 2 3 + 7 8 

1 1 

2 1 

3 1 

6 1 - 1 

7 1 - 1 

8 1 - 1 

9 - 1 1 

10 - 1 1 

11 - 1 1 

12 1 - 1 

13 - 1 1 

1 + 2 -
+ 3 + 4 5 7 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

- 1 

- 1 

- 1 

1 - 1 

1 - 1 

- 1 1 

- 1 1 

- 1 1 

The linear graphs corresponding to these matrices are shown in Fig. 6a,b. 

We express the reduced first incidence matrix of the i-th partial circuit as a parti­
tioned matrix: 

(28) 
*,.„ K H 1 2 

к „ 2 ! к „ 2 2 
>Щ 

where 

(29) m\ -= mt — i?| = g + v + ht — v( — 2 

Since the new nodes corresponding to the "sum columns" and the g nodes of the 
"current branches" are not incident to the "pure voltage branches" of the subgraph 

0. X'h we háve Kríi 
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Algebraic part. For the i-th partial circuit we express the node voltage matrix 
Uf(m,-; 1) as a partitioned matrix 

(зo) U, 
U . i 

U, 

where the submatrix U f l (^ ; 1) is known (its elements are the values of voltage sources 
of the individual paths between the independent nodes of the subgraphs Xt and its 
reference node) and U/2(m-; 1) is the submatrix to be determined. We proceed 
in a way analogous to that used in the method of mesh currents described in Section 
2.2 (but with dual quantities): let us admit for a moment that the voltage sources (Ff) 
are not ideal (i.e. their internal impedance ZVi. 4= 0) and convert them to equivalent 
current sources Iv. = EiZv.

J. of internal admittance Y/.. — Z~.\ (j = 1, i = 1, 2,... 
..., Uf). The branch admittance matrix Y, and the matrix of branch current sources \v. 
are then expressed as partitioned matrices: 

ЧҺ) = 
Y.u + Y»i ү,-12 

ү.-2 1 

ү

i 2 2 

Uh; i) = 

and by their transformation we obtain, according to Eq. (19): 

(31) Y( = fKr,Y,Kr; and T„, = 'Kr,l„, . m Г ï " Г~Гl 

The node equation (21a) and the mesh equation (13) are written by means of 
partitioned matrices whence we obtain a system of two matrix equations: 

(32) I - Y U 
1 i l l Í1 

Y U 

I = _ ү U - Y U 
Vl2 121 '1 122 (2 

For an actual circuit (i.e. for one with ideal sources) these equations hold for 
lim YV

J... However, it is not necessary to calculate this limit, as it does not concern 
/-> + 00 

the second equation (32), whence 

(33) 

268 

U, ү.--(-Y. u - I Ì 
' 122 l Í 2 2 W Ц ШVl2J 



where 

(34) ү — řK Y K 
1 hг ~ rhг ' hг^rhг » 
ү tьř ү к 

1 ҺÍ ~~ rhг iгг^rhг ' 

l 
řк 
^rhi vh • 

By suitable orientation of branches it is possible to make K r i u = J. 

The branch voltage matrix of the i-th partial circuit is 

(35) 

where, according to Eq. (22), 

(36) 

(37) 

U, = 
U, 

U, 

U ; i = K r ř l l U f i , 

U.2 = K r f 2 1 U i l + K r i 2 2 U , 2 . 

Then the branch voltage matrix of the circuit under consideration is, according 
to the principle of superposition, 

(38) u = I u, 
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Souhrn 

PŘÍSPĚVEK KE ZOBECNĚNÉ FORMULACI MATICOVÉ METODY 
SMYČKOVÝCH PROUDŮ A MATICOVÉ METODY UZLOVÝCH NAPĚTÍ 

DANIEL MAYER 

Obsahem článku je odvození algoritmu analýzy lineárního elektrického obvodu, 
při čemž se vychází ze základních maticových metod, tj. metody smyčkových proudů 
a metody uzlových napětí. Dosavadní známé maticové metody řešení (jsou popsány 
např. v [1]) se tím zobecňují i na obvody, které mohou současně obsahovat oba typy 
zdrojů (tj. zdroje elektromotorického napětí a zdroje vnitřního proudu) a tyto zdroje 
mohou být též ideální. 

Nejprve jsou stručně zrekapitulovány základní postupy a vztahy maticové 
metody smyčkových proudů a maticové metody uzlových napětí, jestliže řešený 
obvod obsahuje pouze zdroje jednoho typu. Pak následuje popis obou zobecněných 
metod, jenž má dvě části: topologickou a algebraickou. V topologické části je zaveden 
takový způsob indexování větví, uzlů, popřípadě smyček řešeného obvodu, aby při 
jeho kompletní analýze byly v maximální míře využity známé údaje obvodu, 
tj. proudy ve větvích, jestliže tyto větve obsahují zdroje vnitřního proudu a napětí 
větví, jestliže tyto obsahují pouze zdroje elektromotorického napětí; pro tento způsob 
značení jsou pak obecně formulovány incidenční matice. V algebraické části jsou 
odvozeny maticové operace, jimiž je obecně provedena kompletní analýza elektric­
kého obvodu. 

Význačnými vlastnostmi popsaných algoritmů je jejich dobrá přehlednost, obecnost, 
relativní jednoduchost příslušných numerických výpočtů a velmi snadná progra-
movatelnost pro samočinné číslicové počítače. 

Authofs address: Prof. Ing. Daniel Mayer, CSc, Vysoká škola strojní a elektrotechnická, 
katedra teoretické elektrotechniky, Nejedlého sady 14, Plzeň. 
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