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SVAZEK 30 (1985) AP LI KACE MATE MÁTI KY čisto 4 

A MULTIPLICATION THEOREM FOR TWO-VARIABLE 
POSITIVE REAL MATRICES 

FAZLOLLAH M. REZA 

(Received June 22, 1984) 

1. INTRODUCTION 

The theory of electrical networks relies heavily on the use of a Positive Real Func­
tion Z(s) of the complex frequency s. The mathematical properties of these functions 
along with a variety of generating theorems (analysis), and decomposition methods 
(synthesis) have been well developed by circuit theorists in the second quarter of 
this century. 

A function Z(s) is said to be PRF (short for Positive Real Function) if it satisfies 
the requirements (a) and (b): 

(a) Z(s) is real for real s, 
(b) Re Z(s) ^ 0 for Re s ^ 0, 

and Z(s) is analytic within the r.h.p.; its singularities on the imaginary axis are 
simple poles with positive residues. The electrical networks {N} with the PRF 
characteristics consist of ordinary linear reciprocal passive resistors, inductors and 
capacitors. The corresponding impedance functions for these elementary building 
blocs are, respectively, {R, Ls, (Cs) - 1 }. In the terminology of electrical networks 
Z(s) is known as an impedance and \_Z(sj] ~x as an admittance function. The condi­
tion (a) is imposed because of the fact that the assigned values R, L, and C are real 
numbers representing real physical entities. The condition (b) implies that the family 
{N} is a passive system, that is, for Re s ^ 0 they absorb electrical energy, Re Z(s) ^ 
^ 0. The family {N} described above is generally referred to as the family of linear 
reciprocal passive electrical systems. When such a system is under the application 
of electrical sources at n points of entries, then the system will be referred to as an 
r?-port. The study of passive n-ports implies that [Z(s)] is a PR matrix for Re s ^ 0, 
i.e. *x Z(s) x is a PRF for any constant vector x. 

There has been a considerable amount of interplay between the theory of electrical 
networks and the theory of functions of a complex variable. Results of mutual 
interest to the function theorists and circuit theorists are abundant, particularly in 
the literature of the circuit theory from 1925 — 1975. 
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In the third quarter of this century the design of multi-dimensional filters along 
with some other technological advancements have brought forth the extension of the 
theory of PRF to multi-frequency cases, that is, Z(su s2, ..., s„). Accordingly, in 
the past two decades we have seen a noticeable growth toward the study of multi­
dimensional electrical networks. References to this subject may be found in [1]. 
But, in spite of the recent explosion of publications in this area, our in-depth knowl­
edge of the field is rather limited. Perhaps a natural limitation is induced by the time 
gap necessary for absorbing and applying the more recent mathematical results of 
the functions of several complex variables such as those referred to in [2] and [3]. 

This note is motivated by the need for constructing PRF in several variables as 
advocated by the authors of [4], [5] and [6]. The result reported here is hoped to 
be an interesting, and a useful, multiplication-division theorem. 

A simple frequency transformation is reviewed in Section 2. In Section 3, a basic 
multiplication-division theorem is presented. The theorem is further generalized in 
Section 4 to arbitrary two-variable w-ports, which embraces a generalization of the 
results of [4]. 

2. A TWO-VARIABLE FREQUENCY TRANSFORMATION 

The following two-variable frequency transformation from the {pl9 p2}-plane to 
the {sl9 s2}-plane is quite useful in the study of two-variable systems, [4]: 

(1) si = y/(Pi Pi), Pi = si s2 , 

S2 = \l{Pl\Pl) > Pi = Sl\S2 • 

The simplicity of this bilateral transformation follows from the fact that the proper 
choice of the square root signs in (1), based on analytic continuation of the incurring 
variables, leads to a mapping correspondence between the regions M and N: 

{M: Re Pl > 0, Re p2 > 0} -> (N: Re s1 > 0, Re s2 > 0} . 

In fact, 

(2a) R e p ^ 0 - | A r g V p , | ^ ^ ; k = 1, 2 . 

These conditions in view of (1) imply 

(2b) |Arg.s,| £ * , fc= 1,2. 

Moreover, for Re px = Re p2 = 0 we observe: 

"For any set of real pair {coi9 co2) the transformation of equation (1), {px = 
= j&i9 Pi == Jwi} leads to a pair {s1? s2) where one of the two variables is a real 
and the other a pure imaginary number." 
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The validity of this simple observation becomes evident by looking at the table 

below compiled for [pt = jwu p2 = jco2}. 

Pí = jw, \ Pl - J(°2 s tó2 > 0 

Шj > 0 

C0! < 0 

This mapping information will be directly applied for proving the main theorem 
of Section 3. 

3. TWO-VARIABLE MULTIPLICATION-DIVISION THEOREM 

Theorem 1. Let Z 1(s 1) and Z2(s2) be two driving-point impedance functions 
(PRF). Then the two-variable functions (3) and (4) are driving-point impedance 
functions (PRF) in [pl9 p2}, 

(3) 

(4) 

Z(Px, p2) = ZíU(p1p2)). Z2U(P\IPi)), 

Z(pu Pí) = Z1U(p1p2)) I Z2U(p1jp2)) . 

These functions represent linear reciprocal passive two-variable networks which 
are not necessarily rational systems. 

Proof, (a) All positive real values of [sl9 s2} lead to positive real values of [pl9 p2} 

and Z(pl9 p2). 

(b) Z(pl9 p2) remains analytic inside the region M due to the analyticity of Zx(sx) 

and Z2(s2) inside the region N. 

(c) For an arbitrary set of real pairs [al9 a2}9 let 

(5) Zi(M) = * i K ) + j J f i K ) , 

(6) Z2(]a2) = R2(ax) + j X2(a2). 

In each of the four cases of the table above, we calculate Re Z(jcol9joj2). For the 
product function one finds 

1. (OXOJ2 > 0; sx = jal9 s2 = ja29 

(7) Re ZЏaoiJæ^) - Rx(ax) Z2(a2) = 0 . 

Note that Z(pl9 p2) derived in (3) or (4) is not an arbitrary PRF, but a function 
constrained within the class of PRF restricted by transformation (l). 
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2. co1co2 < 0; s< = al9 s2 = jcr2, 

(8) Re Z(jcol9jco2) = Z{(at) R2(a2) = 0 . 

Thus the functions (3) and (4) are two-variable PRF. These functions are not neces­
sarily rational. In the particular case of reactive Z1 and Z2 , that is Re Z^ja^ = 
= Re Z2(ja2) = 0, we find: 

Corollary 1. Let Zx(s^) and Z2(s2) be two driving-point reactance functions, then 
Z(pl9 p2) represented by (3) or (4) is a rational two-variable reactance function. 

Proof. Equations (7) and (8) imply that for any real pair {col9 co2}, 

(9) Rt Z(ja>i9ja>2) = 0. 

To show the rationality of Z(pu p2) we may examine the familiar Foster type 
expansion of Z1 and Z2 . The rationality of an arbitrary typical term becomes now 
evident for their product or their ratio: 

/1CA Akst Bts2 __ AkBip1 

s\ + a2
k s\ + b] p\ + aftPllp2) + b]pxp2 + a\b\ 

4. GENERALIZATION OF TWO-VARIABLE PR MATRICES (MULTIPORTS) 

Theorem 2. Let [Z^Sj)] and [Z2(s2)] be two n x n PR matrices representing two 
linear reciprocal passive (time-invariant) n-ports. The following two matrix 
functions are admissible two-variable PR matrices representing linear reciprocal 
passive n-ports: 

(11) 2[Z(p t , p2)] = [ Z ^ P J P , ) ) ] \Z2U(Pljp2))-] + 

+ [za(.y(j»xM] [zilVCp^))] 
and 

(12) 2[Z(p l5 p2)] = [Z^ip.p,))-] [ Z ^ p j p , ) ) ] - 1 + 

+ [Z2(V(p1/p2))]-
1[Z1(V(p1p2))], 

provided Zx and Z2 are invertible. 

Proof. The proof is analogous to that of Theorem 1. For part (c), note that in 
contrast with the scalar case, the incurring product matrices in (13) are not necessarily 
PR matrices: 

(13) [*!(*.)] [Z2(<72)] , [ Z ^ ) ] [K2(*a)] • 

The product of two symmetric non-negative matrices need not be a symmetric 
matrix. The difficulty may be overcome either by assuming commutativity of [Zx] 
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and [Z 2] , or introducing the product "ZiZ 2 + Z 2 Zi" as proposed in [7]. In the 
latter case one finds a PR matrix in stead of (7). 

(14) [*,.(*,)] [Z2(«r2)] + [Z2(a2)] [R.(<7.)] Z 0 . 

Evidently the matrices of (11) and (12) are symmetric. In fact, 

(15) [ZXZ2 + Z2Zi]< = \_Z\Z\ + Z t Z 2 ] = [Z2Zi + ZXZ2] 

in view of the reciprocity assumption (t stands for transpose). The validity of equation 
(12) follows by replacing Z2 by Z2 * in (15). 

Corollary 2. Same as Corollary 1 for two-variable rational n-ports. 

5. FURTHER GENERALIZATIONS AND COMMENTS 

Extensions of the main theorem of this paper in several directions are aparent. 
The material of Section 4 already indicates how the theorem can be generalized for 
multiports, that is, PRF matrices of two variables {sl9 s2}. Moreover, according to 
[7], if inductive (RL) and capacitive (RC) linear reciprocal passive systems are 
represented via their PR impedance matrices 

{ZiL(Si), ZIC(SI) , Z2L(s2), Z2C(s2)} 

then 
{Z1L(st) . Zlc(sx) + ZiC(si) Z1L(sx)} 

is a PR matrix. Thus, according to our main results, the matrix Z(pl9 p2) is a PR 
matrix representing a multiport, 

(16) Z(pi, p2) = Z1L(J(Plp2)) Zlc(j(PiP2)) Z2L(y/(p1lp2)) Z2C(V(Pi/P2)) • 

The question has been raised as to the generalization of our main theorem to 
ti-dimensional multiports, that is, PRF matrices of complex variables {sl9 s2 , . . . , sn}. 
Such a general result invites further investigation. Dr. J. Gregor of the Technical 
University of Prague has communicated in a private correspondence to the present 
author the possibility of such a generalization. His approach employs the well-known 
argument property of PRF, that is, 

(17) |arg [Zi(V(PiP2)) • Z2(V(pi/p2))]| = |arg Z - X v W i ) ) + arg Z2(V(P l /p2)) | , 

(18) |argZi(V(pip2))| + |argZ2(V(pi/p2))| = |arg U(Plp2))\ + |arg (J(Pl, p2))\. 

This latter method (J. Gregor) makes it also possible to use transformations replacing 
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(l) for three or more variables. For three variables one may write 

(19) p! = 5 2 5 3 , p2 = S±S3 , p 3 = S tS2 , 

(20) s- = sJiPzPsjPi) , s2 = V(P1D3/P2)? 53 = N/( jp1P2//?3), 

Re si > 0 / = J, 2, 3 if Rep t > 0 ř = 1, 2, 3. 
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S o u h r n 

MULTIPLIKAČNÍ VĚTA PRO POSITIVNĚ REÁLNÉ MATICE 

DVOU PROMĚNNÝCH 

FAZLOLLAH M. REZA 

Je formulována věta o součinu a podílu dvou positivně reálných (PR) funkcí dvou 

proměnných. Věta je zobecněna na PR matice, jejichž prvky jsou funkce dvou 

proměnných. PR funkce a matice vystupují často při studiu elektrických n-pólů 

a vícedimensionálních systémů (včetně digitálních filtrů). 

Author's address: Prof. Dr. Fazlollah M. Reza, Department of Electrical Engineering, Con­
cordia University and Mc Gill University, Montreal, Quebec H 3 G 1 M 8, Canada. 

296 


		webmaster@dml.cz
	2020-07-02T05:39:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




