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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON THE CONJECTURE RELATING MINIMAX AND MINIMEAN 
COMPLEXITY NORMS 

PETER RUZICKA, JURAJ WIEDERMANN 

(Received June 28, 1977) 

1. INTRODUCTION 

Only relatively few algorithms are known to be worst-case or minimax optimal 
among comparison problems. Still fewer are known to be minimean optimal, that is 
minimizing the average number of comparisons assuming random order. 

From widely known algorithms minimizing the average number of comparisons, 
we mention the algorithms for finding the maximum element and for selecting both 
the maximum and the minimum element from an unordered set [1]. 

Both the above minimean optimal algorithms have been proved to be minimax 
optimal. The circumstance that these algorithms are of uniform complexity (they 
perform an identical number of comparisons for all input permutations, and so their 
minimax and minimean complexities are equal to each other) leads to an intuitive 
idea formulated by Ira Pohl [2, 3] in the form of the following conjecture: 

A minimax optimal algorithm is also minimean optimal if 

1. it is minimean optimal over all minimax optimal algorithms, 
2. it has uniform complexity. 

Let Vk(n) or Vk(n) (Vmax(n)) be the minimum number of comparisons sufficient 
for selecting the k-th largest element of an n-element set in the minimax or the mini-
mean case (over all minimax optimal algorithms), respectively. 

Especially when searching for Vk(n), the nonexistence of an algorithm optimal both 
in the minimax and the minimean case has not been proved. It is well known that 
such algorithms do exist for k = 2 and n = 3, 4, 5 [1]. Knuth guessed that V2(6) 
could be the first problem in which a minimean optimal algorithm is not minimax 
optimal. He started from the familiar facts that V^ax(6) S 6 2/3 and V2(6) = 6 1/2. 
Pohl [3] constructed an algorithm over all minimax algorithms doing 6 26/45 
comparisons in average, that is V2

nax(6) g 6 26/45. Using a computer, the authors 
x(6) = 6 26/45 and validated Knuth's conjecture that V2(6) < V2

Tlax(6). 
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In the next section we show that a similar case occurs also when computing the 
median of five elements, that is V3(5) < V™ax(5). Furthermore, the minimean optimal 
algorithm over all minimax optimal algorithms has uniform complexity. These facts 
contradict PohPs conjecture relating two complexity norms. 

2, COUNTEREXAMPLE 

Let X be a set {a1? ..., an}. By the symbol kOX we mean the k-th largest element 
of X. The crucial comparison for a e X, a 4= kOX, is the first comparison a : b such 
that either b = kOX or a < b < kOX or kOX < b < a. For each element =£k9X 
its relation to kOX must be known. Hence the following lemma holds: 

Lemma 1. Each algorithm for selecting kOX performs precisely n — 1 crucial 
comparisons. 

Lemma 2. V2(4) ..= V2(4) = 4. -, 

It is known that V3(5) = 6. We are looking for a minimean optimal algorithm 
doing uniformly 6 comparisons. 

Theorem 1. VГ(5) = 6. 

Proof. Consider the class of all minimax algorithms for selecting the median out 
of 5 elements. Excluding symmetrical cases, there are only two possible starting 
comparisons 

1. a1 < a2i a3 < a2 

2. a x < a2, a3 < a4 

a* 

O O 
a, a3 

(d) 

ó 
05 

Fig. 1. 

la. In case a2 > aA we see from the diagram (a) in Fig. 1 that a2 cannot be the 
median and thatThe median is 26{au a3, a4> a5}, i.e. the second greatest element 
from the set where no relations ate known. For determining V2(4) we need four 
comparisons, therefore case la requires 7 comparisons in the worst case. 
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1b. In case a4 > a3 we get the diagram (b) in Fig. 1 and assuming that a5 is the 

median and a4 > a5i then all three comparisons are noncrucial. We know from 

Lemma 1 that at least 4 crucial comparisons have to be made; again 7 com­

parisons are needed. 

lc. In case a 4 > a5 we obtain the diagram (c) in Fig. 1; 

i) when a2 > a5, a2 cannot be the median, and to find the second largest 

element of the resulting structure (d) in Fig. 1 three more comparisons are 

needed by Lemma 2. This again gives 7 comparisons, 

ii) when a3 < a4 the argument in lb can be employed, 

iii) case a2 > a4 can be reduced to lei. 

iv) when a3 > a5, neither a2 nor a5 can be the median and V2(3) = 3, which 

leads to 7 comparisons. 

2a. Case a± < aA leads to the same case as in lb. 

aг 
\J 

O 

o 

a j a5 

O O o 
a3 a-, a-r a3 

i ) (b) 

a* 

Fig. 2. 

2b. In case a2 > a4 we get the diagram (a) in Fig. 2, where a2 cannot be the median. 

Therefore the second largest element of the structure (b) in Fig. 2 is to be found. 

Using Lemma 2 we need 3 additional comparisons, The uniform complexity 

of the minimean optimal algorithm in V2(4) guarantees the uniform complexity 

of our algorithm, which makes at the worst 6 comparisons. 

2c. Case a2 > a5 leads to lc. 

From the above proof we can easily construct the minimean optimal algorithm 

over all minimax optimal ones for determining the median out of five elements 

(Fig-3). 

Each "symmetrica?' branch is identical to its brother, with indices of compared 

elements permuted in an appropriate manner. External inodes contain the index of 

the median element and the number of permutations leading tp an external node 

appears immediately below it. This decision tree corresponds to the standard Hadian-

Sobel method [1] for determining Vk(n). 
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Fig. 4. 
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Theorem 2. V3(5) < V3

max(5). 

Proof. It is sufficient to find an algorithm doing less than 6 comparison in average. 
The decision tree in Fig. 4 corresponds to an algorithm with the average complexity 
5 13/15. 

It is interesting that this decision tree corresponds to the special case of Floyd's 
general algorithm for determining kOX [1] which is conjectured by Floyd to be 
minimean optimal only assymptotically. 

Theorems 1 and 2 contradict the validity of PohFs conjecture concerning two 
conditions a minimax optimal algorithm must meet to be minimean optimal. 
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Súhrn 

O DOMNIENKE, DÁVAJÚCEJ DO SÚVISLOSTI DVE MIERY 
ZLOŽITOSTI 

PETER RŮŽIČKA, JURAJ WIEDERMANN 

V článku sa pomocou kontrapríkladu ukazuje, že optimálnosť v priemernom pří­
pade spolu s rovnoměrnou zložitosťou rozhodovacích algoritmov, vybraných z triedy 
algoritmov optimálnych v najhoršom případe, nestačí na to, aby tieto algoritmy boli 
optimálně v priemernom případe v triede všetkých rozhodovacích algoritmov. 
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