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BUCKLING OF BEAM-COLUMN PROBLEM 
OF ANISOTROPIC CYLINDRICAL SHELLS 

ANUKUL DE 

(Received June 4, 1984) 

Summary. The object of this paper is to formulate the differential equations in the beam-
column problem of the buckling of anisotropic cylindrical shells placed between the plates 
of a testing machine subject to an axial load P and a radial load H of sufficient magnitude to 
bring the expansion without constraint of the edges produced by P to zero deflection. The solution 
is obtained with necessary boundary conditions and the corresponding results for the isotropic 
case are deduced. 

1. INTRODUCTION 

The solution of the buckling problem for cylindrical shells in the case of an iso­
tropic material are known from the literature on shells, e.g. Flugge, W. [1] pp. 
443 — 472. Singer and Fershscher [3] solved the buckling problem for orthotropic 
conical shells under external pressure. Singer [2] (1962) solved the buckling of ortho-
tropic and stiffened conical shells. M. M. Lei and Shun Cheng [4] solved the buck­
ling problem of composite and homogeneous isotropic cylindrical shells under axial 
and radial loading. M. T. Wu and Shun Cheng [5] studied non linear axisymmetric, 
buckling of truncated spherical shells. De [6] formulated the differential equations 
of the buckling problem for anisotropic cylindrical shells, found the solution for aniso­
tropic cylindrical shells without shear load in the case of two way compression 
from the differential equation formulated and deduced the corresponding result 
for the isotropic case. De [7] found the solution of the differential equation of the 
buckling problem for anisotropic cylindrical shells with shear load in the case of 
torsion of a long tube. The critical values of shear load and the total torque were 
also found and the corresponding results for the isotropic case were deduced as 
a special case. 

The object of this paper is to study the beam-column problem in the case of 
axisymmetric anisotropic cylindrical shells. 

A bar is said to be a beam when it carries a lateral load and thus is subject to bending, 
and it is called a column when it carries an axial compressive load. The column has 
a stability problem, the beam has none. When loads of both kinds act at the same 
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time, a new problem arises. The bending load produces a lateral deflection, and this 
deflection provides a lever arm for the axial load which now produces additional 
bending. It is well-known that in this case stresses and deformations increase linearly 
with the lateral load but that they increase faster than linearly when the axial load 
approaches the buckling load of the column. This stress problem is known as the 
beam-column problem and we shell discuss it for anisotropic cylindrical shells. 

An anisotropic shell is put between the plates of a testing machine. When a load 
is applied the length of the cylinder decreases and consequently, the diameter in­
creases. This increase is prevented at the edges because of the friction between the 
cylinder and the plates of press. The deformation may be considered to be produced 
in two steps. At first the edge of the cylinder can expand without constraint and then 
a radial load of sufficient magnitude is applied to bring the edge to zero deflection. 
Under these assumptions the differential equations are formulated and the solutions 
are obtained under necessary boundary conditions. 

2. BASIC EQUATIONS 

The differential equations of the buckling problem for anisotropic shells, see 

De [6], are given by 

(la) u" + Axu" + A2v" + A3w' + kt{A4(u" + w'") - w'"} -

— qx(u" — w') — q2u" — 2q3u" = 0 , 

(lb) A5u" + v" + A6v" + w* + k1{3A7v" — A8w"'} — 

- A9[qx(v" + w') + q2v" + 2q3(v" + w')] = 0 , 

(lc) A10u' + v' + w + k1{A7w"- - A9u
//; - A8v"# + A9w"" + 

+ 2Atlw"" + A12(w"" + 2w" + w)} + 

+ v49[qi(u/ - v' + w") + q2w" - 2q3(v' - w"J\ = 0 , 

where ( )' and ( )* indicate a djdx ( ) and djdcp ( ), respectively, a is the radius 
of the shell (Fig. 1), 

(2\ A -D*« A -D* + D** A - ^ A - 5 a A -D* + D*« (2) A l - — 9 A2- ^ , A 3 - v A,- K / A 5 - ^ , 

Dx(p _ DXKX9 _ Dx(3k^ + Kv) Dx _ Dv 

A«--D/ A7~~D^/ A«~ D9KX ' A9~T/ * » - - - ' 

_ _ _ + _ _ DXK 
A1X — , A12 — — 

DfpKx D<pKx 

and 
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(3) 
Kx pa P T 

K = -т— , í i = — , q2 = т~ - 9з = — 
c 2 D a Л» í>a Dx 

where the rigidities D and K are given by 

(i) extensional rigidities: 

(4a) 

(ii) shear rigidity: 

(4b) 

(hi) bending rigidities 

(4c) 

Dx = E1t1 + 2E2t2 , 

D„ = E2tx + 2Elt2 , 

Dv = Evt; 

Dxa> = Gt; 

KX = U.H? - ň) + -Ji'?], 

J-- = MIM'3 - í3) + E*tl], 
Kv = Y2FЃ3 ; 

K ГXľф З ^ G t 3 , 

(iv) twisting rigidity: 

(4d) 

in which El9 E29 Ev and G are four moduli of elasticity, t= tt + 2t2 is the thickness, 

of the shell (Fig. 2) and the shell is simultaneously subject to three simple loads 

(Fig. 1): 

Fig. 1 

(i) a uniform normal pressure on its wall, pr = — p; 

(ii) an axial compression applied at the edges, the force per unit circumference 

being P; 
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(iii) a shear load applied at the edges so as to produce a troque in the cylinder, 
the shearing force (shear flow) being T. 

Fig2 

3. THE PROBLEM AND ITS SOLUTION 

We consider a cylindrical shell put between the plates of a testing machine (Fig. 3a). 
When the load P (per unit circumference) is applied, a negative stress ox = — Pjt is 
produced and the length of the cylinder decreases. As the length decreases, conse­
quently, due to the rigidity of the material, the diameter increases but this increase 
is prevented at the edges because of the friction between the cylinder and the plates 
of the press (Fig. 3b). Evidently the bending stresses will appear, and we must find 
out whether they or a possible instability will determine the strength of the shell. 

The deformation shown in Fig. 3b may be produced in two steps. First we assume 
that the ends of the cylinder are so well lubricated that the edges can expand without 
constraint, according to a hoop strain s^ = A3P/Ft (Fig. 3c). Then we apply a radial 
load H (Fig. 3d) of sufficient magnitude to bring the edges back to zero deflection. 

The first of this deformation is trivial. In the second part we have normal force 
Nxi = — P as a large basic force and the additional small load H which produces 
the small displacements u, v, w. To this deformation we may apply equations (1) 
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which were established by De [4] under similar circumstances for the same aniso­

tropic shells. The essential difference is that the solution we seek now is not an 

incidental deformation which becomes possible when P assumes a certain critical 

value but a deformation which is produced by the load H. 
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Fig. 3 
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(d) 

In this particular case, the equations (1) simplify considerably. Since there is only 

the axial load P (i.e. p = T = 0) we have from (3) qt = q3 = 0. Again, since the 

deformation is expected to have axial symmetry, we must put v = 0 and must drop 

all the dot derivatives. The equation (lb) vanishes altogether, and the other two 

simplify to 

(5a) u" + A3w' — kiWw — q2u" = 0 , 

(5b) A10u' + w + kt{-A9u
m + A9w"" + Al2w} + A9q2w" = 0 . 

There are two boundary conditions at each end of the shell, say at x = 0 and x = 1. 

First, the radial displacement w must cancel the displacement 

aEy = aA3P/Et 

of Fig. 3c, i.e. we must have 

(6a) w = —aAъ — = 
Et 

Dv 
a— q2 

Et 
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Second, we want to have hinged edges, i.e. Mx = 0 and hence from p. 295, Eqns. (93), 

cf. [1], 

(6b) w" - u' = 0 . 

Then we have the condition that the load H has no component in the axial direction. 
In Fig. 3c the axial force per unit of the undeformed circumference is — P, after 
deformation this is cf. [1] p. 417, 

- p ( l + * ) + » , . 

where N^ is connected with u, w by the relation cf. [1], p. 295, Eqns. (93b): 

,3 
(7) ]Slx — —- u H w v 

a a a2 

We have, therefore, the condition that at each edge the equality 

(8) Nx = Pu'ja 

holds. Substituting the value of Nx from (7) in (8) and simplifying we obtain 

(6c) u + A3w — k!>v" = q2u , 

where A3, k1? q2 are given by (2) and (3). 

From (5a) it is evident that it is enough to enforce the condition (6c) at x = 0 
and that then it will be fulfilled everywhere, including the other edge x = 1. Finally, 
we may exclude or fix a rigid body displacement of the whole shell by prescribing u 
for one value of the coordinate x. 

The differential equations (5) have constant coefficients and may be solved by 
exponential functions: 

(9) u = B QAx/a, w = C e A x / a . 

Substituting these values of u and w from (9) in (5) we get two linear equations for 
B and C: 

(10a) B(l - q2) A2 + C(A3 - k,X2) = 0 , 

(10b) B(A10 - k!A9A
2) + C\ 1 + k!A9A

4 + k!A12 + q2X
2) = 0 . 

Since these equations are homogeneous their determinant must vanish, and this 
yields an equation for X. When the small quantities kx and q2 are neglected compared 
with unity, we have after simplifications using the relations (2) 

(11) A9M
6 + (flA10ki + q2) & + (1 ~ ^Mio ) A2 = 0 . 

The equation (11) has the double root 
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^ 5 — ^ 6 

and four non-trivial roots 

(12) A..-.3.4. = ± / ( " ~ - g - - - ^ 3 ± ^ V ( « 2 - 4 ( 1 - A3.^10)^l)). 

While these four roots lead to true exponential solutions, the fifth and sixth solution 
degenerate into linear functions of x, and we have 

(13a) u = £ B „ e ^ + B5 + B6-, 
и = l 

4 

(13b) w = ^ C „ e « ' + C 5 + C 6 . 
» = 1 « 

For n = 1,2, 3, 4, the constants Bn and Crt are connected by the equations (10), 
and since the determinant of these equations is zero, we may use either one to formul­
ate the relation. We choose the relation (10a) obtaining 

(14a) B „ - - c / 3 ~ M " . 
An 

The degenerate solutions with n = 5, 6 must be introduced in the differential equa­
tions (5) to make sure that they really are solution and to determine how their con­
stants are interconnected. We find that 

(14b) C 6 = 0 , B 6 = - C 5 i i _ _ _ _ i . 
^ 1 0 

This indicates that C6x\a is no solution at all and that u = B6x\a and w = C5 

together are the fifth independent solution of the equations (5). The sixth solution 
is u = B59 w = 0. 

This last solution evidently represents a rigid body motion of the cylinder, and 
we may simply discard it. The remaining constants Cl5 ..., C5 can then be determined 
from the boundary conditions (6a —c). We being with the equation (6c). When we 
introduce there the solution (13) and make use of the equations (14), we find that the 
exponential solutions cancel out and we are left with C5 = 0. 

Thus we got rid of all the linear terms in the equations (13). The boundary condi­

tions (6a,b) written for x = 0 and x = b yield four equations for the remaining 

four unknown coefficients. They may easily be brought into the following form: 

(15) d + C2 + C3 + Q = - - ^ q2a , 
Et 

1 ^ 1 ~^~ ^ 2 ^ 2 ' 3 ^ 3 ~i~ A4.C4 = : : : A"-3 ""' g2^ ? 

Et 
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^i/aCi + ^ljaC2 + ^l,aC3 + eA4'/flC4 = - ^q2a, 
Et 

X\ ^l!aC1 + X\ zl2llaC2 + X\ t7^aC3 + X\ e ; 4 / / aC4 = A3 Bl q2a . 
Et 

We shall not go into the details of solving these equations, but we shall discuss the 
solution as obtained when the results are introduced into the equations (13). 

Assume that A3A10 < 1. We see from (12) that for small values of q2 all four 
values /I2 are complex but they are real and negative if g2 grows beyond the limit 

(16) q\ = 4 ( l - A 3 A 1 0 ) A 9 k 1 . 

If q2 is smaller than this limit we may write 

Xx = — X3 = — a + ifi , X2 = — X4 = — a — i/? 

with real positive quantities a, /?. When q2 is small and the cylinder is long then 

Q-<xi/a j s a v e r y s m a r j quantity. In this case it turns out that Ci9 C2 > C3, C4 so that 
C3, C4 may be neglected in the equations (15a,b) and C l5 C2 in the equations (15c, d). 
The solution then becomes extremely simple. For small values of xja only the terms 
C1 and C2 make appreciable contributions and yield 

/H**\ Dv ™inl Px A3 + a2 - B2 . Bx 
(17) co = q2a e 7x/a cos — + — ~ sm — 

Et \ a 2a/? a 

while near x = 1 only C3 and C4 are essential and we have 

(18) co = D2O e aU xj/fl cos ™ H -— sm — . 
Et \ a 2a^ a / 

These formulas represent two identical end disturbances produced by the constraint 
imposed upon the circumferential expansion of the shell, and these disturbances 
affect only two narrow border zones. 

When q2 is increased these disturbances penetrate deeper into the shell. Increasing 
q2 gradually as it is nearer to the limiting value the two disturbance zones reach each 
other and finally they overlap completely. 

At the loading of this stage, a decreases so far that it is no longer possible to 
neglect anything in equation (5). The solution in that case can be written in terms 
of hyperbolic and trigonometric functions and we leave out those bulky formulae. 

The critical value of q2 is given by (16). Beyond this value all four values Xn are 
purely imaginary, say 

X1 = —X3 = iiAx , X2 = — X4 = ifi2 , 

and the solution assumes the following form: 
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(19) co = - ^ - «* 

Et n\ - n\ 
A - ^ з cos џ^1 - 2x) - џ* - Äз cos ľlУ—M 

џxl 2a џ2l 2a 
cos — - cos —-

2a 2a 

As q2 increases, one of the cosine denominators very rapidly approaches zero. 

Consequently, one of the terms in the brackets outgrouws the other one, and the 

deflection approaches a pure sinusoidal shape, but at the same time its amplitude 

increases beyond bounds. 

This is a strict analogy to the well-known phenomenon that in an ordinary beam 

column the deflection tends to infinity as the axial load approaches the Euler load. 

Also the mechanical interpretation is the same in both cases. For the anisotropic 

shell, the infinite deflection occurs when 

(20) „?, a = - ^ - - ± A3 + -±- J[qt - 4(1 - A3A10) A9fc;] = ( ^ Y 
2A 9k i 2 2A 9 k ! \ / / 

where n is an odd integer. When this equation is solved for q2, we arrive at the 

equation (11) of [6] with qx = 0, m = 0 and such that n is an odd integer (except that 

in that equation two small terms have been neglected). We conclude that the bend­

ing stresses in our grow beyond bounds when the load P approaches a critical value 

connected with a buckling mode which is axisymmetric (m = 0) and also symmetric 

to the plane x = Z/2 (n = odd). 

On this way to infinity, the bending stress will sooner or later pass the yield limit. 

As soon as this happens, our theory cases to be valid, and the first and the largest 

bulge of the cylinder will be squeezed flat. Except for this, the elastic theory is still 

applicable, and if the test is continued the next holds will grow until they also start 

to yield and are squeezed flat. 

The equations (5) which govern the bending collapse just described are a special 

case of the general buckling equations (4) from [6]. We derived the former from the 

latter essentially by putting m = 0. This seems reasonable but is by no means 

necessary. Our solutions (17) and (19) are just as well solutions of the general equa­

tions (4), see [6]. When the load P (or the dimensionless parameter q2) reaches the 

buckling load given by the equation (11) of [6] with qx = 0, then the equations (4) 

of [6] permit a certain deflection of arbitrary amplitude, and since this deflection 

satisfies the homogeneous boundary conditions it may be superposed on the 

solutions of the differential equation (4) of [6] with the boundary conditions (6a), 

and hence of the beam-column problem. The existence of a solution in which 

an amplitude coefficient can be varied at discretion, indicates a natural equilibrium, 

which always stands at the threshold to instability. 

The developing bending collapse may, therefore, be interrupted by a true and 

sudden buckling if the shell reaches a buckling load, either for a mode with ra > 0 

or for one with m = 0 and an even value of n. 
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PARTICULAR CASE 

To get the corresponding result for isotropic čase we put 

, x E Ev 
(21) t2 = 0 , h = t, F! = F2 = , Fv = -

1 — vó 1 — v 
E 

Q = — „ ( v __ Poisson^ ratio). 
2(1 + v) ' V ^ 

Substituting (21) in the equations (5), (6a), (6b), (6c), (10), (12), (13), (14a), (14b), 
(15), (16), (17), (19) we get the corresponding result for the isotropic shells which 
are identical with the respective equations (51), (52a), (52b), (52c), (53), (54), (55), 
(56a), (56b), (57), (58), (59), (60) of [ l ] , pp. 458-461. 
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Souh rn 

ZTRÁTA STABILITY VÁLCOVÉ SKOŘEPINY POD OSOVÝM 
A RADIÁLNÍM ZATÍŽENÍM 

ANUKUL D E 

Článek se zabývá otázkou ztráty stability osovým tlakem, je-li skořepina upnuta do čelistí 
zkušebního stroje — lisu tak, že se její čela nemohou během stlačování roztahovat, tedy působí 
silné tření mezi čelistmi a skořepinou. Je nalezeno řešení s nutnými okrajovými podmínkami 
a jsou odvozeny odpovídající výsledky pro isotropní případ. 

Pe3K3Me 

nOTEPA yCTOÍÍHMBOCTH U.HJIHHjT.PHHECKOM OBOJIOHKH, 
HAXOflilIIIEMCil nOfl AEHCTBMEM OCEBOÍÍ H PAAHAJIBHOM HArPy3OK 

B CTaite paccMaTpHBaeTCfl npo6neMa noTepbi ycTOHHHBoera noA jieiíCTBHeM oceBoro ziaBjíeHHH 
npH ycjiOBHH, HTO o6ojiOHKa 3aKpenneHa B HQJUOCTVL HcnbiTaTejibHoií MauniHbi — npecca TaKHM 
o6pa30M, HTO ee Jio6oBbie noBepxHOCTH He MoryT npn ĉ CHMaHHH pacTíirnBaTbCH. HaňfleHO perneHHe 
c HeoóxoAHMbiMH KpaeBbíMH ycjiOBHííMH H BbiBe/reHbi cooTBeTCTByioHiHe pe3yjibTaibi j\nn H30-
TponHoro cjiynaH. 
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