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SYMMETRIES OF WOVEN FABRICS

BOHDAN ZELINKA

(Received October 6, 1982)

The paper [1] develops a mathematical theory of woven fabrics. The usual dia-
grams of fabrics are used; such a diagram is a regular tiling of the plane by unit
squares, each of them being either black or white. The fabric is theoretically consid-
ered as infinite in all directions. A vertical (or horizontal) two-way infinite sequence
of squares represents a warp (or weft, respectively) strand of the fabric. Each square
of the tiling belongs to one warp strand and to one weft strand. It is black (or white),
if the weft (or warp) strand passes over the warp (or weft, respectively) strand.

For practical purposes it is convenient to study not all possible tilings with black
and white squares, but only periodical ones; they correspond to the so-called periodi-
cal fabrics. For a periodical fabric there exists a fundamental n x m block of squares
such that the whole fabric is the union of its non-overlapping copies which are ob-
tained by translating the block in horizontal and vertical directions through multiples
of n and m units, respectively.

Let # be a periodical woven fabric. By U(#) we denote the group of all isometric
transformations of the plane which map a strand of % onto a strand of &. Evidently
U(Z) is generated by the following five mappings: a horizontal unit translation,
a vertical unit translation, an axial symmetry by a horizontal axis, an axial sym-
metry by a vertical axis, an axial symmetry by an axis forming a 45° angle with the
horizontal direction. (All the axes mentioned go through the centre of a chosen
square.) Let U,(#) (or U,(#)) be the subgroup of U(#) gencrated by the first
four (or the first two) generators mentioned above.

Now let V(ﬁ) be the group of symmetries of &, i.e. a subgroup of U(Z ) consisting
of such mappings which map either every black square onto a black square and every
white square onto a white square, or every black square onto a white square and every
white square onto a black square. Let V,(F) be the subgroup of V(&) consisting of
such mappings which preserve the colours of squares. Further, let Vy(#) = Vo(#) n
NU(F), Vo(F) = Vo(F) 0 Uy(F).

As we consider a periodical fabric with a fundamental n x m block, the subgroup
Z(n, m) of V,(F) generated by a horizontal translation through n units and a vertical
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translation through m units is a normal subgroup of all groups U(F), U,(%),
Vi(Z), Vo(Z). (The unit length is chosen as the width of a strand.) We denote
W(F) = UAF)|Z(n, m), Wy(F) = Us(ZF)[Z(n, m), T(F) = Vy(F)[Z(n, m),
T,(F) = Vo(ZF)|Z(n, m). If m = n, then Z(n, m) is also a normal subgroup of U(Z);
then we put W(#) = U(F)/Z(n, m). The group Z(n, m) is also always a normal
subgroup of V(#) and Vo (ZF); we put T(F) = V(F)Z(n, m), To(F) =
= Vo(#)|Z(n, m). We may interpret these groups as follows. Take a fundamental
block of #. Then W,(&) is the group of mappings of this block onto itself generated
by the following four mappings: the cyclic permutation ¢ of the warp strands which
maps any strand onto its neighbour from the right (and the last onto the first), the
cyclic permutation Y of the weft strands which maps any strand onto its neighbour
from above, the axial symmetry o by the horizontal axis of the block, the axial sym-
metry f8 by the vertical axis of the block. The group W,(&) is generated only by ¢
and .

If W("i) exists, then it is generated by all these generators and, moreover, by the
axial symmetry by the diagonal of the fundamental block.

Let X denote one of the symbols V, V,, V;, V,. We say that a fabric & is X-warp-
isonemal (or X-weft-isonemal), if for any two warp (or weft, respectively) strands
of # there exists a mapping from X (%) which maps one of them onto the other. We
say that it is X-isonemal, if for any two strands of & there exists a mapping from X(%)
which maps one of them onto the other. Instead of ““V-isonemal”, ““V-warp-isonemal”,
“V-weft-isonemal” we say shortly “isonemal”, “warp-isonemal”, ‘‘weft-isonemal”
[1]-

Each strand represents a two-way infinite sequence of black and white squares.
If these sequences coincide for any two strands (or any two warp strands, or any
two weft strands) of &, we call & mononemal (or warp-mononemal, or -weft-
mononemal, respectively).

In [1] it was suggested to study the groups of symmetries of various types of woven
fabrics. We shall restrict our consideration to periodical fabrics and study their
groups T(F), To(F ), T(F), To(F).

Take a fundamental block of a fabric & which is the least possible one (it cannot
be obtained as a union of smaller fundamental blocks). Denote the warp strands
from left to right by u, ..., u, and the weft strands from below to above by vy, ..., v,.

With help of this notation we shall define a special kind of a woven fabric called
satin. A satin is a woven fabric with a square fundamental n x n block and with
the property that there exists an integer k = 2 relatively prime to n such that all
squares of the block which are intersections of the strands u;, v; for j = ik (mod n)
are black (or white), while all the others are white (or black, respectively). If a satin
is a mononemal fabric, it is called a mononemal satin.

Now by W{(#) (or W{(#)) we denote the subgroup of W,(#) generated by the
elements @, o (or s, 8, respectively). It is easy to prove that each element of W(F)
can be uniquely expressed as the product of an element of W{(#) and an element
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of W{(#) and that each element of W;(#) commutes with each element of W{(#).
Thus Wy(#) is a direct product of W{(#) and W{(F). Put Wy(F) = Wy(F) n
N W(F), W (F) = Wy(F) n W{(F). Then again W,(F) is a direct product of

5(F) and W (F).

Now we shall prove some theorems.

Theorem 1. The group T,(F) is either a trivial group, or a cyclic group whose
order is a common divisor of m and n.

Proof. Suppose that T,(%) is non-trivial, i.c. that it contains at least one non-unit
element. Such an element can be expressed as ¢”y?, where p, g are some non-negative
integers. Let the order of ¢? in W,(#) be r and let the order of y? in W;(F) be s.
If r < s, take the element (@"Y?)" = y*; this element is not the unit element of W,(F).
All strands uy, ..., u, are fixed in this mapping and y%(v;) = v;4,, fori =1,...,m
(the sum being taken modulo m1). Thus a translation in the vertical direction through ¢
units, where ¢ is the greatest common divisor of gr and m, is a symmetry of # and
thus there exists a fundamental block of & with t weft strands and ¢ < m, which
contradicts the assumption that the fundamental n x m block of & is the least
possible one. Analogously for » > s. Thus we must have » = s. Now suppose that
there exist integers p, g, r such that both ¢”% and ¢?y" are in T,(F). Then (")~ * .
(@) = Y9 e Ty(F). This implies that either » — g = 0, or there exists a funda-
mental block of & with r — g weft strands; then r — ¢ is divisible by m and thus
r = g (mod m) and y* = y". Hence for each ¢ there exists at most one /¢ such that
"yt € To(F) and Ty(F) is isomorphic to the group formed by all elements ¢? for
which such a ? exists. This group, being a subgroup of the cyclic group W;(%), is
cyclic and its order is a divisor of n; the same must hold for TZ(?). Analogously we
can prove that to each y? there exists at most one ¢ such that ¢”y?e T,(#) and
T,(#) is isomorphic to the group formed by all elements y? for which such a @? exists;
this implies that the order of T,(%) is a divisor of m. Hence the order of T,(F) is
a common divisor of m and n.

Theorem 2. Let & be a V,-warp-isonemal woven fabric with a fundamental
n x m block. Then the order of T,(F) is n.

Proof. As & is V,-warp-isonemal, for any warp strand there exist n pairwise
distinct mappings from T,( ) which map it onto all the other strands. Thus the order
of T,(F) is at least n. As T,(Z ) is isomorphic to a subgroup of the cyclic group W (F)
of the order n, its order is at most n. Hence the order of T,(Z) is equal to n.

Theorem 2, Let & be a V,-weft-isonemal woven fabric with a fundamental
n x m block. Then the order of T,(F) is m.

Proof is dual to the proof of Theorem 2.
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Corollary 1. Let & be a V,-warp-isonemal woven fabric with a fundamental
n x m block. Then n divides m.

Corollary 1'. Let & be a V,-weft-isonemal woven fabric with a fundamental
n X m block. Then m divides n.

Corollary 2. Let # be a woven fabric with a fundamental n x m block which is
simultaneously V,-warp-isonemal and V,-weft-isonemal. Then m = n.

An example of a fabric which is simultaneously V,-warp-isonemal and V,-weft-
isonemal is a twill in Fig. 1. In Fig. 2 we see a fabric which is V,-warp-isonemal,
but not V,-weft-isonemal.

Fig. 1. I Fig. 2.

In the proof of Theorem 1 we have used the subgroup of W;(#) formed by all
elements @P for which there exists Y7 such that @”y?e Tz(ﬁ). Denote this group
by T5(%). Analogously, let T;(Z ) be the subgroup of W;(# ) formed by all elements
for which there exists an element @F such that @*y? e T,(F).

We have seen that T,(#) is isomorphic to both T;(#) and T;(#). Further, if & is
V,-warp-isonemal (or V,-weft-isonemal), then Ty(F) = W5(F) (or T;(F) = W;(F),
respectively).

We shall be interested also in the number of orbits of T;(# ) and of T;(#). Evidently
the number of orbits of T;(#) (or of T;(#)) is equal to one if and only if Z is V,-
warp-isonemal (or V,-weft-isonemal, respectively).

Two warp strands in a fundamental block are called neighbouring, if they lie
immediately beside each other or one is the first and the other is the last in the block.
Analogously for weft strands.

Theorem 3. Let & be a woven fabric which is V;-warp-isonemal, but not V,-
warp-isonemal. Then the group Tz(ﬁ) has two or four orbits, all of the same
cardinality. The order of Ty(F) is n[2 or n[4.

Proof. As & is not V,-warp-isonemal, the group T,(# ) has at least two orbits.
Let A be the orbit of T;(#) which contains u,. As T;(# ) is cyclic, there exists a genera-
tor of T;(F). Suppose that k is the least positive integer with the property that ¢*
is a generator of T;(%); then there exists ' such that ¢*y'e T,(#). Evidently k
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divides n and k > 2. The orbit A consists of the elements u; such that j = 1 (mod k).
As & is V,-warp-isonemal, any warp strand of # which is not in 4 must be an image
of u, ina mapping 2 € T(#) — To(F). As all the elements o, 8, «f are of the order 2,
the element A has the form o, fu or afu, where u e To(#). Let there exist two warp
strands x,, X, such that x; = o p;(uy), X, = o p(u,), Where py, p, are elements
of Ty(F). Then x, is an image of x; in the mapping op,(opty) ™ = ooy 'a. As the
order of o is 2, the group T(#) is a normal subgroup of the subgroup of T,(#)
generated by o and the elements of T,(#) and thus au,u; ‘o€ Ty(F); the elements
X1, X, belong to the same orbit of Tz(f). Analogously we prove this assertion for
any two elements x,, x, such that x, = f pu,(uy), x; = B pa(uy) or x; = aff py(uy);
x; = aff py(uy), where uy, g1, are elements of T,(#). This implies that T,(%) has at
most four orbits. It remains to prove that T,(%) cannot have three orbits. Suppose
the contrary. Then u,, u; are not in 4 and lie in different orbits of Tz(f). Ifu, =
= o py(uy), uy = B py(u,), then consider the element of p,(u,). If it is in A4, then
aff py(uy) = ps(uy), where p is an element of T,(%). This implies u, = afu, p3 '(u,)-
From the above mentioned normality of Ty(F) it follows that u, = u, o(u,) for some
Ha € To(F); then uy = py 0‘(“1) = ﬂ4ﬂ#1ﬂ2_](u1) =p ﬂs(’h) for some s e T,(F)
(this follows from the analogous normality of T,(#) in the subgroup of T,(#)
generated by B and the elements of T,(#)). Then u,, u; are in the same orbit of
T,(#), which is a contradiction. Analogously we obtain a contradiction in the other
cases (e.g. u, = o py(uy), us = aff py(u,)). Hence the number of orbits of T,(F)
is either 2 or 4. If it is 2 (or 4), then evidently the order of Ty(F) is n/2 (or nf4, re-
spectively).

Theorem 3'. Let # be a woven fabric which is Vi-weft-isonemal, but not V,-
weft-isonemal. Then the group T,(F) has two or four orbits, all of the same car-
dinality. The order of To(F) is m|2 or m[4.

Corollary 3. Let & be a Vi-warp-isonemal woven fabric. Then m is a multiple

of n/4.

Fig. 3. Fig. 4.
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Corollary 3'. Let & be a V;-weft-isonemal woven fabric. Then n is a multiple
of m[4.

In Figs. 3 and 4 we see woven fabrics which are V;-warp-isonemal, but not V,-
warp-isonemal. For the fabric in Fig. 3 the group T,(#) has two orbits, for the
fabric in Fig. 4 it has four orbits.

Corollary 4. Let & be a Vi-warp-isonemal and V,-weft-isonemal woven fabric.
Then m[ne{}, 1,1,2,4}.

The notion of Vy-warp-isonemality (or Vy=weft-isonemality) coincides with that
of Vy-warp-isonemality (or V;-weft-isonemality).
Now we turn to the V-warp-isonemality and the V-weft-isonemality.

Theorem 4. Let & be a woven fabric which is V-warp-isonemal, but not Vi-warp-
isonemal. Then the group T (%) has exactly two orbits and the group T,(F) has
two, four or eight orbits.

Proof. By y denote the interchanging of the colours black and white and let T*(.ﬁ’/'”)
be the subgroup of T(%) generated by y and the elements of T,(#). As Z is V-warp-
isonemal, for any two warp strands there exists a mapping from T*(# ) which maps
one of them onto the other. The group T;() is a normal subgroup of T*(#) of the
index 2. Thus the proof is analogous to the proof of Theorem 3.

Theorem 4'. Let # be a woven fabric which is V-weft-isonemal, but not V;-weft-
isonemal. Then the group T{(¥) has exactly two orbits and the group T;(F) has
two, four or eight orbits.

Corollary 5. Let & be a warp-isonemal fabric with a fundamental n x m block,
where n is odd. Then F is T,-warp-isonemal.

Fig. 5. Fig. 6. Fig. 7.
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Corollary 5. Let & be a weft-isonemal fabric with a fundametal n x m
block, where m is odd. Then F is T,-weft-isonemal.

In Fig. 3 we see a V,-warp-isonemal fabric with two orbits of T,(#), in Fig. 4 one
with four orbits. In Fig. 5 there is a V-warp-isonemal fabric with two orbits of T,(#)
and two orbits of T,(#). In Fig. 6 we see a V-warp-isonemal fabric with two orbits
of Ty(#) and four orbits of T,(#) and in Fig. 7 with two orbits of T;(#) and eight
orbits of T,(F).

Now we turn to the isonemality. If a fabric & is isonemal, then m = n and a funda-
mental block can be chosen so that it is axially symmetric by one of its diagonals,
i.e. there exists a mapping & which maps {u, ..., u,} onto {v,, ..., v,} and {v,, ..., 1,
onto {uy, ..., u,} and either preserves or mutually interchanges the colours of squares
and has the property that either 5(u;) = v;, 6(v;) = u;, or 8(u;) = vyr1-i 0(v;) =
=u,,,-; fori=1,..., n. In the szquel we shall refer to a fundamental block with -
these properties.

If 6(u,) = v;, then = 5¢6; if 8(u;) = v,4 (- then Y = d¢~16. (The reader may
verify this himself.)

Theorem 5. Let # be an isonemal and V,-warp-isonemal woven fabric with
a fundamental n x n block. Then F is also V,-weft-isonemal and T,(F) is
a cyclic group generated by the element p5¢*5, where k is such an integer that k
is relatively prime to n and k* = 1 (mod n) or k* = —1 (mod n).

Proof. The V,-weft-isonemality is evident. There exists a mapping from Tz(g?)
which maps u; onto u,; this maping has (see Theorem 1) the form @y/*, where k is
such an integer that y* has the same order as ¢, namely n, hence k must be relatively
prime to n. If 5(u,-) =vp; for i =1, ..., n, then all properties of & are preserved, if
the warp and the weft are interchanged. Thus T,(& ) is generated also by "y and there
exists an integer [ such that (ey*)! = ¢*y. As ¢,  commute with each other, we have
(o¥")' = @'y*'. As each element of T,(#) is uniquely determined as a product of
a power of ¢ and a power of , we have ¢* = ¢! and ¢ = Y*". This implies k =
= I(mod n), kI = 1 (mod n) and hence k* = 1 (mod n). If 6(u;) = v,.,-,; for i =
=1, ..., n, then all properties of % are preserved, if the warp and the weft are
interchanged and the ordering of the weft strands is reversed. Thus T,(F ) is generated
also by ¢"y ~*. By analogous considerations we obtain k* = —1 (mod n).

Fig. 8. [__| Fig. 9.
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In Fig. 8 we see a V,-isonemal fabric with n = 8, k = 3; this is a satin. In Fig. 9
there is a V;-isonemal, but not V,-isonemal fabric.

At the end of the paper we shall prove an assertion on 2-isonemal fabrics. A woven
fabric is called 2-isonemal, if the group V(%) has exactly two orbits. In [1] the
authors propose a problem, whether there are any interesting 2-isonemal fabrics
apart from the mononemal satins and those that can be obtained by “doubling”™ any
isonemal fabric. ’ '

Theorem 6. Let F be a 2-isonemal woven fabric, let A, B be the orbits of V(F).
Then one of the following four cases occurs:

(i) # is warp-isonemal and weft-isonemal, but not isonemal (Fig. 10).
(i) The warp strands of & are ordered according to the scheme ... ABABAB ...
and so are the weft strands (Fig. 11).
(ili) The warp strands of & are ordered according to the scheme ... AABBAABB ..
and so are the weft strands (Fig. 12).
(iv) The warp strands of & are ordered according to the scheme ... AABAAB ...
and so are the weft strands (Fig. 13).

Fig. 10. Fig.-11. . . Fig. 12.

Fig. 13.

Proof. If & is warp-isonemal and weft-isonemal, but not isonemal, then V(ﬁ")
has two orbits, one formed by all warp strands and the other by all weft strands. In
any other case, the strands of both the orbits A, B must occur among warp strands.
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Thus there exists a strand of 4 neighbouring to a strand of B. As A and B are orbits
of V(%) and any strand can be mapped by a mapping from V(&) onto any other
strand fiom the same orbit, this implies that each strand of A is neighbouringto a strand
of B and similarly each strand of B is neighbouring to a strand of A. If any warp strand
is neighbouring to two strands of the other orbit, the warp strands are ordered ac-
cording to the scheme ... ABABAB ... If any warp strand is neighbouring to exactly
one strand of the other orbit, we get the scheme ... AdBBAABB ... Finally, if the
first assertion holds for the strands of B while the second holds for the strands of 4,
we have ... AABAAB ... This exhausts all possible cases (the scheme ... ABBABB ...
is not essentially different from ... AABAAB ) As the weft strands belong also to
the orbits 4 and B, they must be ordered according to the same scheme as the warp
strands. As Figs. 10— 13 show, all described cases are realizable.
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Souhrn

SYMETRIE TKANIN
o BOHDAN ZELINKA
Diagramy tkanin pfedstavuji rozklad roviny na jednotkové étverce bez spoleénych
vnitinich bodl, z nichZ kazdy je Cerny nebo bily. Zkoumaji se symetrie téchto

diagrami.
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