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SVAZEK 27 (1982) A PLI K A C E M A T E M A T I K Y ČÍSLO 6 

FURTHER CONVERGENCE RESULTS FOR TWO QUADRATURE 
RULES FOR CAUCHY TYPE PRINCIPAL VALUE INTEGRALS 

N . I . IOAKIMIDIS 

(Received August 7, 1981) 

1. INTRODUCTION 

Several quadrature rules are available for the evaluation of Cauchy type principal 
value integrals of the form 

(1.1) I(f;X) = r w(x)^-dx, As(-l,l), 
J -1 x — I 

where the integration interval is assumed finite and, without loss of generality, it is 
further assumed to coincide with [—1, 1]. In the sequel, we will also assume that the 
weight function w(x) is a non-negative integrable function and, moreover, that the 
integrandf(x) is at least a continuous function along [— 1, l ] (fe C[— 1, 1]). Finally, 
we will assume that the integral I(f; X) exists in the principal value sense. 

Among these rules, the most useful is the Gauss quadrature rule, based on the 
corresponding quadrature rule for ordinary integrals 

(1.2) 
1 

(x) g(x) dx = £ џUn g(xiìП) + En(g), 

where xin are the roots of the polynomial P„(x) (the polynomial of degree n of the 

system of orthonormal polynomials associated with the given weight function w(x) 

and the interval [—V 1]), fii>n are the corresponding weights (or Christoffel numbers) 

and F„(g) is the error term. For the approximation of I(f; A), the Gauss quadrature 

rule (1.2) takes the form 

(i.3) e!(/u) = E ^ J ^ + ̂ / W J * **...,, * = i(i)*, 
*=- *i,n ~ * PnW 

where qn(X) is defined by 

(1.4) <?„м = Г ч * ) - ^ 
J -1 x ~~ 

XUx. 
X 
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This quadrature rule is due to Hunter [7], who first derived it (generalizing a seiies 

of previous results) for the case when w(x) — 1. In the general case, this rule is due 

to the author, whose results are reported in [8, 9]. In the case when X coincides with 

some of the nodes xit„9 suppose xjt„9 then Ql(f; X) is given by [9] 

(1.5) Sl(j; XjJ = t lXi<n

 / ^ - " ) + flMf'(Xj,n) + Vj,»f(*jJ > 
1 - 1 Xin Xjn 

l * J 

where 

( L 6 ) VJ,n = Wn(XJ,n) ~ iPj,n Pn(XJ,n)]lPn(Xj,n) -

A more complicated expression for Q}n(f; xjtH) was derived by Elliott and Paget [5], 

whose notation is used here. 

Another method of approximating I(f; X) is to replace f(x) by the corresponding 

Lagrange interpolation polynomial Ln(f; x) (of degree n — 1), based on the nodes 

xi>n. Then I(f, X) is approximated by 

(1.7) Qn(f;*)-iAitn(x)f(xitn)9 

i = i 

where 

(1.8) A;,„(A) = 

фt*)_- Ф) i{ А + JCм> i = í{l)n 
Pn(Xi,n)(Xi,n ~ ty 

^n(Xi,n)IPn(Xi,n) íf X = Xit„ , Í = l ( l ) W 

This quadrature rule was suggested by Korneichuk [11] and, independently, by 
Paget and Elliott [12]. 

Both quadrature rules (1.3) and (1.7) present the disadvantage that the quantity 
xit„ ~ X in the denominators tends to infinity as X -» x:n (although neither 
Ql(f; X) nor Qn(f; X) tend to infinity in this case). Moreover, it can be mentioned 
that Ql(f; X) is exact whenever f G P2" (that is, it is a polynomial of degree up to 2n), 
whereas Qn(f; X) is exact whenever feP"-1. 

One more obvious fact, which nevertheless seems not to be noticed up to now, is 
that Qn(f; X) results from Qf

n(f; X) simply by approximating f(X) (only in the second 
term of the right hand side of (1.3)) by L„(f; X) or ff(xjn) (in the second term of the 
right hand side of (1.5)) by L^(f; xjn). Thus, the quadrature rule Qn(f; X) is in a sense 
an "approximation" of Ql(f; X). This can be considered as an explanation of its 
low accuracy. 

Several convergence results are available for the quadrature rules Q\(f; X) and 
Qn(f\ X) for the approximation of I(f; X). These will be reported in the next two 
sections and rates of convergence will be established. Particularly, the convergence 
results for Qn(f; X) will be seen to require less restrictive assumptions than those 
already assumed in the literature. 
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2. THE GAUSS QUADRATURE RULE 

We consider first the Gauss quadrature rule Q\(f; X). Elliott and Paget [5] proved 
the convergence of this rule provided thatf' e C[— V l ] . This result cannot in general 
be improved. On the basis of this result of [5], the results of Tsamasphyros and 
Theocaris [17] are seen not to be correct. This can also be verified directly. Moreover, 
Elliott [2] established sufficient conditions for the convergence of Q\(f; X) to I(f; X) 

iff(x) satisfies the Holder (or, equivalently, the Lipschitz) condition along [—1, 1] 
( f e H ^ - V l ] ) , that is 

(2.1) \f(x2) - f(Xl)\ £ A\x2 - Xl\" . V ( X 1 , X 2 ) G [ - 1 , 1 ] , ^ 6 ( 0 , 1 ] , 

where A is a constant independent of xl9 x2. The conditions established in [2] are 
rather restrictive and useful only in special cases. 

Moreover, Elliott and Paget [5] proved that the error 

(2.2) Rt(f; X) = I(f; X) - Q\(f; X) 

is given by 

(2.3) Rl(f;X) = En(g), 

where 

^
1 n 

w(x) g(x, X) dx - £ iiitn g(x.n9 X) - ì І = I 

with 

(2.5) g(x,X) = \^-f^-^ i f X * X > 
K ' { J \f'(X) if x = X, 

and hence, R\(f; X) -> 0 as n -> co provided that f e C[ — 1 , 1]. Clearly, it is suf­
ficient that f'eC only in a neighbourhood [c, d] of X, provided that fe C[— 1, 1]. 

For the rate of convergence of Q\(f; X) to I(f; X), (2.4) yields 

Theorem 1. IffeCPl[-Vl] (p1 = 0), f ( P l ) e HP1[-1, 1] and, moreover, fe 
E CP2[c, d], where [c, d~] £ [ - 1 , 1], with p2 ^ 1, and f(P2) e H»2[c, d], then 

(2.6) Rl(f;X)^Ain-\ 

where Ax is independent of n and 

(2.1) y - min (Pi + fil9 p2 + /x2 - l) 

for all X e (c, d). 

Proof. Because of the definition (2.5) of g(x, X) and the fact that fe CPl[— 1, 1] 
(Pl = 0), f ( P l ) e HM1[-1, 1], we conclude first of all that g e C P 1 [ - 1 , cf] u [df, 1], 
f̂(pi) e i f ' f - 1 , c'] u [d', 1] where X e (cr, d'). Clearly, for a given Xe(c,d), it is 
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possible to find a subinterval [c\ d'] of [c, d] such that k E (C\ d'). By taking into 
account the Taylor series of f(x) at the point k 

(2.8) f(x)=f(X) + (x- X)f'(X) + .. . + {X~ X T " f^-V\X) + 
(Pi ~ ! ) ! 

+ &—Wl h(x, X) , x,Xe [c, d] , 
Pi'-

where h(x, X) should be a Holder-continuous function, h e H"2[c, d], as well as the 
definition (2.5) of g(x, X), we conclude that 

(2.9) g(x,k)=f(k) + ... + (^"^"V"1}(A) + ^ ^ % 1 ) , 
(P2 - 1)? LV 

and g e CP2_1[c, d], g{P2~X) e if"2|>- d]. 

Another proof of this statement can be made as follows. We consider a poly­
nomial p*(f; x) (of degree n) for which we have 

(2.10) max \f(x) - p*(f; x)\ ^ A2n~{P2+fl2) 

xe[c,d] 

and 

(2.11) max \f'(x) - p*n'(f; x)\ ^ A2n
l~{P2+«2) . 

xe[c,d] 

(Here and in the sequel At denote constants independent of n.) The existence of the 
polynomial p*(f; x) is assured by a theorem reported by Kalandiya [10, p. 108], 
We define also a polynomial q*(f; x, k) (of degree n — 1) by 

(2.12) qt(f;x,X) = {Mf'x)~P^fl)^X-X) * * + X' 
1 ; { J \PV(f;X) if x = X. 
Then we have 

g(x; X) - q*n(f, x, X) = W*) ~ Ml *)] ~ [ f« " rfC* * ) ]} / (* - ' ) if *=M, 
1 ^ U ' \f'(X)-pV(f;X) if x = l . 

By applying the mean value theorem, we find further that 

(2.14) g(x; X) - q*„(f; x, X) = f'(Z(x, X)) - p*„'(f; £(x, X)), 

where £ e [c, d] provided that x, X e [c, d] . Then, because of (2.H), it is concluded 
that 

(2.15) max \g(x, X) - q*n(f; x, X)\ ^ ,42 iT<"-1>"« . 
xe[c,d~\ 

Now, from Bernstein's theorems of the approximation theory [1, p. 201] it follows 
that g E CP2~'[c, d], g{P2~l) e FF2[c, d]. 
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These properties of g(x, X) along [c, d] together with the corresponding properties 
of the same function along [ - 1 , c'] u [d', 1] (with [cf, d'] cz [c, d]) reveal that 
g e CP3[-1, 1], where p3 = min (pl9 p2 - l), and g(P3) e H"3[-1, 1], where fi3 = pt 

if Pi < Pi ~ h 03 = 02 if Pi > P2 ~ 1 and /z3 = min (/tx, /*2) if p1 = p2 ~ 1. 
Hence, for the polynomial pn(g; x, X) (of degree n - 1) of the best uniform approxi­
mation of g(x) along [—1, 1] we will have from a corollary of Jackson's theorem 
[10, p. 108; 13, pp. 2 2 - 2 3 ] : 

(2.16) Gn(g) = max \g(x, X) - p*n(g; x, X)\ ^ A3n~", 
x e [ - l , l ] 

where y was defined by (2.7). 

Now, since the error R\(f; X) in (2.2) is equal in the case of Gaussian quadrature 
rules (because of (2.3)) to 

(2.17) En(g) = f w(x) [g(x, X) - Ln(g; x, X)] dx , 
J - i 

where Ln(g; x, i ) denotes the polynomial of degree n — 1 interpolating g(x, X) at the 
nodes xUn (with respect to the variable x) and w(x) is assumed a non-negative weight 
function, we have (because of (2.3)) 

(2.18) R\(f; X) g f w(x) \g(x, X) - Ln(g; x, X)\ dx . 

Furthermore, since [13, p. 104] 

(2.19) f w(x) \g(x, A) - Ln(g: x, X)\ dx ^ 2 Gn(g) f w(x) dx , 
J - i J - i 

we obtain, because of (2.16) and (2.18), the estimate (2.6) for R\(f; X). The same can 
also be proved by taking into account that the error term F„(g) in the quadrature 
rule (1.2) fulfils 

(2.20) En(g) = En(g - p*n(g)) 

and using (2.16) for the estimation of R\(f; X) = En(g). Finally, since (1.2) is exact 
for integrands g(x) which are polynomials of degree 2n — 1, we can use the poly­
nomial p2n(g; x, X) in (2.20), but this will not influence the exponent y of the rate of 
convergence of Ql(f; X) to I(f; X). 

3. THE INTERPOLATORY QUADRATURE RULE 

We consider now the interpolatory quadrature rule (based on the nodes of the 
corresponding Gaussian rule) Qn(f; X). Convergence results for this rule were obtained 
in the case of the weight function 
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(3.1) w(x) = (1 - x)« (1 + xf , a, j8 > - 1 

by Sanikidze [14], who proved convergence of Q„(f; /i) to I(f; A) iff6 H^[— 1, 1] in 
the special case when a = /? = —J (and found also the rate of convergence), by 
Elliott and Paget [3] in the general case of the weight function (3A) iffe H*[ — 1, 1], 
that is, iff(x) possesses a bounded derivative in [—1, 1], and, finally, by Elliott and 
Paget [4] and, independently, by Sheshko [15] iffe H"[-l, 1]. It should be men­
tioned that the methods used in [4] and [15] for the proof of the convergence are 
quite different. Moreover, the results of [15] are weaker than those of [4] in the cases 
when max (a, /?)> — \ since convergence was proved in [15] only if \x > max (a, p) + 
+ \ in this case although convergence occurs for all values of ft (fie (0, 1]) as is clear 
from the results of [4]. Yet, both methods used in [4] and [15], and particularly 
that used in [4] and based on the results of [3], are rather complicated. 

In the case of a general non-negative integrable weight function w(%), Korneichuk 
[11] investigated the convergence of Qn(f; 1) to I(f; X) forf(1) e C[— 1, 1] and proved 
it under appropriate restrictions. Moreover, Elliott and Paget [5] proved by an 
elegant method the convergence of Qn(f; X) to l(f; X) under a moderately restrictive 
assumption on qn(X), defined by (1.4), for allfe H"[ — 1, 1] provided that, /x e (•£, 1]. 
Here we will generalize this result for all \i e (0, 1] and we will give also convergence 
rates. Clearly, the method used here presents considerable similarities with the 
methods used in the aforementioned references, but it leads to stronger results, which 
can be expressed in the form of the following theorem: 

Theorem 2. Under the continuity assumptions of Theorem 1 and the further 
assumptions that 

(3.2) A4<w(x) = A5, X G [ c , ( i ] c [ - l , l ] , 

and 

(3.3) \Pn(x)\ ^A5, xe[c,d], 

it follows that 

(3-4) Rn(f;A)£A6n-s, 

where 

(3.5) S = min (pt + fil9 p2 + \i2 - s), 

(s being an arbitrarily small positive constant) for all k e (c, d). 

Proof. We know [5] that 

(3.6) Rn(f; X) = I(rn(f); X) , 

where 

(3-7) rn(f;x)=f(x)-Ln(f;x) 
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and Ln(f; x) is the polynomial (of degree n — 1) interpolating f(x) at the nodes xin 

(as already mentioned). Hence, we obtain 

(3.8) R„(j;Я)=f w(x)Г-Щdx 
J _ i x - X 

+ \(x)
rMiŘá: 

rn{f;x). w(x) ' " v - "' dx , 
д' X л x — X 

X e (c', d') cz [c', d'] cz [c, d] . 

But, because of (2A9) and the fact that \x — X\ _= min (X — c', d' — X) when x e 

e [ - l , c'] u [ d ' , 1], we conclude, since feCPl[-l,l] and / ( p j ) e H M l [ - l , 1], 

that 

' -i 

(3.9) f w(x) ^ ^ dx + Cw(x) 
J - i x-X }d, 

rn(fl X) 

x — X 
áx й ^ 7 ^ Г ( P 1 + Д l ) . 

Moreover, on the basis of Theorems 6.3 and 6.4 of Freud [6, pp. 114 — 116], 

we also conclude that under the assumptions of Theorem 2 

(3.10) max |r„(j;x)l й A8n
E/3-(P2+"2). 

Then, by taking into account a lemma due to Kalandiya [10, pp. 105—107] together 

with (3.10), we conclude that 

(3.11) max 
;c,Яє[c',ď] 

\Гn(fl X) ~ Гn(fl Щ < л „Є-(P2 + Џ2) 
i Г7_ = /±gП џ 

\x - X\e/3 

It seems clear from the proof of the aforementioned lemma of Kalandiya, that its 

results can be slightly generalized to assure the validity of the estimate (3.11). 

Now, following a standard device [4], we can write 

(3.12) w(x)__fi__dx= r 

x — X 
w ( x ) rn(f,x)-rn(f;X) d x + Г J d a 

x — Я J C' x — X 

and on this basis of (3A0) and (3.11) we see (exactly as in [4]) that 

(3.13) - w ( x )M_L__ d x 
. r' X — X 

< Â nS"~^P2 + Џ2^ 

Moreover, from (3.9) and (3.13), the estimate (3.4) is obtained for the error Rn(fl X) 

and this completes the proof of Theorem 2. We can also mention that, obviously, for 

all X E (c, d) there exist constants c', d' such that X e (c\ d') c [c\ d'] a [c, d] 

(c < c' < X < d' < d). Of course, it is possible that [c, d] ~ [ - 1 , 1]. Then we 

obtain the following corollary of Theorem 2: 

Corollary. If / e H ^ f - 1 , 1] and (3.2) and (3.3) are satisfied for all [c,d] cz 
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<= [ - 1 , 1 ] , then lira R„(f; X) = 0 for all A 6 ( - 1 , 1 ) . Moreover, i / / e C p [ - l , l ] 
n —> oo 

(p ^ 0) andf{p) e H"[-l, l ] , th^n 

(3.14) RH(f;X)^A11n^+^\ A 6 (-1,1). 

Finally, we can mention that the aforementioned theorems reported by Freud 
[6, pp. 114—116] are generalizations of a previous theorem reported by Szego 
[16, pp. 343-344]. 

Now we will consider the special case of the weight function (3.1), associated with 
the Jacobi polynomials and the Gauss-Jacobi quadrature rule. In this case (3.2) 
holds true for every [c, d\ c. [—1, 1]. Moreover, for the normalized Jacobi poly­
nomials pn

a,P){x) (including the Chebyshev and the Legendre polynomials as special 
cases) the following inequality, reported by Freud [6, pp. 45 — 46], holds true: 

(3A5) (l-x2f\p^\x)\SAi2, x e ( - l , l ) , 

Q being a positive constant. Hence, (3.3) is also satisfied for all [c, d\ c [— 1, 1] in 
this case (with an appropriate value assigned to A5) and the above results are valid 
in the case of the weight function (3.1). This result is in complete agreement with the 
results of Elliott and Paget [4] (for the same weight function), but the proof of 
convergence given here seems somewhat simpler that than in [4] since the latter 

n 

was based on the estimation of £ |A.t„(X)\, which is not very simple [3]. Of course, 

in the special case under consideration, we can use directly Theorem 14.4 of Szego 
[16, pp. 333 — 337] for the proof of (3A0), without reference to the assumptions (3.2) 
and (3.3). 

Clearly, all the above results are not valid for X = ± 1 , but this is of no interest 
for the evaluation of Cauchy type principal value integrals along [—1, 1] since in 
these cases these integrals do not exist (even in the principal value sense) or, if they 
do, they do not require the concept of the principal value of an integral for their 
definition (they are simple singular integrals). 
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S o u h r n 

DALŠÍ VÝSLEDKY O KONVERGENCI DVOU KVADRÁTURNÍCH 
FORMULÍ PRO HLAVNÍ HODNOTU INTEGRÁLŮ CAUCHYOVA TYPU 

N . I . IOAKIMIDIS 

Jsou dokázány nové výsledky o konvergenci a rychlosti konvergence pro dvě 
známé kvadraturní formule pro numerický výpočet hlavní hodnoty integrálů Cau-
chyova typu na konečném intervalu, jmenovitě Gaussovy kvadraturní formule a po­
dobné interpolační formule, používající tytéž uzly jako Gaussova. Hlavní výsledek 
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se týká konvergence interpolační formule pro funkce, které splňují Hólderovu 
podmínku s exponentem menším nebo rovným \. Získané výsledky doplňují řadu 
dřívějších výsledků o konvergenci zmíněných formulí. 
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