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SVAZEK 19 (1974) A P L I K A C E M A T E M A T I K Y ČÍSL01 

AN EXISTENCE THEOREM FOR THE v. KARMAN EQUATIONS 
UNDER THE CONDITION OF FREE BOUNDARY 

JOACHIM NAUMANN 

(Received March 1, 1973) 

1. INTRODUCTION 

It is the purpose of this paper to treat by functional analysis methods a boundary 
value problem for a system of nonlinear partial differential equations governing the 
bending of a thin elastic plate which is free along its edge and subject to a perpen­
dicular load. Using the divergence structure of the partial differential equations con­
sidered, one can replace this boundary value problem (in its variational formulation) 
by an equivalent operator equation in a suitably chosen Hilbert function space such 
that the original problem is reduced to the investigation of an abstract nonlinear 
operator equation. 

Let Q be a bounded domain in the x, y-plane, constituting the middle plane of the 
undeflected plate, and let dQ be the boundary of Q. We then consider the following 
version of the v. Karman equations: 

(1.1) A2w = [/, w] + q in Q, 

A2f = — [w, w] in O . 

Here w = w(x, y) represents the deflection of the plate, / = f(x, y) is the stress 
function, and q = q(x, y) denotes the perpendicular load. Furthermore, [, ] is 
defined to be 

[W, v] = U^Vyy + UyyVXX ~ lU^y . 

We now introduce the boundary operators 

Btw = vAw + (1 — v) (n2
xwxx + 2nxnywxy + n2wyy) , 

B2w = - — Aw + (1 - v) -- (nxnywxx - (n2
x - n2) wxy - nxnyWyy) 

on cs 
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where n = (nx, ny) is the outer normal of Q, s = ( — ny, nx) is the corresponding 
tangent, and v is the Poisson ratio of the plate material. 

The boundary conditions imposed on (1.1) are then the following ones: 

(1.2) Btw = B2w = 0 on dQ ,*) 

(1.3) / = - ^ = 0 on dQ. 
dn 

The first condition in (1.2) expresses that the bending moment vanishes along dQ, 
while the second one may be interpreted as vanishing shearing force. Condition (1.3) 
implies in a certain sense that the boundary of the plate is free of stresses. Thus, 
(1.1) —(1.3) describes the equilibrium of a thin elastic plate under the condition of 
free boundary. 

Considering the buckling problem for (1A), Berger and Fife [1] deal with mixed 
boundary conditions on w in which (1.2) is required only on a part of dQ. In [3], 
Knightly has proved by a technique which is completely different from ours, an 
existence theorem for (1.1) under Dirichlet conditions both for w a n d / i n the case of 
combined normal and edge forces. Detailed results about the bifurcation of nontrivial 
solutions for (1.1) have been presented in [4]. Various other boundary value problems 
for (1.1) are treated in [2], [5], [7]. 

In Section 2 we put (1.1) —(1.3) into the framework of elliptic boundary value 
problems and introduce the definition of the notion of variational solution. Our 
main results, Theorem 1 and Theorem 2, are then presented in the following section. 
Preparing their proofs, the abstract operator formulation of boundary value problem 
(1.1) —(1.3) in an appropriate Hilbert space is stated in Section 4. Moreover, some 
properties of the occurring operators which are necessary for the application of an 
abstract existence theorem are also given in this section. They enable us to prove our 
results quite easily, which is done in the last section. 

The author is indebted to Dr. I. Hlavacek for helpful discussions when preparing this paper. 

2. TERMINOLOGY 

Let (2bea bounded domain in the x, y-plane whose boundary dQ is of type dl(0)A 

(cf. [6] for details). LP(Q) will denote the space of all real functions which are in-
tegrable with power 1 ^ p < co on Q (with respect to the Lebesgue measure dx dy). 

) In the presence of corners, boundary conditions of the type 

B3w = (1 — v) [nxnywxx - (n2
x — n2) wxy - nxnywyy]t = 0 

are added at the corners, i.e., the jump of the twisting moment vanishes. 
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Using the usual notation 

D* | a | = a _j_ a 

Ox ! dy 2 

we define for an integer m ^ 1 

Wm,p(Q) = {u | w e Lp(£2), Dau e LP(.Q) for |a| = m} 

(the derivatives are taken in the sense of distributions). Wm,p(Q) is a Banach space 
with respect to the norm 

\\4wmfP = \[\u\pdxdy+ X 
[JQ |«|=m, 

In particular, the scalar product 

|Daw|pdxd> 

(M> v)w2,2 = uvdxdy+ £ DauDav dx dy 
ӣ 

X DawD*vdx 
a|-2 Jí. 

turns W2,2(Q) into a Hilbert space. 

By WQ'2(Q) we denote the closure of Q)(Q) in the norm || \w^^ where __$(_?) is the 
space of all in Q infinitely continuously differentiate functions with support in Q. 
In what follows the space W$y2(Q) will be regarded as equipped with the scalar 
product 

(u,v)Wo22= J] DauDavdxdy. 

On the space WQ'2(Q) the norms || ||̂ 252 and || ||^02j2 = ( , )wl22 a r e equivalent. 

Let Pj be the space of all polynomials of the first degree in x and y; P. is a closed 
subspace of W2'2(Q). 

We now form the orthogonal decomposition W2'2(Q) = K © P- with respect to 
the scalar product ( , )wit2 and introduce the factor space W2,2(Q)\Pl which is defined 
as the space of all classes u such that w, v e u iff u — v e P,. As usual, W2,2(Q)\Pl 

will be equipped with the norm 

\W2ч2ip — Ш І \\U\\ II л l 
I W 2 , 2 / Р l ~ 

ueü 

In order that we may treat boundary value problem (VI) —(1.3) by means of 
abstract operator methods, it is necessary to introduce on W2'2(Q)/Pi a suitable 
scalar product. To do this, let 0 < v < 1 be a fixed number (v is in fact the 
Poisson ratio). We put for u, ve W2'2(Q) 

(u, vVv2>2 = [uxxvxx + 2(1 - v) uxyvxy + uyyvyy + v(uxxvyy + uyyvxx)] dx dy 
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and define for u e W2'2(Q)\PX: 

((u, v)) = (u, v)irV2,2, u eu , v e v arbitrary , 

|||«||| = ((a, a))1'2. 

It is easy to see that the inequalities 

(2.1) -iFllғrV/Pi й \\\й\\\ ѓ cЛü\ W2,2/Pi 

in which ct = const > 0 (i = 1, 2) are true for all u e W2'2(Q)lPt (cf. [6]). Thus, in 
the sequel W2'2(Q)jPl will be considered as Hilbert space equipped with the scalar 
product (( ,)). 

Finally, we give a characterization of elements u e W2,2(Q) which belong to K. 
To this end, let us introduce the functionals 

jo(") = u áx áy , fi(u) = xu dx áy , f2 »-J, yu áx áy 

defined on the whole W2'2(Q). One then obtains 

(2.2) ueK iff ft(u) = 0 for i = 0, 1, 2 . 

Without particularly referring to it, in all what follows we assume q e l}(Q). 
We now define what is meant by a variational solution of boundary value problem 

(1.1)-(1.3). 

Definition. The pair w,f with w e W2'2(Q) and f e W0
2'2(jQ) is called a variational 

solution of boundary value problem (1.1) —(1.3) if the following two integral 
identities are satisfied: 

(2.3) [wxx(pxx + 2(1 - v) wxy(pxy + wyy<pyy + v(wxxcpyy + wyy(pxx)] dx dy = 

= (Wxx<Pyy ~ IWxyVxy + Wyy<Pxx)f d * ďy + qę dx dy for all ę e W2'2(í2) , 

(2.4) (fxxÝxx + VxyÝxy + fyyÝyy) á x d y = 

(wxxwyy - w2
y) y\f dx dy for all ý e W^'2(Q) . - 2 I (wxxwyy 

R e m a r k s . — 1. The integral identities (2.3) and (2.4) can be formally obtained by 
multiplying equations (1.1) by test functions cp e W2'2(Q) and \j/ e W$'2(Q)9 respecti­
vely, and integrating by parts their left hand sides, using the boundary conditions 
(1.2), (1.3). 
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2. By our definition above, w is uniquely determined except for a polynomial 

pt e P 1 ? i.e., all representatives of the class w which contains w (where w,f is the 

variational solution considered) also satisfy (2.3) and (2.4). 

Moreover, if w,f is a variational solution of boundary value problem (1.1) —(1.3) 

then it holds necessarily that 

(*) JЧJ.1 dx dv = 0 for all pj є Pj . 

Theorem 1 below shows that this condition is also sufficient for the existence of 

a variational solution. 

3. Condition (*) may be interpreted as a certain total equilibrium condition. 

3. STATEMENT OF MAIN RESULTS 

In this section we present our results concerning existence and uniqueness (apart 

from a polynomial p± e Pj) of a variational solution of boundary value problem 

(1.1)-(1.3). 

Theorem 1. Suppose that condition (*) is satisfied. 

Then: 

(i) There exists at least one pair w,f with w e W2,2(Q)\P1 and f e WQ,2(Q) such 

that for each w e w the pair w,f is a variational solution of boundary value problem 

(1.1)-(1.3). 

(ii) In the class w there exists a representative w' such that 

||w'11̂ 2̂ 2 - const | |q | |Li • 

Moreover, the following estimate holds: 

lljlwv,2 = c o n s t h\v • 

(iii) If w is the class from (i), then by the condition 

H'pj dx dy = 0 for all p{ e Pt 

a representative w in w is uniquely determined. 

I 
Theorem 2. Suppose that condition (*) is satisfied. 

U UgllL1 is sufficiently small, then w mentioned in Theorem \, (i) is uniquely 
determined. 
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Our paper does not include a study of regularity properties of the variational 
solution obtained in Theorem 1. We only remark that the boundary operators Bx 

and B2 form a normal system which covers A2 on dQ (this was submitted by O. John 
to the author). Thus, the linear elliptic theory applies, and under appropriate con­
ditions on q and dQ, regularity results of the variational solution can be expected. 

4. OPERATOR FORMULATION 

The Proposition below yields our principal methodical tool for the treatment of 
boundary value problem (1.1) —(1.3) (in variational sense) by abstract operator 
methods. 

Proposition. Suppose that condition (*) is satisfied. Then the integral identities 

(2.3) and (2.4) are equivalent to the system of operator equations 

(4.1) vv = C,(vv,f) + q in H ,*) 

(4.2) f = C2(vv,vv) in W2'2 

where C\ is a bilinear operator with domain H x W^'2 and range in H, C2 is a bili­
near operator with domain H x H and range in JV0

2'2, and q is a fixed element in H, 
in the following sense: 

The pair vv, f, where w e W2,2 and f e WQ'2, is a variational solution of boundary 
value problem (1.1)—(1.3) if and only if the pair vv,f, where vv e H denotes the class 
containing vv, is a solution of the system (4.1), (4.2). 

Proof. Let vv, cp e H and fe W0'
2 be arbitrarily given. By means of Sobolev's 

embedding theorem (see [6]) and Schwarz's inequality one obtains for any vv e vv, 
(p e cp the estimate 

Í, w ^ / d x d y 
Q 

(const |||vv(Jj ||/||ғгo-,-)|||<PІ| 

Since an estimate of this type is true for the remaining terms in the first integral on 
the right hand side in (2.3), we get by means of the Riesz representation theorem the 
existence of a (uniquely determined) element Cx(w,f) e H such that 

(4.3) ((C^vv,/), cp)) = (wxxcpyy - 2wxy<pxy + wyycpxx)fdxdy 

1 ) Since there is no possibility of confusion, throughout the remainder of the paper, 
W2'2(.Q)/P! will be denoted by H, W2'2(«Q) and W^2{Q) shortly by W2'2 and W0

2'2, respec­
tively. 
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for all <p G H; here 

(4.4) |Ci(w,/)| | | < const |||w 
l v -wi l l — III irll Wo2, 2 V w e / / , / 6 « í 2,2 

Furthermore, by Sobolev's embedding theorem and condition (*), 

qcp âx áy (const ||q | |Li)|| |^|! 

for any cp e (p. Thus, there is a unique qe H such that 

qcp dx dy = ((<?, <p)) V<p e H . 

It is now obvious that (2.3) is equivalent to (4.1) in the sense of the Proposition. 

Let be u, v e H. By the same argument as above, we obtain the existence of a unique 

C2{u,v)e WQ2,2 such that 

(4.5) (C2(u, v), iAW,2 = ~ ( W ^ > T - 2uxyvxy + uyyvxx) xjy dx dy 

for all \j/ e W0
2'2 and any u e w, v G v; clearly, 

(4.6) ||C2(w, i~)IIW0V ^ const |||w||| |||v||| Vw, v e H . 

Taking into account that 

( ^ (w , w), i^VoV =- - 2 (wxxwyy - w2
y) i/> dx dy 

for all ^ G W0
2'2 and w e H where w is an arbitrary representative of w, the second 

part of the asserted equivalence is proved. Q.E.D. 

We now define an operator C of H into itself by 

(4.7) C : u i-> C(i7) ES Clvw, C2(u, u)) , V i l e / / . 

The defining relations (4.3) and (4.5) immediately imply 

(CX(u, l//), U)) = ~ ( C 2 ( u , W), 1^)^2,2 

. for all u G H and all \j/ e Wo'2. Setting i// = C2(u, u), one gets 

(4.8) ((C(w), i7)) g 0 Vt7GH. 

Moreover, using (4.4) and (4.6) we obtain for arbitrary uuu2e H 

(4-9) |C(wj) - C(w2)||| S const (Ijlujjl!2 + |||#2|||2) |||#i ~ u2 

The following Lemma shows that estimate (4.9) can be improved. 

23 



Lemma 1. Let u1? u2 e H be arbitrarily given. 

Then the estimate 

| | |C(ui) - C(w2)||| S const (||uif^2,2 + ||M2||^2,2) | |Mi - w2||Wi,4 

holds for any uleul and any u2 e u2. 

Proof. First, we note the divergence form 

[ u , v] = (VyyUx - VXyUy)x -f (V^Uy ~ VXyU ^y 

which is valid for smooth functions. Integration by parts yields 

(4.1.0) (uxxvyy - 2uxyvXy + uyyvxx) xj/dxdy = 

[(VxyUy ~ VyyUx) \j/x + (vxyUx - V x XU y) \jjy~\ dx d y 

for all u, v e S(Q) and all \j/ e S)(Q) (here S(Q) denotes the space of all in Q infinitely 
continuously differentiate functions which together with all their derivatives can be 
continuously continued onto Q). Using Holder's inequality and Sobolev's embedding 
theorem, (4.10) implies 

(4.11) (џxxVyy - 2uxyvxy + UyyVxx) ф åx áy 
JQ 

< 

<; (const ||u||^i.4 H^IITTO2,2) NU 2 , 2 ^W' V e &(Q) ' *A E -®(C) 

Since $(Q) is dense in W2'2 (see [6]), by passing to limit we see that (4.11) in fact is 
true for all u, v e W2,2 and all \jj e W0

2'2. Observing the defining relation (4.3), from 
(4.11) we can conclude that 

(4.12) | | |ci(w, Ф)\\\ -ă const ЦwЦцrî  |IYo2 

holds for all w e H, i/> e W0

2'2 where w is an arbitrary representative in the class w. 

Repeating the same reasoning which led us to (4A2), we obtain 

(4.13) \\C2(u, v)\\Wo2i2 ^ const ||u||^i,4 IHIiY2,2 

for all u,veH and any u e u, v e v. 

Observing now that (4.5) immediately implies the symmetry of C2, the asserted 
estimate can be easily verified by using (4.12), (4.13) and Sobolev's embedding 
theorem. Q.E.D. 

In proving Theorem 1, the following result based upon Lemma 1 will be essentially 
used. 
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Lemma 2. For any sequence {un} a H such that 

un -> u weakly in H 

there is a subsequence {u^} <= {un} such that 

C(u^j -> C(u) strongly in H . 

Proof. First of all, for each n (n = V 2, ...) there exists a u„ e W2,2 such that 

(4.14) un e un, 11^1^2 ^ inf ||w||^2,- + 1 • 
t.SUn 

By virtue of (2.1), the boundedness of {un} in H implies ||wll||H,2>2 g const, « = 
= 1, 2, ..., for the sequence {un} according to (4.14). Thus, from {un} we can select 
a subsequence, say {u„k}, such that unk —> u* weakly in W2,2. Since all (generalized) 
partial derivatives of order two of u„fc converge separately weakly in L2(0), one 
obtains 

(4.15) (uMk, v)^v2j2 -> (u*, v)Wv2>2 Vv e W2'2 . 

On the other hand, 

(4-16) (u„k, ^)^V2s2 = ((u„k, v)) -> ((u, v)) 

for all v e H and any v e v. Denoting for arbitrary v e W2,2 by v the class containing v, 
(4.15) and (4A6) imply (u* — u, v)Wv22 = 0 for any u e u and all v e W2'2. Thus, 
u* — u = px e P l 3 i.e., u* e u. 

Finally, Sobolev's embedding theorem yields the existence of a subsequence {uM} 
of {u„fc} such that u^ -> u* strongly in W1,4(Q). 

The assertion now follows by Lemma 1. Q.E.D. 

5. PROOF OF THE THEOREMS 

Proof of Theorem 1. In order to prove (i) we substitute/in (4.1) according to (4.2) 
and obtain the operator equation 

(5.1) u — C(u) = q 

where C is defined by (4.7). Thus, the identities (2.3), (2.4) are equivalent to (5.1) 
in the sense described in the Proposition above (see Section 4); in particular, if ueH 
is a solution of (5.1), then, by setting / = C2(u, u), each pair u,/ where u e u is 
a variational solution of (1.1) —(1.3). 

By (4.9), C is Lipschitzian uniformly on bounded sets in H. Furthermore, let 
{u„} c I / b e a bounded sequence in H. By reflexivity of H, we may assume (passing 
to a subsequence if necessary) that un ~> u weakly in H. Lemma 2 then implies the 
following compactness property of C: There exists a subsequence {u^} c= {un} such 
that C(u^) -> C(u) strongly in H. Finally, (4.8) yields the coerciveness of the operator 
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/ - C: 

(5.2) (((1 - C) a, a)) ^ mum2 vu e H . 

From the theory of semi-monotone operators one can now conclude the existence 
of a solution of (5.1) for arbitrary q e H. For this purpose, we only note the following 
special result:1) 

Let X be a Hilbert space (with scalar product ( , ) and norm || || = ( , )1 /2), and 
let Tbe a completely continuous2) operator of X into X. Moreover, let be 

.. ((1 + T)u9u) 
lim = oo . 

II " I I - * * ||w|| 
Then 1 + T maps X onto X. 

We turn to the proof of (ii). Each u e u can be represented in a unique manner as 
u = itK 4- uPi where uK e K, uPx = pA e P,; here uK is uniquely determined by the 
class ii. Thus, one obtains 

(5.3) ||WR||^252 = inf ||w||^-,2 -S const (||u||| . 
ueu 

Taking into consideration the defining relation of q, one obviously gets |||g||| <i 
5̂  const | |g |Li. Using this, the first estimate in (ii) follows immediately by (5.2) and 
(5.3), while the second one, withf = C2(u, u) according to (4.2), is a consequence of 
(4.6). 

To prove (iii), one observes that 

Í up] áx åy = 0 for all px є P 

is equivalent to u e K (cf. (2.2)). Thus, this condition selects the element uK from the 

class i7. 

Proof of Theorem 2. From (4.9) one immediately obtains for a certain positive 

constant a 0 that 

(((1 — C) w, — (I — C) u2, ul — u2)) ^ a 0 | | |u 1 — u2|||
2 

for all ul9 u2 lying in a ball with sufficiently small radius, centered at the origin. 

We now easily get the assertion by the remark already used that for the solution 

of (5A), Ilium <i const \\q\\u holds. 

1 ) See the recent paper: DeFigueiredo, D. G. and Gupta, C. P.: Nonlinear integral equations of 
Hammerstein type involving unbounded monotone linear mappings. — J. Math. Anal. Appl., 
39 (1972), 37-48. 

) A mapping T of X into X is said to be completely continuous if T is continuous and maps 
each bounded set into a compact set, — We remark that this property is slightly weaker than that 
derived above for the operator C. 

26 



References 

[ll Berger, M. S. and Fife P.: On von Kármán'ѕ еquationѕ and thе buсkling of a thin еlaѕtiс 
platе, II. Píatеwithgеnеralеdgесonditionѕ. — Comm. Purе Appl. Мath.,21 (1968), 227- 241. 

[2l Fife, P.: Non-Iinеar dеflесtion of thin еlaѕtiс platеѕ undеr tеnѕion. — Comm. Purе Appl. 
Math., 14 (1961), 81-112. 

[3] Knightly, G. H: An еxiѕtеnсе thеorеm for thе von Kármán еquationѕ. — Arсh. Rat. Mесh. 
Anal., 27(1967), 233 — 242. 

[4] Knightly, G. H. and Sather, D.: On nonuniquеnеѕѕ of ѕolutionѕ of tһе von Kármán еquа-
tionѕ. — Arсh. Rаt. Mесh. Anаl., 36 (1970), 65—78. 

[5l Morozov, N. F: Nonlinеаr problеmѕ in thе thеory of thin plаtеѕ (Ruѕѕiаn). — Vеѕtnik 
Lеningr. Univ., 19 (1958), 100-124. 

[6] Nečas J.: Lеѕ méthodеѕ dirесtеѕ еn théoriе dеѕ еquаtionѕ еîliptiquеѕ. — Aсаdеmiа, Prаguе 
1967. 

[7] Sharij, Ju. I. аnd Jurchenko, A. S.: Diriсhlеťѕ problеm for еquаtionѕ of Kármán'ѕ typе. — 
Diff. urаv., 4(1968), 1713-1719. 

S o u h r n 

EXISTENČNÍ VĚTA PRO VON KÁRMÁNOVY ROVNICE 
S VOLNOU HRANICÍ 

JOACHIM NAUMANN 

Článek se týká von Kármánových rovnic, kterými se řídí průhyb tenké pružné 
desky, s podmínkou volné hranice. Nejdříve je definováno variační řešení a uvažovaný 
problém se převádí na ekvivalentní abstraktní operátorovou rovnici, na níž lze apli­
kovat známé věty z teorie nelineárních operátorů. Hlavním výsledkem je důkaz 
existence variačního řešení uvažovaného problému. 
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