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AN EXISTENCE THEOREM FOR THE v. KARMAN EQUATIONS
UNDER THE CONDITION OF FREE BOUNDARY

JoAacHIM NAUMANN

(Received March 1, 1973)

1. INTRODUCTION

It is the purpose of this paper to treat by functional analysis methods a boundary
value problem for a system of nonlinear partial differential equations governing the
bending of a thin elastic plate which is free along its edge and subject to a perpen-
dicular load. Using the divergence structure of the partial differential equations con-
sidered, one can replace this boundary value problem (in its variational formulation)
by an equivalent operator equation in a suitably chosen Hilbert function space such
that the original problem is reduced to the investigation of an abstract nonlinear
operator equation.

Let Q be a bounded domain in the x, y-plane, constituting the middle plane of the
undeflected plate, and let dQ be the boundary of Q. We then consider the following
version of the v. Karman equations:

(1.1) A2w
A%

[f,w]+q in @,
—[w, w] in Q.

Il

Il

Here w = w(x, y) represents the deflection of the plate, f = f(x, ) is the stress
function, and g = ¢(x, y) denotes the perpendicular load. Furthermore, [, ] is
defined to be

[u, v] = w0, + uyv,, — 2u,0

Xy *
We now introduce the boundary operators

Byw = vAw + (1 — v) (n2wy, + 2nnw,, + n2w,) .

B,w = — 9 Aw + (L —v) —a—(nxnywxx —(nZ = n2)wy — nagw,)
on Js
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where n = (n,, n,) is the outer normal of Q, s = (—n,, n,) is the corresponding
tangent, and v is the Poisson ratio of the plate material.

The boundary conditions imposed on (1.1) are then the following ones:

(1.2) Bw=B,w=0 on 0Q,"
(1.3) F=% _0 on 00,
on

The first condition in (1.2) expresses that the bending moment vanishes along 0Q,
while the second one may be interpreted as vanishing shearing force. Condition (1.3)
implies in a certain sense that the boundary of the plate is free of stresses. Thus,
(1.1)—(1.3) describes the equilibrium of a thin elastic plate under the condition of
free boundary.

Considering the buckling problem for (1.1), Berger and Fife [1] deal with mixed
boundary conditions on w in which (1.2) is required only on a part of Q. In [3],
Knightly has proved by a technique which is completely different from ours, an
existence theorem for (1.1) under Dirichlet conditions both for w and f in the case of
combined normal and edge forces. Detailed results about the bifurcation of nontrivial
solutions for (1.1) have been presented in [4]. Various other boundary value problems
for (1.1) are treated in [2], [5], [7].

In Section 2 we put (1.1)—(1.3) into the framework of elliptic boundary value
problems and introduce the definition of the notion of variational solution. Qur
main results, Theorem 1 and Theorem 2, are then presented in the following section.
Preparing their proofs, the abstract operator formulation of boundary value problem
(1.1)—(1.3) in an appropriate Hilbert space is stated in Section 4. Moreover, some
properties of the occurring operators which are necessary for the application of an
abstract existence theorem are also given in this section. They enable us to prove our
results quite easily, which is done in the last section.

The author is indebted to Dr. I. Hlavacek for helpful discussions when preparing this paper.

2. TERMINOLOGY

Let Q be a bounded domain in the x, y-plane whose boundary 6 is of type N1
(cf. [6] for details). IP() will denote the space of all real functions which are in-
tegrable with power 1 < p < oo on Q (with respect to the Lebesgue measure dx dy).

1) In the presence of corners, boundary conditions of the type
— 2 2 +
Byw = (1 — ) [nynywye, — (ny — ny) wy, — nenyw )17 = 0

are added at the corners, i.e., the jump of the twisting moment vanishes.
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Using the usual notation
olel
:23”5‘0[2 o] = oy + a5,

x

we define for an integer m > 1
Wmr(Q) = {u I u e I7(Q), Duel1(Q) for ]cxl < m}

(the derivatives are taken in the sense of distributions). W™?(Q) is a Banach space
with respect to the norm
1/p
Pdxd \} .

b = {[ o acar s 3 [ o
(4, V)22 :f uvdxdy + ) f D*uD’v dx dy
la]=2J 02

In particular, the scalar product

Ja] =m
|=

turns W22(Q) into a Hilbert space.

By W3'*(Q) we denote the closure of &(Q) in the norm || |2 . where 2(Q) is the
space of all in Q infinitely continuously differentiable functions with support in Q.
In what follows the space W§*(Q) will be regarded as equipped with the scalar
product

(t, V)2 = Y D*uD’v dx dy .
lal=2J 0
On the space W3 *(Q) the norms || |22 and || |y,2.2 = (. )i 2 are equivalent.

Let P, be the space of all polynomials of the first degree in x and y; P, is a closed
subspace of W*2(Q).

We now form the orthogonal decomposition W>*(Q) = K @ P, with respect to
the scalar product (, )2 > and introduce the factor space W?'3(Q)/P, which is defined
as the space of all classes i such that u, ve @ iff u — ve P,. As usual, W>*(Q)/P,
will be equipped with the norm

”17”14/2?/?, = inf “ll”wz,z‘
ued
In order that we may treat boundary value problem (I.1)—(1.3) by means of
abstract operator methods, it is necessary to intrcduce on W?3(Q)/P, a suitable

scalar product. To do this, let 0 <v <1 be a fixed number (v is in fact the
Poisson ratio). We put for u, v e W?>*(Q)

(u, V) 2.2 =j [Uextee + 200 — v) Uty + Uy, + W0, + uy0,)] dx dy
o
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and define for i € W>?(Q)/P,:

((@,9)) = (u, v)y,22, ued, ved arbitrary,
= (@)

It is easy to see that the inequalities

i

(2.1) crlalwzie, = ] < cal@fwzze,

in which ¢; = const > 0 (i = 1, 2) are true for all i € W*>*(Q)/P, (cf. [6]). Thus, in
the sequel W*2(Q)/P, will be considered as Hilbert space equipped with the scalar

product ((,)).

Finally, we give a characterization of elements u € W*(Q) which belong to K.
To this end, let us introduce the functionals

fo(u)zjudxdy, fl(u)=.fxudxdy, fz(u)zfyudxdy
(2] 02 0

defined on the whole W?'%(Q). One then obtains

(2.2) ueK iff f{u)=0 for i=0,1,2.

Without particularly referring to it, in all what follows we assume g € LI(Q).
We now define what is meant by a variational solution of boundary value problem

(1.1)—(1.3).

Definition. The pair w, f with w e W»*(Q) and f € W *(Q) is called a variational
solution of boundary value problem (1.1)—(1.3) if the following two integral
identities are satisfied:

(23) J‘Q[wxx%x + 21 = ) Wy + W0y, + V(Waiyy + Wy0)] dx dy =

= J (Wex®yy — 2Wey@ry + Wy0,.) fdx dy + J qp dx dy for all g e W>*(Q),
2 Q

(24) JL)(fxx‘pxx + zfxy‘//xy + fyylﬁyy) d’C dy =

= —ZJ (Wertyy — w2 )W dxdy  forall e WS3(Q).
2

Remarks. — 1. The integral identities (2.3) and (2.4) can be formally obtained by
multiplying equations (1.1) by test functions ¢ € W**(Q) and y € W§**(Q), respecti-
vely, and integrating by parts their left hand sides, using the boundary conditions

(1.2), (1.3).
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2. By our definition above, w is uniquely determined except for a polynomial
p1 € Py, i.e., all representatives of the class w which contains w (where w, f is the
variational solution considered) also satisfy (2.3) and (2.4).

Moreover, if w, f is a variational solution of boundary value problem (1.1)—(1.3)
then it holds necessarily that

(*) J qp;dxdy =0 forall p,eP,.
Q

Theorem 1 below shows that this condition is also sufficient for the existence of
a variational solution.

3. Condition (*) may be interpreted as a certain total equilibrium condition.

3. STATEMENT OF MAIN RESULTS

In this section we present our results concerning existence and uniqueness (apart
from a polynomial p, € P,) of a variational solution of boundary value problem

(1.1)—(1.3).

Theorem 1. Suppose that condition (*) is satisfied.
Then:

(i) There exists at least one pair W, f with w e W**(Q)[P, and f e W§*(Q) such
that for each w € W the pair w, f is a variational solution of boundary value problem

(1.1)—(1.3).

(i) In the class W there exists a representative w' such that
W w2z < const gL
Moreover, the following estimate holds:
|/ lwez.z = const gz -

(iii) If W is the class from (i), then by the condition

f wp,dxdy =0 forall p,eP,
o
a representative w in w is uniquely determined.

Theorem 2. Suppose that condition (*) is satisfied.

If [[q”u is sufficiently small, then W mentioned in Theorem 1, (i) is uniquely
determined.
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Our paper does not include a study of regularity properties of the variational
solution obtained in Theorem 1. We only remark that the boundary operators B,
and B, form a normal system which covers 4% on 02 (this was submitted by O. John
to the author). Thus, the linear elliptic theory applies, and under appropriate con-
ditions on g and 0Q, regularity results of the variational solution can be expected.

4. OPERATOR FORMULATION

The Proposition below yields our principal methodical tool for the treatment of
boundary value problem (1.1)—(1.3) (in variational sense) by abstract operator
methods.

Preposition. Suppose that condition (*) is satisfied. Then the integral identities
(2.3) and (2.4) are equivalent to the system of operator equations

(4.1) w=C/(Wf)+4qg in H,)
(4.2) £ o= Cy(W, w) in Wg?

. oy . . 2 . . a7
where C, is a bilinear operator with domain H x W'* and range in H, C, is a bili-
near operator with domain H x H and range in W32, and § is a fixed element in H,
in the following sense:

The pair w, f, where w e W>% and f € W2'%, is a variational solution of boundary
value problem (1.1)—(1.3) if and only if the pair W, f, where W € H denotes the class
containing w, is a solution of the system (4.1), (4.2).

Proof. Let W, e H and fe WZ'? be arbitrarily given. By means of Sobolev’s
embedding theorem (see [6]) and Schwarz’s inequality one obtains for any we W,
¢ € @ the estimate

= (const [ |/ [wez2) [l

lJ~ W.rx(royyfdx d}
Q2

Since an estimate of this type is true for the remaining terms in the first integral on
the right hand side in (2.3), we get by means of the Riesz representation theorem the
existence of a (uniquely determined) element C,(W, f) € H such that

(4.3) ((Cy(w, 1), ) = JVQ(W“%” = 2wy + Wy0,,) fdxdy

1y Since there is no possibility of confusion, throughout the remainder of the paper,
w?2-2(Q)/ P, will be denoted by H, W?:2(22) and W () shortly by W22 and W2, respec-
tively.
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for all ¢ € H; here
(4.4) l”C W, [H < const ‘ W!“ 1] woz2 VWEH, feWd?.

Furthermore, by Sobolev’s embedding theorem and condition (*),

U qp dx dy
o

for any ¢ € ¢. Thus, there is a unique g € H such that

< (const ||q| ) |/

J‘ gpdxdy =((g, ) V@eH.
o

It is now obvious that (2.3) is equivalent to (4.1) in the sense of the Proposition.

Let be @i, § € H. By the same argument as above, we obtain the existence of a unique
C,(i, B) € Wy ? such that

(4.5) (Co(1,0), Y)pyr2 = — Jo(uxxv” — U, + Uy ) Y dx dy
for all y € WZ** and any u e il, v € ¥; clearly,

(4.6) 1Co(, )| 12,2 < const |[lal]| |5 Vi, e H .

Taking into account that

(Co(W, W), Y22 = ——2J (Weewy, — wi) Y dx dy

Q2

for all y € W22 and we H where w is an arbitrary representative of W, the second
part of the asserted equivalence is proved. Q.E.D.

We now define an operator C of H into itself by
(4.7) C:ii— C(il) = C,(a, C,y(a1, 7)), ViieH.
The defining relations (4.3) and (4.5) immediately imply

Ci(@, ¥), @) = —(Cold, 1), Py, 2

. for all #i e H and all y e Wy 2. Setting ¥ = C,(d, i), one gets
(4.8) ((c(a), @) <0 YieH.

Moreover, using (4.4) and (4.6) we obtain for arbitrary i, i, € H

(4.9) [et@) = c(@)] = const ([la,[|* + [[a[]*) l#, - a

The following Lemma shows that estimate (4.9) can be improved.
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Lemma 1. Let iy, @i, € H be arbitrarily given.

Then the estimate
llc@,) = (@) = const (fu 522 + [Juzlia,2) Jus — us s,
holds for any u, € i, and any u, € ii,.
Proof. First, we note the divergence form
[, 0] = (y0x = viythy)x + (0ally = v0),

which is valid for smooth functions. Integration by parts yields
(4.10) J (Upayy — 2U, 0y + U0 ) Y dx dy =
2]

= fﬂ[(uxyuy — v ) Yy + (vt — vuy) Y] dx dy

for all u, v e &(Q) and all y € 2(Q) (here £(Q) denotes the space of all in Q infinitely
continuously differentiable functions which together with all their derivatives can be
continuously continued onto Q). Using Holder’s inequality and Sobolev’s embedding
theorem, (4.10) implies

(4.11)

J (Uexlyy = 2U vy + uy 0 ) dx dy| <
< (const [ulyi s [W]we.2) [v]we2 Yu,ve&(Q), Yez(Q).

Since £(R) is dense in W?2 (see [6]), by passing to limit we see that (4.11) in fact is
true for all u, ve W*? and all Y € W3, Observing the defining relation (4.3), from
(4.11) we can conclude that

(4.12) ICa(m, Il = const [wllys,a [ ]wez.:

holds for all w e H, € W}'? where w is an arbitrary representative in the class w.
Repeating the same reasoning which Jed us to (4.12), we obtain

(4.13) ICo(a, ’7)”%2,2 < const ““”w’,‘ H””W2,2

forall 4,5e H and any u e éi, ved.

Observing now that (4.5) immediately implies the symmetry of C,, the asserted
estimate can be easily verified by using (4.12), (4.13) and Sobolev’s embedding
theorem. Q.E.D.

In proving Theorem 1, the following result based upon Lemma 1 will be essentially
used.
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Lemma 2. For any sequence {@i,} = H such that
i, > 4 weaklyin H
there is a subsequence {ii,} = {i,} such that
C(d,) —» C(@) strongly in H.
Proof. First of all, for each n (n = 1,2, ...) there exists a u, € W?*? such that

(414) u, e 17,, s ”U,,IIWZ’Z < inf “u’lwziz + 1.

By virtue of (2.1), the boundedness of {i,} in H implies ||ju,|y:> < const, n =
= 1,2, ..., for the sequence {u,} according to (4.14). Thus, from {u,,} we can select
a subsequence, say {u, }, such that u, -> u* weakly in W22, Since all (generalized)
partial derivatives of order two of u, converge separately weakly in LZ(Q), one
obtains

(4.15) (o V)22 = (U, 0)y 22 YoE W2,
On the other hand,

(4.16) (tno Vw22 = (s 7)) — (@, 7))

for all # € H and any v € #. Denoting for arbitrary v € W?'? by # the class containing v,
(4.15) and (4.16) imply (u* — u, v)y > = 0 for any ued and all ve W?2 Thus,
u* —u = p,e Py, ie,u*ed.

Finally, Sobolev’s embedding theorem yields the existence of a subsequence {u,}
of {u,,} such that u, - u* strongly in W"*(Q).

The assertion now follows by Lemma 1. Q.E.D.

5. PROOF OF THE THEOREMS

Proof of Theorem 1. In order to prove (i) we substitute f in (4.1) according to (4.2)
and obtain the operator equation

(5.1) i — C(@) =4

where C is defined by (4.7). Thus, the identities (2.3), (2.4) are equivalent to (5.1)
in the sense described in the Proposition above (see Section 4); in particular, if #e H
is a solution of (5.1), then, by setting f = C,(d, i), each pair u, f where u e ii is
a variational solution of (1.1)—(1.3).

By (4.9), C is Lipschitzian uniformly on bounded sets in H. Furthermore, let
{ii,} = H be a bounded sequence in H. By reflexivity of H, we may assume (passing
to a subsequence if necessary) that @, — @ weakly in H. Lemma 2 then implies the
following compactness property of C: There exists a subsequence {d,} < {iI,} such
that C(@1,) — C() strongly in H. Finally, (4.8) yields the coerciveness of the operator
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I —C:
(5.2) (1= cya,a)) = |[al> VieH.

From the theory of semi-monotone operators one can now conclude the existence
of a solution of (5.1) for arbitrary § € H. For this purpose, we only note the following
special result:')

Let X be a Hilbert space (with scalar product (,) and norm ” H = (, )1/2), and
let The a completely continuous®) operator of X into X. Moreover, let be

lim ((_Ii T)u,u) —w»
IS 1]
Then I + T maps X onto X.
We turn to the proof of (ii). Each u € ii can be represented in a unique manner as
u =ty + up, where ug e K, up, = p; € Py; here uyg is uniquely determined by the
class . Thus, one obtains

(5.3) [[ug

wao = inf Jully > < const [[al].

Taking into consideration the defining relation of §, one obviously gets ch]m <
< const [[q|,.«. Using this, the first estimate in (ii) follows immediately by (5.2) and
(5.3), while the second one, with f = C,(d, #f) according to (4.2), is a consequence of
(4.6).

To prove (iii), one observes that
J up,dxdy =0 forall p,eP,
o
is equivalent to u € K (cf. (2.2)). Thus, this condition selects the element uy from the
class 7.

Proof of Theorem 2. From (4.9) one immediately obtains for a certain positive
constant o, that
(((r - C)i, — (I - C) iy, Uy — 172)) = aomlﬂ - ﬁz”,z
for all @i, i, lying in a ball with sufficiently small radius, centered at the origin.

We now easily get the assertion by the remark already used that for the solution
of (5.1), l[|i]|| < const ||q] .« holds.

1) See the recent paper: DeFigueiredo, D. G. and Gupta, C. P.: Nonlinear integral equations of
Hammerstein type involving unbounded monotone linear mappings. — J. Math. Anal. Appl,,
39 (1972), 37—48.

2) A mapping 7 of X into X is said to be completely continuous if 7 is continuous and maps
each bounded set into a compact set. —— We remark that this property is slightly weaker than that
derived above for the operator C.
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Souhrn

EXISTENCNI VETA PRO VON KARMANOVY ROVNICE
S VOLNOU HRANICI

JoACHIM NAUMANN
Clanek se tyka von Karmanovych rovnic, kterymi se fidi prithyb tenké pruzné
desky, s podminkou volné hranice. Nejdrive je definovano variaéni feSeni a uvaZzovany
problém se prevadi na ekvivalentni abstraktni operatorovou rovnici, na niz lze apli-
kovat znamé véty z teorie nelinearnich operatorti. Hlavnim vysledkem je dtkaz
existence variaéniho feSeni uvazovaného problému.
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