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ON 0 -1 MEASURE FOR PROJECTORS 

VACLAV ALDA 

(Received September 29, 1978) 

Gleason has demonstrated [ l ] that every o*-additive measure /( on projectors in 
separable Hilbert space is of the form 

H(P) = tr(WP) 

where the density matrix Wis hermitian operator with tr W = 1. 
This implies that there is no 0—1 cr-additive measure on projectors in separable 

Hilbert space. 
In a finite dimensional space the cr-additivity of measure is redundant. There 

must exist a finite number of projectors for which it is impossible to define a non-
trivial 0—1 measure. This follows from the compactness of the space of all functions 
having values 0 or 1 on projectors in the space. We shall restrict ourselves to E3 and 
exhibit an example of such a set of projectors. 

We shall begin with the following auxiliary lemma: 
Given two planes O, a which are nearly orthogonal (tg <£ (O, a) > 2 yfl), there 

exist two orthogonal vectors, one in O, the other in cr, and another couple of such 
vectors so that the third orthogonal vectors to these couples are mutually orthogonal. 

Proof. O is the plane z = 0, a is the plane z = Kx. A vector in O is (cos <p, sin cp, 0) 
in a it is v = (a, b, Ka). The third orthogonal vector is (r, s, t) with 

a = k . sin cp , b = — k . cos cp , 

r . cos cp + s . sin cp = 0 , r . a + s . b + t. Ka = 0 
and hence 

r = x . sin </) , s = — % . cos <p , t = —xJK . sin (p . 

The second couple has a vector in O (cos i/>, sin i/X 0) and to this one we find the third 
orthogonal vector (r', s\ t'). The orthogonality of (r, ...) and (r', ...) gives 

sin cp . sin t/> + cos (p . cos \// + l/(K2 . sin cp sin i//) = 0 
or 

V = K2 sin cp sin ^ cos (<p — i/l) + 1 = 0 . 
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For \j/ = 0, V = 1 independently of the value for cp. Taking 

cp = TT/6 , if/ = — rc/6 , <p — ijj = TU/3 

we have V = — K2 sin2 Tt/6 . cos TC/3 4- 1 and this is < 0 for K > 2 ^2. 
Hence there exist cp, \j/ with V = 0. 
Now we can construct a finite set of vectors for which no 0— 1 measure exists. 

We take three orthogonal vectors. The measure for one must be 1, for the other two 0 
(we identify the one-dimensional projector and the vector). We shall choose the first 
as the axis z, the other two as the axes x, y. In the plane (x, z) we take the vector 
z(1) = (COS4TT/10, 0, sin47i/10). 

We shall apply the lemma to the planes O = (x, y) and a = (y, z(1)). We have 
/L(x) = jn(y) = 0 and if fi(z(l)) = 0 we find two orthogonal vectors (r, . . . ) , (r , ...) 
with fi = 1. 

Hence we must /i(z(1)) = 1. 
Now we take x (1) orthogonal to y, z(1) and proceed with the triplet (x(1), y, z(1)) 

in the same manner. Finally, the vector z(5) is identical with the vector x and we must 
have fi(z(5)) = 1, /j(x) = 0 which is impossible. 

Remark . In order to find vectors (r, ...), (r , ...) we must solve the equation V = 0. 
This is done by solving quadratic equations, cos 4TI/10 and sin 4TT/10 are expressions 
in rational numbers and quadratic roots. It is evident that the construction is possible 
if we take coordinates in E3 to be elements in an appropriate algebraic field and 
not all real numbers. 

Each step of construction involves six vectors and so there are 30 vectors together. 
As the construction is needed for every possible choice of values of the measure H 
for the first triple (x, y, z), we have at most 3. 30 vectors. This number is somewhat 
smaller then the number 117 in [2]. 
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S o u h r n 

O 0 - 1 MIRE PRO PROJEKTORY 

VACLAV A L D A 

Je nalezena konecna mnozina jednorozmernych projektoru v E3, pro ktere ne-
existuje zadna 0— 1 mira. Konstrukce je zalozena na tomto tvrzeni: existuji dve tro-
jice ortogonalnich vektorii, jejichz dva vektory jsou v danych dvou rovinach a jestlize 
roviny sviraji dostatecne velky uhel, pak treti vektory jsou navzajem kolme. 
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