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BUCKLING OF BEAM-COLUMN PROBLEM
OF ANISOTROPIC CYLINDRICAL SHELLS

ANuUKUL DE
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Summary. The object of this paper is to formulate the differential equations in the beam-
column problem of the buckling of anisotropic cylindrical shells placed between the plates
of a testing machine subject to an axial load P and a radial load H of sufficient magnitude to
bring the expansion without constraint of the edges produced by P to zero deflection. The solution
is obtained with necessary boundary conditions and the corresponding results for the isotropic
case are deduced.

1. INTRODUCTION

The solution of the buckling problem for cylindrical shells in the case of an iso-
tropic material are known from the literature on shells, e.g. Flugge, W. [1] pp.
443—472. Singer and Fershscher [3] solved the buckling problem for orthotropic
conical shells under external pressure. Singer [2] (1962) solved the buckling of ortho-
tropic and stiffened conical shells. M. M. Lei and Shun Cheng [4] solved the buck-
ling problem of composite and homogeneous isotropic cylindrical shells under axial
and radial loading. M. T. Wu and Shun Cheng [5] studied non linear axisymmetric,
buckling of truncated spherical shells. De [6] formulated the differential equations
of the buckling problem for anisotropic cylindrical shells, found the solution for aniso-
tropic cylindrical shells without shear load in the case of two way compression
from the differential equation formulated and deduced the corresponding result
for the isotropic case. De [7] found the solution of the differential equation of the
buckling problem for anisotropic cylindrical shells with shear load in the case of
torsion of a long tube. The critical values of shear load and the total torque were
also found and the corresponding results for the isotropic case were deduced as
a special case.

The object of this paper is to study the beam-column problem in the case of
axisymmetric anisotropic cylindrical shells.

A bar is said to bea beam when it carries a lateral load and thus is subject to bending,
and it is called a column when it carries an axial compressive load. The column has
a stability problem, the beam has none. When loads of both kinds act at the same
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time, a new problem arises. The bending load produces a lateral deflection, and this
deflection provides a lever arm for the axial load which now produces additional
bending. It is well-known that in this case stresses and deformations increase linearly
with the lateral load but that they increase faster than linearly when the axial load
approaches the buckling load of the column. This stress problem is known as the
beam-column problem and we shell discuss it for anisotropic cylindrical shells.

An anisotropic shell is put between the plates of a testing machine. When a load
is applied the length of the cylinder decreases and consequently, the diameter in-
creases. This increase is prevented at the edges because of the friction between the
cylinder and the plates of press. The deformation may be considered to be produced
in two steps. At first the edge of the cylinder can expand without constraint and then
a radial load of sufficient magnitude is applied to bring the edge to zero deflection.
Under these assumptions the differential equations are formulated and the solutions
are obtained under necessary boundary conditions.

2. BASIC EQUATIONS

The differential equations of the buckling problem for anisotropic shells, sce
De [6], are given by
(1a) u' + At 4 A"+ AW+ ko {Ag(wt + W) — W'} —
— q,(u” — W) — qu” — 2q5u" =0,
(1b) At + 07" 4 Agt” + w4 k(340" — AW} —
— Aglgy(v" + W) + g0 + 2q5(v" + w)] =0,
(1¢) Agott’ + 0" 4w + ki {Au""" — Agu” — Agt" + Aow"” +
+ 245w+ A (W 4+ 2w + W)} +
+ Ao[qy(u' = v" + W) + guw" — 2g5(v" — w)] =0,

where () and ()" indicate a 9/0x ( ) and 8/d¢ (), respectively, a is the radius
of the shell (Fig. 1),
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where the rigidities D and K are given by

(i) extensional rigidities:

(4a) D, = Et; + 2E,t,,
D, = E,t; + 2Et,,
D, =E;z;
(i) shear rigidity:
(4b) D,, = Gt ;
(iii) bending rigidities
(4c) K, = 5[E(? — 1}) + Eif7],
K, = HIE - 1) + Bl
K, = SE;
(iv) twisting rigidity: ‘
(4d) K,, = $5G1*,

in which Eq, E,, E, and G are four moduli of elasticity, t = ¢, + 2t, is the thickness
of the shell (Fig. 2) and the shell is simultaneously subject to three simple loads

(Fig. 1):
, 4
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Fig. 1
(i) a uniform normal pressure on its wall, p, = —p;

(ii) an axial compression applied at the edges, the force per unit circumference
being P;
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(iii) a shear load applied at the edges so as to produce a troque in the cylinder,
the shearing force (shear flow) being T.

Fig 2

3. THE PROBLEM AND ITS SOLUTION

We consider a cylindrical shell put between the plates of a testing machine {Fig. 3a).
When the load P (per unit circumference) is applied, a negative stress g, = — P/t is
produced and the length of the cylinder decreases. As the length decreases, conse-
quently, due to the rigidity of the material, the diameter increases but this increase
is prevented at the edges because of the friction between the cylinder and the plates
of the press (Fig. 3b). Evidently the bending stresses will appear, and we must find
out whether they or a possible instability will determine the strength of the shell.

The deformation shown in Fig. 3b may be produced in two steps. First we assume
that the ends of the cylinder are so well lubricated that the edges can expand without
constraint, according to a hoop strain ¢, = A,P[Et (Fig. 3c). Then we apply a radial
load H (Fig. 3d) of sufficient magnitude to bring the edges back to zero deflection.

The first of this deformation is trivial. In the second part we have normal force
N,; = —P as a large basic force and the additional small load H which produces
the small displacements u, v, w. To this deformation we may apply equations (1)
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which were established by De [4] under similar circumstances for the same aniso-
tropic shells. The essential difference is that the solution we seek now is not an
incidental deformation which becomes possible when P assumes a certain critical
value but a deformation which is produced by the load H.
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Fig. 3

In this particular case, the equations (1) simplify considerably. Since there is only
the axial load P (i.e. p = T = 0) we have from (3) g, = g3 = 0. Again, since the
deformation is expected to have axial symmetry, we must put v = 0 and must drop
all the dot derivatives. The equation (1b) vanishes altogether, and the other two
simplify to
(5a) u” + AW — kyw" — qu” =0,

(5b) Ao’ + w + ky{—Agu” + Agw"” + Aj,w} + Agqow” = 0.

There are two boundary conditions at each end of the shell, say at x = Oand x = 1.
First, the radial displacement w must cancel the displacement

at, = aA;P[Et

of Fig. 3c, i.e. we must have
P D

6a = —ad; — = —a—4q,.
(62) " * Et E 1
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Second, we want to have hinged edges, i.e. M, = 0 and hence from p. 295, Eqns. (93),
cf. [1],

(6b) w —u =0.

Then we have the condition that the load H has no component in the axial direction.
In Fig. 3c the axial force per unit of the undeformed circumference is — P, after
deformation this is cf. [ 1] p. 417,

—plt+%)+nN,,
a

where N, is connected with u, w by the relation cf. [1], p. 295, Eqns. (93b):

(7) N_‘zgu'+&w—£‘w”.
a a a’

We have, therefore, the condition that at each edge the equality

(8) N, = Pu'la

holds. Substituting the value of N, from (7) in (8) and simplifying we obtain
(6¢) u' + Asw — kyw" = qu’,

where A3, ky, q, are given by (2) and (3).

From (5a) it is evident that it is enough to enforce the condition (6¢c) at x = 0
and that then it will be fulfilled everywhere, including the other edge x = 1. Finally,
we may exclude or fix a rigid body displacement of the whole shell by prescribing u
for one value of the coordinate x.

The differential equations (5) have constant coefficients and may be solved by
exponential functions:

9) u=Be"", w=Ce"".

Substituting these values of u and w from (9) in (5) we get two linear equations for
B and C:

(10a) Bl — q,) 2% + C(A; — k4?) =0,
(10b) B(Ayg — kyiAgl%) + Cil + kyAgh* + kjAj, + q,4%) = 0.

Since these equations are homogeneous their determinant must vanish, and this
yields an equation for A. When the small quantities k; and g, are neglected compared
with unity, we have after simplifications using the relations (2)

(11) Aok 2° + (aAjoky + q5) A* + (1 — A34,0) 2> = 0.
The equation (11) has the double root
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and four non-trivial roots

92 a 1, :
12) A = + - ——4; + — 41— A;5.A;,) Aoky) ).
( ) 1,2,3,4, \/( 2k, 2 3 24,5k, NI(UE i\ 3 10) 9 1))

While these four roots lead to true exponential solutions, the fifth and sixth solution
degenerate into linear functions of x, and we have

(13a) u=

n

[N ES

X
B,e** + Bs + B~
1 a

Me

(13b) W=

n

R X
C,e" 4+ Cs + Co2.
1 a

il

For n = 1,2, 3, 4, the constants B, and C, are connected by the equations (10),
and since the determinant of these equations is zero, we may use either one to formul-
ate the relation. We choose the relation (10a) obtaining

A3 — ﬁ'lf

(14a) B,=—-C,
The degenerate solutions with n = 5, 6 must be introduced in the differential equa-
tions (5) to make sure that they really are solution and to determine how their con-
stants are interconnected. We find that

1+ Aok,

(14b) Ce=0, By=—Cs
AIO

This indicates that Cex/a is no solution at all and that u = Bgx/a and w = C;
together are the fifth independent solution of the equations (5). The sixth solution
isu = Bs, w=0.

This last solution evidently represents a rigid body motion of the cylinder, and
we may simply discard it. The remaining constants Cy, ..., Cs can then be determined
from the boundary conditions (6a—c). We being with the equation (6¢). When we
introduce there the solution (13) and make use of the equations (14), we find that the
exponential solutions cancel out and we are left with C5 = 0.

Thus we got rid of all the linear terms in the equations (13). The boundary condi-
tions (6a,b) written for x = 0 and x = b yield four equations for the remaining
four unknown coefficients. They may easily be brought into the following form:

D
(15) C, + C, + Cs + Cy= — Ef‘]za >

: D
BC, + 22C, + BCy + 2C, = A3E;“ q,a,
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2 A 1/
elll/acl + e).,l/aCr2 + eAgl/aC3 + el4,ﬂc4 - _Yqza,

AZehlac, 4 22 e, + 22 eMNCy + e’ MC, = A3 qaa .

We shall not go into the details of solving these equations, but we shall discuss the

solution as obtained when the results are introduced into the equations (13).
Assume that A34,, < 1. We see from (12) that for small values of g, all four

values 2 are complex but they are real and negative if ¢, grows beyond the limit

(16) g5 = 41 — A3A,0) Agk, .
If g, is smaller than this limit we may write
M= —ly=—a+if, A= —Ay= —a—if

with real positive quantities «, . When ¢, is small and the cylinder is long then
e~ *% is a very small quantity. In this case it turns out that C,, C, » Cj, C, so that
C;, C, may be neglected in the equations (15a,b) and C,, C, in the equations (15¢, d).
The solution then becomes extremely simple. For small values of x/a only the terms
C, and C, make appreciable contributions and yield

px | Ay + o= p? ﬁ“)

D .
(17) w=—"gae " cos— + 32—~ sin"—
Et a 20 a

while near x = 1 only C; and C, are essential and we have

o L2 2 7
(18) w=— D, q,a e =¥ cog Bl =) + A 4 o b sin Al x)) .
Et a 20f a

These formulas represent two identical end disturbances produced by the constraint
imposed upon the circumferential expansion of the shell, and these disturbances
affect only two narrow border zones.

When g, is increased these disturbances penetrate deeper into the shell. Increasing
q, gradually as it is nearer to the limiting value the two disturbance zones reach each
other and finally they overlap completely.

At the loading of this stage, o decreases so far that it is no longer possible to
neglect anything in equation (5). The solution in that case can be written in terms
of hyperbolic and trigonometric functions and we leave out those bulky formulae.

The critical value of ¢, is given by (16). Beyond this value all four values 4, are
purely imaginary, say

A= —dy =iy, A= —Ay=i,,

and the solution assumes the following form:
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2 - 2 _ — 1
(19) ©= — D, qsa My — Az cos (! = 2x) My A; cos Ho(! 2)‘_) )

US| gogtal 20 el 2

2a 2a

As g, increases, one of the cosine denominators very rapidly approaches zero.
Consequently, one of the terms in the brackets outgrouws the other one, and the
deflection approaches a pure sinusoidal shape, but at the same time its amplitude
increases beyond bounds.

This is a strict analogy to the well-known phenomenon that in an ordinary beam
column the deflection tends to infinity as the axial load approaches the Euler load.
Also the mechanical interpretation is the same in both cases. For the anisotropic
shell, the infinite deflection occurs when

2
JI@2 — (1 — A34,0) Agk,] = (@>

, 5 _ 1
(20) i3, = L4 x l

a
240k, 2 7 24,k,

where n is an odd integer. When this equation is solved for g,, we arrive at the
equation (11) of [6] with ¢; = 0, m = 0 and such that n is an odd integer (except that
in that equation two small terms have been neglected). We conclude that the bend-
ing stresses in our grow beyond bounds when the load P approaches a critical value
connected with a buckling mode which is axisymmetric (m = 0) and also symmetric
to the plane x = /2 (n = odd).

On this way to infinity, the bending stress will sooner or later pass the yield limit.
As soon as this happens, our theory cases to be valid, and the first and the largest
bulge of the cylinder will be squeezed flat. Except for this, the elastic theory is still
applicable, and if the test is continued the next bolds will grow until they also start
to yield and are squeezed flat.

The equations (5) which govern the bending collapse just described are a special
case of the general buckling equations (4) from [6]. We derived the former from the
latter essentially by putting m = 0. This seems reasonable but is by no means
necessary. Our solutions (17) and (19) are just as well solutions of the general equa-
tions (4), see [6]. When the load P (or the dimensionless parameter ¢,) reaches the
buckling load given by the equation (11) of [6] with g, = 0, then the equations (4)
of [6] permit a certain deflection of arbitrary amplitude, and since this deflection
satisfies the homogeneous boundary conditions it may be superposed on the
solutions of the differential equation (4) of [6] with the boundary conditions (6a),
and hence of the beam-column problem. The existence of a solution in which
an amplitude coefficient can be varied at discretion, indicates a natural equilibrium,
which always stands at the threshold to instability.

The developing bending collapse may, therefore, be interrupted by a true and
sudden buckling if the shell reaches a buckling load, either for a mode with m > 0
or for one with m = 0 and an even value of n.
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PARTICULAR CASE

To get the corresponding result for isotropic case we put

E E
, E = —
1—3 1—v

(21) t,=0, t,=1t, E, =E, = 5

. E
21 +v)
Substituting (21) in the equations (5), (6a), (6b), (6c), (10), (12), (13), (14a), (14b),
(15), (16), (17), (19) we get the corresponding result for the isotropic shells which
are identical with the respective equations (51), (52a), (52b), (52¢c), (53), (54), (55),
{56a), (56b), (57), (58), (59), (60) of [1], pp. 458 —461.

, (v = Poisson’s ratio).
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Souhrn

ZTRATA STABILITY VALCOVE SKOREPINY POD OSOVYM
A RADIALNIM ZATIZENIM

ANUKUL DE

Clanek se zabyva otazkou ztraty stability osovym tlakem, je-li skofepina upnuta do Celisti
zkuSebniho stroje — lisu tak, Ze se jeji éela nemohou b€hem stlaovani roztahovat, tedy puisobi
silné tfeni mezi Selistmi a skofepinou. Je nalezeno feSeni s nutnymi okrajovymi podminkami
a jsou odvozeny odpovidajici vysledky pro isotropni pfipad.

Pesiome

IIOTEPA YCTOMYMBOCTU LIWMJIMHAPUYECKON OBOJIOYKU,
HAXOOSIIENCS TOA AEMCTBUEM OCEBOM U PAIIMAJIBHOW HATPY30K

B crathe paccMaTpuBaeTcsi podiemMa noTepsl yCTOMYMBOCTH IO/ IEHCTBUEM OCEBOTO JABIICHUS
IIPU YCJIIOBUM, YTO OOOJIOYKA 3aKperieHa B YeJIIOCTH UCHbITATeNIbHOW MalllMHbL — Mpecca TaKuM
o6pazom, YTo ee JI0GOBBIE NOBEPXHOCTH HE MOTYT IIPH CKMMAHWM pacTAruBaThes. HaiineHo penieHue
C HEOOXOIUMbIMH KPaeBbIMHU YCIOBUSIMH U BBIBEJEHbI COOTBETCTBYIOLIME pPE3yNbTaThl IS H30-
TPOIHOrO Cilyyas.
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