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SVAZEK 30 (1985) APLIKACE MATEMATIKY ČÍSLO 6 

CHANGE-POINT PROBLEMS: 
A BAYESIAN NONPARAMETRIC APPROACH* 

PlETRO MULIERE, MARCO SCARSINI 

(Received March 12, 1984) 

A change-point problem is examined from a Bayesian viewpoint, under 
nonparametric hypotheses. A Ferguson-Dirichlet prior is chosen and the 
posterior distribution is computed for the change-point and for the unknown 
distribution functions. 
Keywords. Change-point, Dirichlet process, Bayes estimate. 

1. INTRODUCTION 

The change-point (c.p.) problem may be outlined as follows: consider a finite 
sequence Xl9 ...9Xn of random variables (r.v/s) such that the first r of them are 
identically distributed according to a distribution function (d.f.) Fl9 while the second 
(n — r) ones are identically distributed according to F2, where r is unknown. 

The problem has been dealt with by many authors in a sample-theoretical frame­
work. 

A Bayesian treatment has been developed by Broemeling (1972), Smith (1975, 
1977, 1980), Cobb (1978) under parametric hypotheses. Pettit (1981) used ranks 
to determine the (approximate) posterior distribution of the c.p. 

The aim of our work is to provide a fully Bayesian procedure for deriving the 
posterior distribution of the c.p. when F1 and F2 do not belong to a parametric 
family. The prior distribution of F1 and F2 will be chosen to be a Ferguson-Dirichlet 
process. The Bayesian approach to c.p. problem will be briefly outlined. The posterior 
distributions of the c.p. and of Fx and F2 and the Bayes estimates of some functional 
of F! and F2 will be given. 

2. INFERENCE ABOUT THE CHANGE-POINT 

Let X = (Xl9 ..., Xn) be a vector of r.v.'s such that, given r, Fl9 and F2 : Xl9 ... 
...,Xn are independent, Xl9 ...,Xr are i.i.d.r.v.'s distributed according to Fl9 

*) Work performed while the authors were members of GNAFA-CNR. 
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Xr+1, ...9Xn are i.i.d.r.v.'s distributed according to F2. Here r, Fl9 F2 are unknown, 
r may assume values 0, 1, ..., n. If r = 0 all the r.v.'s are distributed according 
to F2; if r = n they are all distributed according to Ft. In these two cases there 
is no c.p., actually. 

If Fl9 F2 e SF where BF is a dominated family of d.f.'s, and /i(-, •) is a prior prob­
ability measure on some suitable cr-field <9̂ * of subsets of BF x $F, if p(r) is the 
prior distribution of r, and if (F1? F2) and r are a priori independent, then Bayes' 
theorem gives 

(1) p(r | x) oc p(r) f l(x \ Fl9 F2, r) dp(Fl9 F2) 

where /(x | Fl9 F2, r) is the likelihood of x9 given Fl9 F2, r, which exists by virtue 
of the dominance of 3F'. 

If the object of the inference is (Fl9 F2), we have: 

(2) dn(Fu F2\X)K dp(F,, F2) t i(x | Flt F2, r) p(r). 
r = 0 

Difficulties arise in a nonparametric model, because — generally — the family BF 
is not dominated so that the posterior distributions (1) and (2) must be obtained 
in a different way. 

Bayesian analysis of nonparametric problems started with Ferguson (1973) who 
provided a suitable prior measure on the space of d.f's. Ferguson's proposal was 
Dirichlet process (DP). 

Definition. Let a(#) be a non-null finite measure on (R9 &) (the real line endowed 
with the Borel a-field), and let P(') be a stochastic process indexed by the elements 
of ^. We say that P is a Dirichlet process with parameter a (P e 2(a)) if for every 
finite measurable partition (Bl9..., Bn) of R, the random vector (P(B1)9 .... P(P„)) 
has a Dirichlet distribution with parameter (a(Bx), ..., a(Bn)). 

Let F(t) = P((-oo, t]); we shall indicate Fe 2(a) for P e ^ ( a ) . 

Ferguson's results have been generalized by Antoniak who proposed a class 
of processes called mixtures of Dirichlet processes. For the properties of DP's and 
mixtures of DP's, we refer to Ferguson (1973) and Antoniak (1974). 

Let in the above problem Fx be a DP with parameter ax(«), and F2 be a DP with 
parameter a2(*). 

The main result about the posterior distribution of r is the following: 

Proposition. Let Xl9...9Xn be n r.v.'s such that, given r, Fl9 F2 : Xl9 ..., Xn 

are independent, 

Xt are i.i.d.r.v.'s ~ Fl9 i = 1, 2, ..., r , 

Kj are i.i.d.r.v.'s ~ F2, i = r + 1, . . . , n . 
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Let F! e ^ (a x ) , F2 e ^ (a 2 ) . Let Fu F2, r be mutually independent. Assume there 
exists a a-finite measure ja on (R, $) such that: 

1) #!> a2 are absolutely continuous w.r.t. JX, 

2) 11 has mass one at each atom of a l5 a2. 

Then 

(3) P(r | x) ac . J ^ n «i(*n M * D + i r ( ^ - i ] . 

• a^^ ] n «i(*n w * r + ir*^-1 1 Hw, 
where 

the product over a void set is defined to be zero, 
aM = a(a + 1) ... (a + n - 1) , 
otj(') denotes the Radon-Nikodym derivative of aj w.r.t. LI (j = 1, 2), 
xf is the i-th distinct value of X in x(r) = (x l 5 ..., xr), 
x** is the ith distinct value of X in X(M_r) = (xr+1, ..., x„), 
nt(x*) is the number of times the value xf occurs in x(r\ 
n2(xf *) ls lhe number of times the value xf* occurs in x(n_r), 
mj(x) = 0Cj(x) if x is an atom of aj9 zero otherwise, 
s and t are the numbers of distinct values in x(r\ x(n-r) respectively. 

Proof. By the properties of DP (and of mixtures of DP's) the likelihood of xk + 1 

given r, xl9,.., xk is 

-̂  fc+1^ for fc + 1 <i r, if the value of Xk+x has not occurred previously 
«i(*) + fc i n x . , . . . , * , , 

__iVV fc + u Z L J for fc + 1 ^ r if the value of xfc+1 has occurred previously 
cc\([R) + fc ;- t i m e s i n X u „ m 9 X k 9 

—2^ k+1* for fc + 1 > r if the value of xk+1 has not occurred previously 
*2{®) + k - r mXr+1,...,x„, 

—2" k+1' U_Jz for fc + 1 > r if the value of xk+1 has occurred previously 
a2(M) + k - r j times in xr+1,...,xtt. 

Hence the likelihood of (xu ..., x„), given r, is 

Multiplication by the prior distribution and normalization gives the result. • 
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R e m a r k 1. The above proposition is analogous to lemma 1 of Antoniak (1974), 
in which he gave the posterior density of the index of a mixture of DP's. Note that 
in our problem Fl9 F2 are not mixtutes of DP's (with index r): in fact Fl9 F2 and r 
are assumed independent. 

R e m a r k 2. If the observations of the sample are all distinct and ax and a2 are 
absolutely continuous w.r.t. Lebesgue measure, then (3) becomes 

(4) plr I x) oc - — f l a;(xA f [ a2(xt) p(r) . 
W n ' ' (ai(R))wM V \a2(R)Jn-rhl\i 2V J K ' 

Factors ll(<xx(R))irl and l/(a2(/^))c',~'*] make the expression (4) different from the 
one obtaibed in the model with Ff(t) = a^ijja^R) (i = 1, 2,) known, i.e.: 

p(r\x)ccf\F'l(Xi)f[ F2(x^p(r) 
f = l i = r + l 

where Fi(*) and F2(
#) are the densities of Fx and F2, respectively, w.r.t. some suitable 

dominating measure. 
In this respect c.p. model behaves unlike other nonparametric models in which 

the posterior distributions of the index parameter are the same for the parametric 
and the nonparametric model under the hypotheses of no ties and absolute continuity 
of a. (See e.g. Cifarelli, Muliere, and Scarsini (1981) and Diaconis and Freedman 
(1982)). 

R e m a r k 3. If ax(R) increases, ceteris paribus, then p(r | x) moves towards little 
values of r. Conversely, if, ceteris paribus, a2(R) increases, then p(r | x) moves 
towards large values of r. This fact may be justified as follows: if ax(R) increases, 
then the form of Fx becomes more precisely known, so that it becomes more difficult 
for the sample data to be generated by Fx and therefore it becomes more probable 
that they are generated by F2 (less precisely specified). Analogously for a2. 

R e m a r k 4. Suppose xt is an atom of a2 but not of ax. In expression (3) a'i(x*) 
is zero for x* = xt so that p(r | x) = 0 for r ^ i. In other words, the probability 
that x, is selected by Fx is zero, while the probability that it is selected by F2 is one. 

3. INFERENCE ABOUT THE DISTRIBUTION FUNCTIONS 

We now consider inference about Fx and F2. Properties of DP give the following 
posterior distributions for Fx and F2: 

F. | r,*e .»(«.(•)+ £aX|), 
i = l 

F1\Xei®(*l(-) + idx)jir\X) 
r = 0 i = l 

where dx is the measure that concentrates mass one at x. 
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Analogously, mutatis mutandis, for F2. 
If we choose a squared-loss function L, weighted according to some finite measure 

Won R (see Ferguson (1973)) 

ąғ, E*) = I (F(t) - F*(t))2 åW(i) , 
JÄ 

we obtain the following Bayes estimate of Fi9 given r and x 

E*(t \r,x)= °C l^ ) Ft 0(t) +
 r F! (t) 

1V ! ; *X(R) + r l s ° W *±(R) + r ' W 

1 r 

where Flt0(t) = a i ( (~ °°> 0)/ai(^) anc* ^i,r(0 = ~ Z &xt *
s l n e empirical d.f. of 

v v r i = i 
A l 5 . . . , A r . 

Therefore 

F?(d*) = i-7T(dr» *)J<'-I*) 
r = o 

n 

= ai(^)^i,ogo + E M i 
i = l 

where 
» 1 

g- = Z ~7W7 P(r\x)> * = 0 , . . . ,n . 
r=i a^/M) + r 

Evidently gf ^ ql + l 9 i.e., the weight of the observations decreases from one to another 
F*(t | x) will have an analogous structure, but the weight of the observations will 
be increasing. 

If we define 

A*i = U ďFi(x) 

and assume a quadratic loss function, Bayes estimate of nY given r and x will be 

* a.(fl) r 1 f 

where 

x da1(x)/a1(/^), r*i,p 

The unconditional Bayes estimate is 
n n 

l£ = Z J"l|r K r I *) = a l W Â l.OqO + Z X&i 
r = 0 i = l 

where qj are as before. 
Analogously for \i2. 
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Souhrn 

PROBLÉMY BODU ZMĚNY: 
BAYESOVSKY NEPARAMETRICKÝ PŘÍSTUP 

PlETRO MULIERE, M A R C O SCARSINI 

Problém bodu změny v posloupnosti náhodných veličin je studován z bayesovského 
hlediska při neparametrických hypotézách. Vychází se z Fergusonova-Dirichletova 
apriorního rozložení a odvozují se aposteriorní rozložení bodu změny a neznámých 
distribučních funkcí. 
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