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SVAZEK 15 (1970) APLIKACE MATEMATIKY ČÍSLO 5 

CRITICALITY CONDITIONS FOR A FINITE HOMOGENIZED NATURAL-
URANIUM FUELED REACTOR WITH PRESCRIBED THERMAL NEUTRON 

FLUX 

ROSTISLAV ZEZULA 

(Received July 15, 1969) 

Let us consider a finite homogenized natural-uranium fueled reactor (with reflector) 
whose core Q is described by means of two-group equations (in usual notation [1]) 

(la) -div (D grad <D) + (la
v + Za

M) $ = q 

(lb) -div (T grad q) + q = kla
v0 

where D = D(x) e C(2)(.Q), T = T(X) e C(2)(0), Ia
M = Za

M(x) e C{2)(Q) are given 
functions, Q c Rn is a given domain in the n-dimensional real Euclidean space 
Iv„, n > 1 and x = (x l 5 x2,..., xn) e Q is the radiusvector. The influence of the 
reflector on the core is expressed by two given functions S^Q), S2(Q) on the boundary 
Q of the core Q. 

By introducing the following notation for the relative fuel concentration 

(2) M = M(X) = ^ = ^Nv(x) 

and by eliminating the slowing-down density q = q(x) e C{2)(Q) we obtain from 
(la), (lb), if T + 0, for the thermal neutron flux <P = <P(x) e C(4)(£) the equation 

(3) A(D A<P) + z1(grad D . grad 4>) - AIa
M[(M + 1) #] - ~ A<P -

T 

- ^ ^ grad [ - D # - grad D . grad 0 + £Mv/\f + 1) <£] -
T 

- - (grad D . grad 0) + - £M[M(l - fc) + 1] # = 0 
T T 
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where 

(4) k = k(M) 

is a given function of M = M(x), so that the equation (3) is nonlinear (quasilinear) 
in M. 

By means of the well known formulae we can transform the equation (3) into the 
following one: 

(5) i D A(A#) + (3 grad D + — grad T J grad A<2> + 

+ TAD + - grad T . grad D - - - Ia
M(M + 1)1 A<*> + 

/ - J D 1 dD \ J d<P 
+ 2 grad 1 grad T grad h . . . + 

\ dxt T dxx ) dxx 

/ J dD 1 dD \ J $ 
+ 2 grad — H grad T . grad — + 

V d*n * Sxn J dxn 

+ [grad AD - -Ia
M(M + 1) grad T - 2(M + 1) grad Ia

M - 2Ia
M grad (M + 1)1 . 

J _ grad x [d$ J dD d$> A dD\) 
. grad # + grad + . . . + — grad — l l + 

T \3xx dxt dxn dxnJ) 

+ - {la
M[M(l - k) + 1 ] - (M + 1) grad T . grad ZM - (M + 1) xIa

M -
T 

- grad (M + 1) (Ia
M grad T + 2T grad Ia

M) - xIa
M A(M + 1)} = 0 

from which we obtain the implication 

(6) # = const * 0 => {la
M\M(l - k) + 1] - (M + 1) grad T grad Ia

M -

- (M + 1) T AIM - grad (M + 1) (ZM grad x + 2T grad ZM) -

- T2;M A(M + 1)} = 0 . 

This implication gives us the following necessary condition for the relative fuel 
concentration M(x) producing a flat thermal neutron flux $ = const in the reactor 
core Q 

grad Ia
M (7) ^M + ( / g ^ + 2 g r a d ^ g r a d M + P(M ) - 1

+^-T . 
V T rM j i % x 

+ ^M]M + (í _ ¥^1 grad JM _ A?M\ = 0 

+ 
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and in case of the symmetry of the core Q we have for (7) the condition 

(7a) dM(0) = 0 

which together with the boundary condition on the boundary Q of the core Q 

(7b) M(Q) = ^ ( f i ) 

determines (under physically plausible assumptions) for the given function Q^Q) e 
e C(Q) uniquely the function M e C2(0). We see also that under the usual conditions 

(7c) Ia
M = const > 0 , T = const > 0 

the equation (7) reduces to the well known nonlinear elliptic equation (Goertzel's 
equation [ l ]) 

(7d) ^ M + K M ) - 1 M _ 1 = 0 

T T 

which together with the initial condition (7a) gives (in one-dimensional reactor 
geometries) for M(0) = M0 a nonlinear (quasilinear) Cauchy's problem, investigated 
(for one-dimensional geometries) in [ l ] , [2], [3], [4], [5], [6] . Sufficient conditions 
for the existence of a unique solution of linear and quasilinear elliptic boundary value 
problems are given e.g., in [7]. 

Let us now suppose that this necessary condition for the thermal flux flattening 
in a symmetric reactor core is fulfilled, i.e., that there is a relative fuel concentration 
M(x) which is the unique solution of the Dirichlet's problem (7), (7b) satisfying (7a). 
Then it follows from the equation (5) and from the symmetry of the problem consid
ered that the thermal neutron flux $ in the core with this relative fuel concentration 
M(x) necessarily must obey the (evidently linear) biharmonic equation 

(8) L(M) <2> = i D A(A$) + (3 grad D + - grad T J grad A<2> + 

+ I AD + - grad i . grad D - - - Ia
M(M + 1)1 A$ + 

T/ J D 1 dD \ A d<P 
+ 2 grad H grad T grad h .. . + 

L\ dx1 T Ox! / <9x! 

/ J D 1 3D A \ J d<Pl 
+ 2 grad 1 grad T grad — + 

\ OX T dxn J dxnj 

+ ["grad AD - - Ia
M(M + 1) grad % - 2(M + 1) grad Ia

M - 2Ia
M grad (M + 1 )1 . 

, ^ g r a d T / 3 ^ J D d<P , dD\] 
. grad <P + — grad — + .. . + — grad —- ) I = 0 

T \Sx1 dx! dxn SxJ) 
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with the symmetry relations 

(8a) d<2>(0) = 0 , d(3)<2>(0) = 0 

and with the boundary conditions (for given functions il/(Q) e C(Q), co(Q) e C(Q)) 

(8b) Ф(tì) = co(Ù) , 
õn ň 

where dn = en denotes an infinitesimal translation in the direction of the outer 
normal n, | n | | = 1 to the interface Q between the core and reflector. Conversely, 
from the relations (7), (7b) for M and (8), (8b) for 0 it follows that the equation (5) 
holds. 

If we suppose that the Dirichlet's boundary value problem (8), (8b) has on the 
given Q for every \j/(Q) e C(Q), co(Q) e C(Q) the unique solution <P = $M(i//, co) 
which satisfies (8a), then a suff icient c o n d i t i o n for the flattening of the thermal 
neutron flux <P = <PM = $M(0, $o) m l u e reactor core is given by the equations 

(9) \j/(Q) = 0 , o)(Q) = <P0 = const > 0 . 

We shall show now that this sufficient flux-flattening condition together with the 
reactor criticality condition determines the critical core £2*. 

Let us consider a two-parametrical system of symmetrical surfaces (with the 
parameters N0, P0) 

(10) Q = Q(N0, P0) 

whose elements Q(xx, . . . , xn; N0, P0) are given by the parametric formulae 

(11) xt = x((si9 ..., sn.1;N0, P0) (i = 1,2, ..., n), n > \ . 

Then we see that by the Dirichlet's problem (7), (7b) there corresponds (for given 
#i(si, ..., s„_!; N0, P0)) to all values of the real parameters N0, P0 a unique value 
M 0 = M(0) (where 0 is the center of symmetry of Q): 

(12) M 0 = f ( N 0 , P 0 ) 

Let us make the following assumptions: 

I) The two-parametrical system of symmetrical surfaces Q = Q(N0, P0) can be 
chosen in such a way that solution M(xl9 ..., xn; N0, P0) of the Dirichlet's problem 
(7), (7b) fulfils for all N0, P0 the condition 

(13) G1(sl9...,sn_i;N0,P0) = 

_ 3M[x1(s1 , . . . ,s / >-- i ;No,P0) , . . . ,xw(s1 , . . . ,sw_1 ;N0 ,P0] , ,_ 
= tf2VSl>--->5/.-l>iV0>r01 — 

on 

= gi(5i, -.., sn„x;N09 P0). Hi(N0, P0) 
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where the function g1(s1, ..., sn„t; N0, P0) is bounded and is not identically zero: 

(13a) \g1(s1,...,sn.1;N0,P0)\ ^ const, gt(sl9..., sH-x; N0, P0) * 0 

and #2()Q) e C(;0) is a given function on the boundary Q of the core Q. 

II) The implicit "criticality condition" 

(14) H^No, P0) = 0 

can be explicitely solved in the variable N0 

(15) N0 = h!(P0) . 

Then it follows from (13), (14), (15) that for the values N0 = hi(P0) the criticality 
condition 

/16x dM[xx(sl9 .... s„- i ; hi(Po), P0), -.., xn(sl9 ...,sn_t; hi(P0), P0)] = 
1 ' dn 

= S2(s1,...9sn-1;h1(P0),P0) 
is fulfilled, so that 

(16a) Q = ^ ( P o ) , P0] 

is a one-dimensional family of "possible critical shapes" of the reactor core and 

(17) M 0 ( P 0 ) = / [ h 1 ( P 0 ) , P 0 ] 

is the corresponding maximal relative fuel concentration in this critical core. 

If we denote by MPo = M(xl9 x2,..., xn; hx(P0), P0) the solution of the Dirichlet's 
problem (7), (7b) for a possible critical shape Q[hx(P0), P0] of the reactor core, and 
by $M,P0

 = ®M(XU •••> xnl h^Po), P0) the corresponding solution of the Dirichlet's 
problem 

(18) L(MPo) <f> = 0 , ^{O[h!(P0), P0]} = <2>0 = const 

(18a) 80M[XI(SU..., y - j j ht(P0)9 P0),..., xn(sl9 ...9sn-t; hi(P0), P0)] = 

dn 

= ^[h1 (P0 ) ,P0 ]} 

and if we make further assumptions: 

III) The one-parametrical system of possible critical surfaces fo = ^[/^(Po), P0] 
can be chosen in such a way that the function 

G 2 ( s 1 , . . . , 5 ^ 1 ; h 1 ( P 0 ) , P 0 ) = 

== 3^M[XI(SU ..-, V - I ; h^Pp), P0),..., x„(sl9 ..., 5,_i; hi(Po), P0)] 

dn 
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can be splitted into a product of two functions 

(19) G2(sl9..., sn.i; h^Po), P0) = g2(sl9..., sH-t; ht(P0)9 P0) H2[hx(P0)9 P0] 

where the function g2(sl9..., sn_t; hi(P0), Po) is bounded and not identically zero: 

(19a) \g2(sl9 ..., sH-t; hi(Po), P0)| S const, g2(sl9 ..., sn_i; hL(P0)9 P0) =£ 0 ; 

IV) the equation 

(20) H2{hl{P0), P0] = 0 

has in the given interval P ^ g P 0 ^ P£,2) the unique root P* 

(20a) H2\hv{Pt), P*] = 0 , P* e <P0
1), P<2)> ; 

then we see that for the values of the parameters 

(21) P 0 , lv0 = h.(P£) 

the thermal neutron flux <P = <P* in the reactor core with the critical shape 

(21a) Q = (i(N*0, P0) 

fulfils evidently the sufficient conditions (9) for the flux flattening so that we have 

(22) 

$*M = 4>M(x1,...,xn;N*0,Pt) = 4»0 = const; L(MPo.) <P*M = 0 ; - ^ = = 0 . 
on ß(!Vo*,Bo*) 

By the foregoing considerations we have proved the following 

Theorem!. Let us suppose that for the functions M(xl9..., xn)9 <P(xl9..., xn) 
the following conditions are fulfilled: 

1. The domain Q of the functions M, <P is bounded by a two-parametrical sym
metric boundary Q = O(N0, Po) (given by the parametric formulae (11)), on which 
four continuous real functions S^Q), #2v^0> ,A(-̂ )> Q)(fi) are given. 

2. There exists a function M = M(xl9 ..., xn; N0, P0) which is the unique solution 
of the Dirichlefs boundary value problem (7), (7b) on Q and satisfies the symmetry 
condition (7a) and the assumptions I), II). 

3. The Dirichlefs boundary value problem (8), (8b) has for this M and for every 
\I/(Q) e C(Q), co(Q) e C(Q) a unique solution <P = <PM(*I/, oo) = <P(x; N0, P0, M, \j/, co) 
in Q (and particularly the solution #M j P o = $M(XU •••> xnl ni(Po)> Po) for &(&) ~ 
= ^{.Qfh^Po), Po]}, co(Q) = # 0 = const) which satisfies the symmetry conditions 
(8a) and the assumptions III), IV). 
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Then among the "possible critical shapes" Q = Q^h^Po), P0] Of the reactor 
core given by (16a) and depending on the real, parameter P0 there is the critical 
shape Q(N*9 P0) given by (20a), (21) for which the function # M = <P(xl9 ..., xn; 
N*9 P0, MPo*) fulfils the sufficient flattening conditions (22) for MP o* = M(xl9 ... 
...,xn;N*0,Pt). 

It can be directly seen that under the conditions (7c) and under the usual further 
condition 

(23) D = const > 0 

relation (8) for the thermal neutron flux <P reduces to the linear biharmonic equation 

(23a) 

Ĺ(M) Ф = D A(AФ) - - + ГM(M + 1) 
T 

AФ - 22ľм grad (M + 1) grad Ф = 0 

with the symmetry conditions (8a) and with the boundary value conditions (8b), 

(or (9) for the flattened flux <P = $ 0 ) , which together with the simplified relations 

(7d), (7a), (7b) for the relative fuel concentration distribution M can be solved evi

dently in the same manner and under the same assumptions as in Theorem 1. However, 

numerical solution will be much easier. 

We shall consider now a problem induced by the equation (5) which is a far reaching 

generalization of the problem of the thermal flux flattening: for the given thermal 

neutron flux <P(xl9 ..., xn) > 0 in the critical reactor core Q the distribution 

M(xi9 ..., xn) of the fuel concentration is to be determined which induces this given 

flux 4>(xl9 ..., xn) and obeys the following boundary value conditions [2] 

(24) 

(24a) 

M(Ù) 

дM 

дn 

5,(0; Ф(Ù)). 

= &2(Ů; Ф(Ù)) 

where 5t = S^Q; <P(Q)), 52 = S2(Q, <P(Q)) are given continuous functions expressing 

the influence of the reflector on the core. From the equation (5) it follows that the 

function M(xl9 ..., xn) in this case has to obey the following nonlinear elliptic equation 

(in general nonhomogeneous): 

(25) 
1 / 2T 2T 

AM + - I grád T + •— grád Ia
M -i grád 0 ) grád M -

(1 _ k(M)) - - L grad т . grad Гм - - 1 AFM 

^M ^M 1-
2 1 

grad 2ľм . grad Ф grad т . grad Ф 
тФ Ф^м 

AФ\M = 
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= — i D A(A$) + ( 3 grád D + ~ grád z ] . grád zl<ř + 
* í « l V T j 

+ [ A D + - grad т grad D 
T T 

D v«\ ^ , r l ^ J ^D ! ^D 
- I M A<í> + 2 grád — + grád T ) . 

/ L\ dxx T dxx 

80' A 8& (<, * dD IdD \ 
grád — + . . . + 2 grád —- H grád T . grád 

dxx \ dxn T dxn J dx 

+ í grád AD IM grád T - 2 grád Ia
M ) . grád <P + 

+ 

- grad т . grad ^— j -— f ... + ( - grad т . grad ^-
dD\ dd> 

dxxJ dxL 

дD\ôФ 

дxj дxn_ 

1 - J_ 
ya 
^M 

grad т . grad Гh AГM Ф 

which under the usual conditions (7c), (23) assumes the simplified form (from which 

we see that for 0 for which its right-hand side vanishes identically it will be homo

geneous) 

(25a) AM + - grád <P . grád M - J - [1 - fc(M)] A<Á M = 
0 [T 0 J 

ФГм 
(- + Ea

M\A<P + ^k 

The equation (25) or (25a) for M(x l 5 ..., xn) together with the boundary value 

condition (24) represents again a quasilinear Dirichlet's problem which for 0 = 

= const obviously reduces to the Dirichlet's problem (7), (7b) or (7d), (7b) respectively. 

If we consider again the two-parametrical system of surfaces (10), (11), choose 

a fixed extreme fuel concentration value M0 in (12) and make the assumptions I) 

and II) and a further assumption: 

V) the equation (implied by (12)) 

(26) fO,(Po), Po] = M0 

has in the given interval P0

l) tk P0 S PQ2) the unique root P**: 

(26a) Pi* = F ( M 0 ) e < n i ) , F f > > , N** = ft.(P**) , 

then we obtain by an analogous consideration as above 
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Theorem 2.: Let us suppose that for the given thermal neutron flux $(xt, ..., xn) e 

e C^\Q) which satisfies the symmetry conditions (8a) there exists a fuel concentr

ation M ( x 1 ? . . . , xn; $)e Ci2)(Q) which obeys the following conditions: 

1. The domain Q of the functions M, $ is bounded by a two-parametrical sym

metric boundary Q = $(N 0 , P0) (given by the parametric formulae (11), so that 

M = M ( x l s ..., xn; $, N0, P0)), on which two continuous functions $t(&; $(Q)), 

52(Q, $(&)) are given. 

2. The function M(xx, ..., xn; $, N0, P0) is the unique solution of the Dirichlefs 

boundary value problem (25) or (25a), (24), which assumes the fixed extreme fuel 

concentration M0 at the center of symmetry 0, satisfies the symmetry relations (7a) 

and the assumptions I), II), V). 

Then among the "possible critical shapes" Q = Q[h(P0), P0] of the reactor 

core given by (16a) and depending on the real parameter P0 there is a critical 

shape Q(N**, P**) given by (26a) for which the fuel concentration M ( x 1 ? . . . , xn; 

$, N**, P**) induces in the reactor core Q the given thermal neutronflux $(xx,..., x„) 

We have still to show under which assumptions in the both above mentioned 

problems the usual two-group equations in the reflector A [ l ] 

(27) -ЛФR + 
1 

ФR J_ 
DR 

.R 

(27a) •MR + — QLR = 0 
TR 

with the usual boundary conditions (expressing the continuity of the thermal and the 

fast neutron fluxes and currents) on the interface fo between the core Q and the 

reflector A (where we have <P(Q) = co(Q), (d^jdn)\^ = \I/(Q), M(^) = S t and 

(3M(Q)\dn) = S2) 

(28) 

(28a) 

ФR(Ù) + 
Djtdfjt 

D dn 
Ф(Ù) + 

ðФ 

дn 

qR(Ù) + 
?RdqR 

T dn 
*(Q)rJ^[i + M(ó)] + 8-^ 

( Ä div (D grad Ф) 
дФ 

+ — 
дn 

iŁ[i + м(û)] — [div (D grad Ф)] 
ôn 

and with the usual further conditions on the external face of the reflector 

(29) *R(A) = 0 

(29a) qR(A) = 0 
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can be solved. Let us consider again a two-parametrical system of surfaces (with 
the parameters S0, T0) 

(30) A = A(S0, T0) 

whose elements A(yl9 ..., yn; S0, T0) are given by the parametric formulae 

(31) yt = y{tl9..., U-u S0, T0) (i = 1, 2 , . , n) , n > 1 . 

If we make the following assumptions: 

VI) Both the Newton's boundary value problems (27), (28) and (27a), (28a) have 
unique solutions $*, and q*, respectively on A. 

VII) For these solutions the system of two boundary value conditions (29), (29a) 
assumes the form 

(32) $*R[A(S0, T0)] = cp(tu ..., t„_i; S0, T0) H3(S0, T0) = 0 

(32a) q*R[A(S0, T0)] = Q(tx, ..., *„_,; S0, T0) H4(S0, T0) = 0 

where the coupled system of equations 

(33) H3(So,To) = 0 , H4(S0,T0) = 0 

has the unique solution S0 = S*, T0 = T0*, i.e., 

(34) H3(S*,T*) = 0 , H4(S*, T*) = 0 , 

then there obviously holds the following 

Theorem 3.: Under the assumptions VI), VII) there exists a unique outer surface 
A = A(S0, T0) of the reflector A of the reactor whose core Q has the prescribed 
thermal neutron flux #(x), x e Q. 

R e m a r k 1. We see immediately that we can fulfil the assumptions (13), (19) or (32), 
(32a) by putting e.g., sx = s2 = . . . = sn„2 = N0, sn„1 = P0 or tt = t2 = . . . = 
= fn_2 = S0, tn„1 = T0, respectively. 

R e m a r k 2. For numerical solution of the problem considered, one can use e.g., 
finite difference methods, or finite element methods. 
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Souhrn 

PODMÍNKY KRITIČNOSTI PRO KONEČNÝ HOMOGENIZOVANÝ 
REAKTOR NA PŘÍRODNÍ URAN S PŘEDEPSANÝM TOKEM TEPELNÝCH 

NEUTRONŮ 

ROSTISLAV ZEZULA 

V článku se matematicky formuluje (v dvougrupovém difuzním přiblížení a pro 
vícerozměrné geometrie) následující problém z teorie jaderných reaktorů: Pro zadaný 
průběh toku $ tepelných neutronů v aktivní zóně Q konečného homogenizovaného 
reaktoru určit rozložení koncentrace paliva M(x) v Q, které tento tok $ vytváří. 
Jsou udány podmínky (zejména na tvar hranice Q jádra reaktoru Q resp. hranice A 
jeho reflektoru A) postačující pro existenci jediného řešení tohoto problému, a zejména 
též pro existenci jediného řešení ve speciálním případě vyrovnaného toku tepelných 
neutronů <P = <P0 = konst v aktivní zóně Q reaktoru, který má praktický význam, 
neboť dává minimum kritické hmoty. 

Authoťs address: Dr. Rostislav Zezula, CSc, Matematický ústav Karlovy university, Sokolovská 
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