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Summary. Existence of a solution of the problem of nonlinear elasticity with non-classical
boundary conditions, when the relationship between the corresponding dual quantities is given
in terms of a nonmonotone and generally multivalued relation. The mathematical formulation
leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemi-
variational inequalities and to the determination of the so called substationary points of the given
potential.
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1. INTRODUCTION

In mechanics and physics there is a variety of variational inequality formulations
which arise when the material laws and/or the boundary conditions are derived
by a convex, generally not everywhere differentiable and finite superpotential (cf.
[1], [2], [3]). The variational inequalities have a precise physical meaning: they
express the principle of virtual work (or power) in its inequality form, introduced
by Fourier in 1823 and since then only very rarely used (cf. e.g. [3] p. 124, 374).
Prototypes of BVP’s leading to variational inequalities are the Signorini-Fichera
problem [4], [5] and the friction problem in the theory of elasticity [2]. The con-
vexity of the superpotentials implies the monotonicity of the corresponding stress-
strain or reaction-displacement laws. However, there exists a variety of nonmonotone
laws which manifests the need for the derivation of variational formulations for
nonconvex and not everywhere differentiable and finite energy functions (nonconvex
superpotentials). Such variational formulations have been called by the author
hemivariational inequalities [ 6], [ 7] and describe large families of important problems
in physics and engineering. Similarly to the variational inequalities, the hemivariation-
al inequalities express the principle of virtual work (or power) in its inequality form
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and therefore we call all the corresponding BVP’s, both in the case of convexity
and nonconvexity, unilateral BVP’s. It should also be noted that the hemivariational
inequalities are closely connected to the notion of the generalized gradient of Clarke-
Rockafellar (see e.g. [8], [9]), which in the case of lack of convexity plays the same
role as the subdifferential in the case of convexity (at least for static mechanical
problems).

In [10], [11], [12] we studied coercive and semicoercive hemivariational ine-
qualities arising in the static theory of Kirchhoff and von Karmén plates, whereas
in [3], [13]. [14] we dealt with static hemivariational inequalities in the theory
of nonmonotone semipermeability problems. Several applications in engineering
can be found in [7], [15] and [16].

Here we formulate hemivariational inequalities for twodimensional and three-
dimensional coercive problems in the theory of nonlinear elasticity, holonomic
elastoplasticity, and the theory of locking materials, and study the resulting mathe-
matical problems. Compactness arguments are combined with monotonicity argu-
ments to yield approximation and existence results for BVP’s arising for materials
which obey monotone stress-strain laws and are formulated for nonmonotone
boundary conditions [3].

2. CLASSICAL FORMULATIONS OF THE PROBLEMS AND DERIVATION
OF THE VARIATIONAL EXPRESSIONS

Let Q be an open, bounded, connected subset of R occupied by a deformable
body in its undeformed state. We denote by I' the boundary of Q which is assumed
to be Lipschitzian.

Let ¢ = {0;;} and ¢ = {g;;}, i, j = 1—3 be respectively the stress and strain tensors
of the body and let f = {f,} u = {u,} be the volume force and displacement vectors,
respectively denote by n = {n;} the outward unit normal vector to I'; then S; =
= g;;n; (summation convention) are the boundary forces. Let Sy ans Sy be their
normal and tangential components, respectively. The corresponding boundary
displacement components are uy and uy (see Fig. 1a). We assume further that the
boundary is divided into three disjoint open subsets I'y, I'p, and I's, i.e. I' = 'y U
u I'p U Ts. On Ty the displacements are given, i.e.,

(2.1) u;=U;, U;,=Ufx) on Iy,
on I'p the forces are prescribed, i.e.,
(2.2) Si=F;, F;=F(x) on Iy,

and on I'g nonmonotone boundary conditions hold causing, as we shall see further,
the formulation of the problem as a hemivariational inequality ([3] Ch. 4). We
consider the following model problems:
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Problem 1 (P,): We assume that the tangential forces are given on I'y, i.e.

(2-3) Spi=Cri, Cpi= CTi(x) ’
and that if

(2.3) uy <0 then Sy=0
and if

(2.3b) uy 20 then —Sy = k(uy),

where k = k(uy) is generally a nonmonotone function of uy. Relations (2.3a, b)
describe the unilateral contact problem of a deformable body with a granular support
or concrete, which causes the nonmonotone reaction-displacement diagram. As we
shall see further the function k = k(uy) may be very general and may include jumps

r t
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Fig. 1. Nonmonotone boundary conditions.
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which describe local crushing effects. So, e.g., in Fig. 1b — dotted line — we have
a crushing of the support at point 4 with ideally brittle (AB) or semibrittle behaviour
(AB').

Problem 2 (P,): Again (2.3) holds and Sy is related to uy by a law whose graph
is depicted in Fig. 1c or Fig. 1d. The first graph describes the behaviour of adhesive
joints (the joint can sustain a small traction) or of boundary cracks, the second graph
describes the stress-strain diagram of springs simulating the behaviour of reinforced
concrete (e.g. in the case of anchoring). In this respect Scanlon’s effect for tensile
stress in reinforced concrete is worth noting (see e.g. [3] p. 152, [17] and [18], and
cf. Fig. 1d). Due to the multivalued character of the precious laws we may write
them in the form

(2.4) —Sy€ BN(“N)
where fiy: R — R are multivalued functions with graphs (&, By(¢)) given in Figs. 1c
and 1d.

Problem 3 (P;): We assume that in this problem @ < R* and that Sy is given
on Ig. i.e.

(2.5) Sy = Cy, Cy = Cy(x),
and that
(2.6) —Sre BT(uT)

where f;: R — R is a multivalued function.

We can have, for instance, the law of Fig. le which describes cracking and/or
adhesive behaviour in the tangential direction, or the laws of Figs. 1f and 1g which
describe more realistic frictional effects and nonmonotone shearing.

Due to the nonmonotone character of the multivalued functions (or multifunctions)
By and By a convex analysis approach to this problem is not possible. Note that if
By and/or Br were monotone increasing, then we could determine convex, lower
semicontinuous and proper functionals jy and jp such that By = djy and B =
= 0jr (here 0 denotes the subdifferentiation operator, see e.g. [3], Ch. 3). As we shall
see. further, in the present nonmonotone cases, we can determine locally Lipschitz
continuous functions jy: ® - R and jr: B — R such that ([19])

(2.7) By =0y and fr =0

where 0" denotes the generalized gradient of Clarke (see e.g. [8], [9], [3]). jy and jr
are the ““potentials” of the reaction-displacement law or the nonconvex super-
potentials in the terminology of [6], [7] and they result roughly speaking, by “inter-
grating” fiy and B over R.

In the framework of small strains and nonlinear monotone elastic behaviour
of the body Q we write the relations

(2'8) ;i tfi=0,
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(2.9) ey = iy + uy)
(2.10) oeow(e)e R°(or R*) if Q < R*(or R?)

where the comma denotes differentiation, 0 is the subdifferential of convex analysis
and w:R® —> (—o0, +00], w % o0, is a convex lower semicontinuous function.
It is well-known, [20], [3] (Ch. 3 and Ch. 6) that with appropriate choice of w (2.10)
describes in general Hooke’s elastic materials, the elastic ideally locking materials,
the elastic workhardening materials, the elastic-ideally “plastic”” materials (Hencky’s
theory) and the materials obeying the law of the deformation theory of plasticity.
The two last classes of materials belong to the so-called ‘“holonomic” plasticity
in order to distinguish them from the flow theory of plasticity. By definition (2.4)
and (2.6) are equivalent (due to (2.7)) to the hemivariational inequalities (2.11)

(2.11) Jn(uy, oy — uy) = —Syloy — uy) VoyeR,
(2.12) j(ug, vp — ug) = —Sp{vp — ur) VoreR,

respectively. Here jy(+, *) (and analogously j2(+, +)) is the directional derivative
of Clarke defined by

(2.13) i3(¢, 2) = lim suij(g + h + Az) — ju({ + k) .

h=0 A
A0 4

(2.10) is by definition equivalent to the variational inequality
(2.14) w(e*) — wie) = o,(el; — &) Ve* e R* (or R°) .

From (2.8) and (2.9) we obtain the variational equality (formal application of the
Green-Gauss theorem)

(215) f ou(ou®) — o)) 42 = j o= w) a2 +

+ -[ Fiv; — u;)dr +j [Sy(oy — uy) + Sp(vy — ur)]dI' Yo e U,
I'r I's

for u € U,4. We denote by U,4 the set of all kinematically admissible displacements,
ie. Uyg={v | veU,v, =U,; on I'y}, where U is the displacement space which
will be chosen later.

Using (2.15) we obtain from (2.14) with (2.11) and (2.12) the following variational-
hemivariational inequalities:

Find u € U,q with w(e(u)) < oo such as to satisfy for (P;) and (P,)

(2.16) j [ele) — wle)] 4 + j By, oy — ) A 2

I's
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> J filv; — u;)dQ +j Fv; — u;)dr +J Cri(vp; — up)dl’ YoeU,,
o rr

s

and for (Ps)

(2.17) f (o) — wle()] 42 + f (g vp — up) dI' =

I's

g—[f,-(v,- — u;)dQ +j Fv; — u)dr +J Cy(vy — uy)dI' VoeU,.
2 e

It is worth noting that if the (o, ¢)-law is nonmonotone and is given by o € 'w(s),
where w is nonconvex (e.g. for composite materials, or for “complete” laws, see e.g.
[3], [7] and [18](, then in (2.16) and (2.17) the term w(e(v)) — w(e(u)) is replaced
by w(e(u), e(v — u)), where w'(-, -) is generally the upper-subderivative of Rocka-
fellar [9]. (2.16) and (2.17) express the principle of virtual work for the respective
problems. The hemivariational inequalities do not imply minimum problems but
only substationarity problems for the total potential energy, see e.g. [3], [7]. Tt is
worth noting that any local minimum of the potential energy is also a substationarity
point but not conversely. Moreover, due to the lack of convexity there is generally
nonuniqueness of the solution. As usual, for the corresponding dynamic problems f;
is replaced in (2.16) and (2.17) by the term f; — ¢ 0%u;/t>. Initial conditions for the
displacements and velocities must be considered on the additional assumption
of small displacements.

3. FUNCTIONAL FRAMEWORK AND IMPLEMENTATION
OF THE VARIATIONAL EXPRESSIONS

We further assume that u;, v;€ W"P(Q) with p > 3 for @ = R* and p > 2 for
Q < R* (the well-known Sobolev space, see e.g., [21]) and that F; e I#'(I'y) and Cy
and Cp; are elements of L¥(I's) (1/g + 1/g" = | and g = 1 arbitrary). Moreover,
we assume that U, e V(I'y) which is a space with the property that there exists u; €
€ WP such that uf/I" = U, on I'y(u}|I is the trace of uj on I' which is an element
on W'~1/PP(r)). We further assume that I'y is nonempty. For the sake of simplicity
let U; = 0 on I'y and thus U,y = {vfv,e W"?(Q), v; = 0 on I'y}. (If U; # 0 on I'y
we perform the translation § = v — u* and @ = u — u*). We also assume that
fie L”(Q) (1/p + 1/p’ = 1), and let (-, ) denote the duality pairing on I?(Q) x
x IF'(Q).

If grad w(+) exists as is the case in the deformation theory of plasticity, the polygonal
stress-strain laws etc., then it is easy to show that (2.16), for instance, is equivalent
to the hemivariational inequality

(3.9) L I:Ml’su(ﬁ —u)0Q + L Jn(uys oy — uy)dl' =

de ij s
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2 Lﬂ(ﬁl - u;)dQ +J

I'r

F{®; — u;)drIr +f Cribr; — up;)dl' VoeU,.
I's

This results easily by setting in (2.16) v = u + A(5 — u), 1 >0, for A — 0,.

Note that jy(uy, *) is positively homogeneous. Conversely, from (3.1) and the ob-

vious inequality

(32) W(e(0) — w(e(w) = [%Q] oo — 1)

holding for every &(v) € R® we get (2.16). It is also easy to verify that (2.16) (or (3.1))
is equivalent to the hemivariational inequality

(3.3) J ) [9‘1288(—’7))];,.](5 —w)do + f Oy 5y —tty) AT 2

JTIs

> J (5 — 1) dQ + j Fi(5, — u)dI’ + J' Codlirs — up) AT Vo€ Uy
Q I'r

I's

Indeed, (3.1) together with the monotonicity inequality

(3.9) w(e(v)) _ owle(w) ei (b —u) =0 Ve(0), e(u) € R® (or B*)
O de |;;

implies (3.1). Conversely, in (3.3) we put & = u + A(v — u), 0 < A < 1and due to the
monotonicity of 2 — [(grad w(e(u + A(v — u)));; &;(v — u)] we get the inequality
(3.1) as the limit for A —» 0,. Analogously we may argue for (2.17) and for every
variational hemivariational inequality of thisform. Let ussetv; — u; = +¢; € C:’(Q)
in (3.1). This implies

(3.5) [grad w(e(w))]i;,; + fi = 0

in the sense of distributions on Q. But due to f; € L"'(Q) we may apply the Green-
Grauss theorem and write (2.15) in the given functional framework, for o;; =
= [grad w(e(u))];; The resulting expression together with (3.3) implies first the
boundary conditions (2.2) and (2.3) as equalities in the space [W'~'/P?(I']’, and
secondly the boundary condition (2.4) in the weak form,

(3.6) f J3itxs vy — ) AT = Sy, vy — uyd Yoy € W VPH(T)
I's
where (-, +> denotes the duality pairing on W*~'72(I') x [W'~VP([)].

Similarly we may argue for (2.17). The aforementioned arguments do not hold
in the general case. i.e. when w(+) is nondifferentiable, for a locking material. As
usual in the variational approach (cf. [2] p. 286), in this case (2.16) and (2.17) may
be considered as definitions, from the standpoint of mechanics, of the problem.
For a material obeying the law of classical deformation theory of plasticity we obtain,
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using the notation of [23] Ch. 8, that

I (u,u)
(37) w(e(w)) = 1K (eu(w)? + 1 j u(t) ¢

where K is the bulk modulus of the material. Note that w(+) is a strictly convex
and continuously differentiable function of . Then (2.16) and (2.17) become (cf. also
(3.1)): Find u € U,4 such as to satisfy for (P,) and (P,)

(3.8) J‘ [(K — % u(I(u))) eiiu) e5(v — u) + 2 w(r*(w)) e;;(u) &;(v — u)] dQ +

+J Ja(uy, vy — uy)dl' = J. filv; — ;) dQ + J Fiv;, — u)dl’ +
I's [

I'r

+ J‘ CTi(UTi - uTi) dr vee Uad .
I's

For (P;) an analogous formulation is obtained. For such a material and under the
assumptions of [23] Ch. 8 a study in H! — space would be more adequate. However,
in the functional framework presented herein we may study a generalization of such
a material resulting by replacing the linear relation between ¢;; and ¢;; by a super-
linear one e.g. by assuming that in (3.7)K is not a constant but an appropriate
differentiable and convex function of &;(u), and by modifying appropriately the
assumptions on pu.
For a linear elastic ideally locking material we have

(39) W(S) = %Cijhkeijghk + IK(S)

where C = {C;;}, With Cyj, € L*(Q), is Hooke’s strain tensor with the well-known
symmetry and ellipticity properties, and K is a convex closed subset of the strain
space defined by the locking criterion; Ig(e) = {0if ¢ € K, oo otherwise]. For a three-
dimensional generalization of a polygonal stress-strain law we refer to [3] p. 97.
Note that in order to treat cases where w(+) can take the value +co we define the
functional

fﬂw(c) dQ if w(e)e L(Q),

0 otherwise .

(3.10) W) =

W(-) is a convex, proper and lower semicontinuous functional on [I?(?)]°. For
0;; € I7(Q) the relation ¢ € dW(e) is the extension for ¢, o;; € I’(Q) (cf. [20]) of the
relatlon (2.10) holding a.e. on Q.

The method which we will follow for the study of the arising variational-hemi-
variational inequalities assumes much more general “functions” By rnd f; than
the ones leading to (P;), (P,) and (P3): Let b: R — R be a locally bounded measur-

ij»
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able function, i.e. b e L”(I) on every compact subset I of R (see Fig. 2a). Function
b (Fig. 2b) results, roughly speaking, from b by “filling in the discontinuities” Of
the graph of b, and is a multivalued function. Mathematically the same cap be
achieved in the following way:

b(E) b(EIA
fm— /
/ - M
%, 3 2
I B4
(a) (b)

Fig. 2. Illustration of the general form of the boundary conditions.

For é > 0and ¢ € R we define

(3.11) bs(¢) = esssup b(¢;) and
16-¢&1]<6
(3.12) _bs(&) = essinf b(¢,)
1§-&1] <o

which are increasing and decreasing functions of &, respectively. Therefore the
limit as & — 0 exists. We denote by b(¢) and _b(¢) the limits lim b,(¢) and lim _b,(¢),
-0 0= 00

respectively, and define the multivalued function

(3.13) b(¢) = [-b(¢), b(¢)]

where [+, -] denotes a closed interval in R. So, e.g., in Fig. 2a we have _b(&y) = §,

and b(&,) = B, and therefore b(&o) = [By, f2]-
Chang [19] has shown that if b(¢ o) exists at every & € R, then a locally Lipschitz
continuous function ¢: R — R can be determined such that

(3.14) b(¢) = 8'9(¢).

Here we can write, up to a constant, the equality ¢(¢) = [§ b(¢,) d&,. However,
in what follows, only the expression ¢°(¢, z) defined by

E+ht Az
(3.15) 9°(¢, z) = lim supf b(¢,) d&,
A"_:'0°+ E+h

is needed; for the mechanical problem this constitutes a remark of major importance.
According to [7] the ¢(+) is called superpotential of the boundary constraint and
@°(¢, z) is simply the virtual wotk of the constraint at a displacement & for a virtual
displacement z.
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Let us further introduce a linear continuous functional on the displacement
space, I = {I;}, 1€ [W"?(Q)] defined by the right hand sides of (2.16) and (2.17)
and let us denote by ¥V the kinematically admissible subspace

(3.16) V={v|v={v},v,e WPHQ),v| =0 on I'y}.

In the next sections we deal with the following problem:

(P): Find u € V such that
(3.17)  W(e(v)) — W(e(u)) + J O°(uy, oy — uy)dl = (Lv —u) YoeV.

rs

The study is completely analogous when ¢ represents jr and not jy. We shall
distinguish two cases: in the first, called “differentiable case” we assume that
grad w() exists everywhere, in the second w may take the value + o0, w £ oo and is
generally lower semicontinuous and not everywhere differentiable (“‘nondifferentiable
case”

4. STUDY OF THE DIFFERENTIABLE CASE

3

Let us consider a mollifier p, i.e., pe C2(—1, + 1) withp = Oand [X2 p(¢{) d¢ = 1.
Let

(4.1) pi¢) = i— p (S)

and let us form the convolution
(4.2) b,=p,xb, ¢>0.

It is well-known that b, e C*(R). We call b, the ““regularized form of b”. We may
now pose the following variational equality (the regularized form of (P)).
(P,): Find u, € ¥ such that

(4.3) (grad w(e(u,)), &(v)) + J by(uy,) vy dll = (I,v) VveV.

I's

In order to discretize (P,) we consider a basis {w;} of V. Let ¥, be the corresponding
m-dimensional subspace of V. Then we formulate the finite-dimensional problem

(P,m)-
(Pym): Find u,,, € V,, such that

(4.4) (ard w(e(t), o)) + j by(uen) 05 AT = (1,8) Voe V.

I's
Further, we assume that for some &,

(4.5) esssup b(¢) < essmf b(¢).
(-,-%) ¢+

258



Then, without loss of generality, using an appropriate translation of the coordinate
axes we can assume that for some ¢

(4.6) essup b(¢) < 0 < essinf b(¢)
)

(—,=¢) ¢+

Moreover, we assume that the energy function w has the following property: For
every u = {u;}, u; € WH?(Q) there exists ¢ > 0 such that

(4.7) (grad w(e(v)), e(v)) = CJ.Q [e:(v) :,(v)]72 d€2 .

It can be easily verified that (4.7)is fulfilled for the three- or twodimensional generaliza-
tions of the polynomial laws (e.g. for o~ ¢, 0=n—-1+r n=2 or 3 and
r > 0)[28],and the superlinear generalizations of the deformation theory of plasticity.
At this point we can also mention the regularized elastici deally locking laws, a wide
class of materials of the hyperelastic type, as well as the three- or twodimensional
generalizations of rubber-like materials [29].

Lemma 4.1. Suppose that (4.6) and (4.7) hold. Then (P,,,) has a solution.

Proof. The imbedding W'?(Q) = C°(@) = C°(I') = L°(T') for p > n implies
that we can write (4.4) in the form

(438) (T(uem), 0) =0 Voe¥,,

where T: V,, — V,. We shall apply Brouwer’s fixed point theorem in the following
well-known version ([24], p. 53): if f: R” — R™ is continuous and such that for
r>0,3(f(a));a; = 0Va = {a;} with |a| = r, then a, exists with |ao| < r such that

f(ap) = 0. Indeed, (4.6) implies that we can determine ¢, > 0 and g, > 0 such that
b(8) 20 if &> 0., b() 20 if & <p, and |b(¢) S0, if |¢] <oy

Moreover, due to (4.7) and Korn’s first inequality in W'?(Q)-spaces p > 1 we have
the relation(®

(4.9)  (grad w(e(w)), e(u)) = clf [ej(u) €,;(u)]"* dQ = c,|u? Vue V,
2
¢y, C; const > 0
where ||+| denotes the [ W'?(Q)]-norm, with n = 3 or 2. Thus we find that

(1) We refer the reader to [20] [27] [30] [31]. For a counterexample in the case p = 1 cf. [32].
Korn’s inequality implies that es=: u— &) is a continuous linear function from [ W1 P(Q)]" to
[LP(@)?".
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(410)  (Tlten)s ten) Z €4 + f tom Deltunem) AT — [« Juen] 2

I's

2 ¢ |uem||” = ¢stem|] — ¢35 P>3 for Q< R, p>2 for Qc R
since

(4.11) '[ bo(tinem) tinem AT = f ..... + j ..... >0 — 0,0, mes Ig.
I's lunem(x)] > 01

lunem(X)| Se1

Here ||+||, denotes the [W*P(Q)]"-norm and ¢;, ¢,, c; are positive constants. (4.10)
implies, by setting in the foregoing version of Brouwer’s fixed point theorem u,,, =

= Y aw; and f(a); = (T(u,y), w;), that (4.8) has a solution such that |u,,| < ¢,
i=1

q.e.d.

Further, we shall investigate the behaviour of the solution u,, of the finite dimen-
sional problem (P,,) as ¢ > 0 and m — oo. Due to the fact that {u,,} is bounded
in ¥ we may extract a subsequence again denoted by {u,,} such that

(4.12) U,, = u weaklyin V.
However, ([33], p. 344) W?(Q) is compactly imbedded into L(I'), q >«1; thus

denoting here for the sake of simplicity the trace on I' as the function itself, we
obtain that(p > n)

(4.13) Uy — u strongly in [I2(T)]"
and accordingly
(4.14) Uy > u ae.onl.

Further, we shall investigate the behaviour of ba(um,,,) ase = O0and m — oo.

Lemma 4.2. On the assumption (4.6), {b,(ux,,)} is weakly precompact in I}(I's)-

Proof. By the Dunford-Pettis theorem (see [25], p. 139) we will show that for
each o > 0 a constant can be determined such that for g = I's with mes g < y

(4.15) f |bo(ttyg) dT| <
9

holds. Let us consider the inequality (cf. [26])
(4.16) [5.(6) €] + & sup [b&)] 2 ofb(?)

which implies that

(4'17) J Ibe(uNem)l ar = E{J‘ |be(uNem) uNmI ar + J‘ sup ‘be(umm)l dr *
[ Is

0 g lunem(X)| £ 8o
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Due to (4.9) and |u,,| < c we have

(418) J. lbe(uNcm) uNtml dF = J‘ bs(uNsm) uNem dF +
I's lunem(X)] > 01
+ J lba(uNcm) uNemI d[' é J‘ be(uNam) uNem dF +
lunem(x)]| <01 I's

+2 j Ib(ty,.) tyen] AT = — (grad w(eugn) e(uen) +
lunem(X)| S 1

+ (1, up) + 2’[ |bo(ttnem) Unem| AT < ¢ + 2040, mes s .
lunem(x)| Se1
We choose &, such that
(4.19) 1 |Bo(ttyem) tnem| AT < =
60 I's 2

for all m and ¢. Let y be such that for mesg < 7y (cf. also (4.2))

(4.20) J sup  by(ty,y)| dI" < y essup |b(¢)| < *
g l&l=eo+1 2

lunem(x)] £ 80

Then (4.17), (4.18), (4.19) and (4.20) imply (4.15), qfe.d.
From Lemma 4.2 we find that ase — 0 and m — oo,

(4.21) by(tyem) = 1 weakly in  L!(I).

Proposition 4.1. u is a solution of the problem (P).

Proof. In order to pass to the limit ¢ — 0, m — o in (4.4) we have to pay special
attention to the term grad &(u,,,), &(v)). The following method is a combination of the
well-known monotonicity argument (Minty’s method) which is often encountered
in the theory of variational inequalities, with a compactness argument.

a) We shall first show that (4.4) and (4.21) imply, as ¢ = 0 and m — oo, the
equality

(4.22) (grad w(e(u)), £(v)) + j yoy dl' = (I,v) YveV,,.

I's

Indeed, veV, = [W-P(Q)], v|r e [L*(I)]" and thus vye L*(T) (n = {n} e
e [L™(I')?, cf. [23] p. 19). Accordingly, [bvy — [xvy. Let us formulate the non-
negative expression

(4.23) X,, = (grad w(e(u,,)) — grad w(e(e)), e(u,,) — &(@)) = 0 Yo e [W'P(Q)]"

261



which by means of (4.4) becomes
(424) Xm = (l> uem) _J‘ be(uNem) UNem ar — (grad W(S(Ugm))a 8((p)) -
I's

— (grad w(e()), e(upm — ¢)) 20 Vo€ [w! Q)"

From (4.4) we easily obtain that the sequence |(grad w(e(gm))s &(vm))|, where u,,,, v, €
€ V,,, is bounded and thus || grad w(e(u,,))||zerayn £ ¢ Therefore, ase - 0,m — oo,

. . n(n + 1
(4.25) grad w(e(u,,,)) = ¥ weakly in [IF(Q)]", 7= ( 5 )
Thus (4.4) (4.21) and (4.25) yield the equality
(4.26) (7, &(v)) + f yoydI' = (I,v) YveV,
I's

and its extension by density to V (i.e. ¥ v e V). We denite this extension by (4.26a).
We assume at the moment that

(4.27) limj by(Uyem) Unem AT’ = J xuy dI'.
I's I's

This last relation will be shown later in lemma 4.3. From (4.27) and (4.24), (4.25)
(4.26a) we find that

(4.28) lim X,, = (¥, e(u — ¢)) — (grad w(e(p)), e(u — @)) 2 0 Vo e [WH2(Q)]".
In (4.28) let us set u — @ = A0, 2 > 0. We get the relation
(4.29) (P, £(0)) — (grad w(e(u — 10)),&(0)) = 0 VOe[W'"(Q)]".

Due to the monotonicity of 2 — (grad w(e(u — 20)), &(0)), we may take 2 — 0, in
(4.29), thus finding for +0 that

(4.30) ¥ = grad w(s(u)) .
(4.30) and (4.26) imply (4.22).
b) It remains to show that y € 8'p(uy) a.e. on I's, or equivalently, that

(4.31) x€b(uy) ie _bluy) <y <b(uy) ae on Iy.

Given y > 0, due to (4.14) we may choose g = I's with mesg < y such that, as ¢ - 0
m — oo (Egoroff’s theorem),

(4.32) Uyem — Uy uniformly on I's — g

where uy € L°(I's — g). (4.32) implies that for any 6 > 0 we may find m, > 2/6
and ¢y < 6/2such that for m > myand e < &,

(4.33) [tnem(x) — uy(x) < 8/2 forall xelg—g.
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From (4.2) we obtain

(4.34) B&) = (p, + b) (£) = f Vb - )l dr
< esssup b(¢ — t)JUrlpE(t) dt = esssup b(¢ — 1)
It] e - It]<e
(;1..35) b(uyem(x)) < esssup b(¢).

lunem(x) =&l S¢

But due to (4.33) and (3.12) (4.35) implies that
(4.36) esssup  b(¢) £ esssup  b(¢) £ essup  b(¢) = by(uy(x))

[unem(x)—¢] e lunem(x) —¢] <4/2 lun(x)-¢1=8

and analogously

(4.37) _by(uy(x)) < by(tyen(x)) -
From (4.36, 37) we obtain for e = 0 a.e. on I's — g and ee L*(I's — g) that

(4.38) f _hlntear s J

I's—g

by(ttyen(x)) € AT < J Baun(x)) e dr",

I's—g

which implies as ¢ - 0, m — oo,

(4.39) f R CORIE f s J‘rrgEa(uN(x)) edr.

This last relation implies by passing to the limit § — 0. the relation

(4.40) ‘[ _b(un(x)) e dI" < f ye dl < f Blun(x)) € dI" .
I's—g I's—yg I's—g
From (4.40) we obtain, since e is arbitrary, that

(4.41) x€[-b(uy), b(uy)] ae.on I's—g,

and by taking y as small as possible we get (4.31), q.e.d.
In order to complete the proof we have to show (4.27).

Lemma 4.3. (4.27) holds.
Proof. We recall (4.12), (4.13) and (4.21) and form the difference

(4'42) f [bs(uNem) Unem — XuN] dar =f be(uNsm) (uNem - uN) dr +
I's

I's

+J uN(be(uNem) - X) dlr = A + B.
I's
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Due to imbeddings W'”(Q) = C%(Q) = C°(I') = L*(I'), uy e L*(I') and due to
(4.21), lim B = 0. We estimate the first summand in (4.42). From W'?(Q) = L*(I)
and (4.12) we get that

(4.43) Unem — Uy strongly in L2(T) .
Similarly (4.21) implies

(4.44) [be(tnem) | Licrsy < €2 -
Therefore

(4.45) |4] =

J‘ be(“Nem) (uNem - uN) dar g ” ba(uNsm)”Ll(Fs) “ uy,,, — uN”L“’(Ts) .
I's

From (4.44) and (4.45) we obtain that lim (4 + B) = 0, g.e.d.

5. STUDY OF THE NONDIFFERENTIABLE CASE

If in problem (P) the internal energy function w(+) is nondifferentiable, as is the
case e.g. for ideally locking materials, then we introduce a sequence of convex
functions w, depending on a parameter g such that

(i) ase—0,
(5.1) J () 42 W(e() Vo< V;

(ii) if v, » v weakly in ¥ for ¢ = 0 and [qw,(e(n,)) d2 < ¢, then
(52) fm inf J'Q wy(e(0) 4@ = W(s(v)) ;

(i) relation (4.7) holds for every w, with ¢ independent of g.
Now we define the following regularized problem (P,,).
(P,,): Find u,, € Vsuch that

(53) (grad w,(s(u,)), e(0) + j by(tiyeg) vy AT = (I,0) Voe ¥,
I's
and by means of a basis the problem (P,,,,).
(P,om): Find th;y, € V,, such that
(54) (grad wy(e(u,qm)), £(v)) + J by(tneon) vy dI' = (I, 0) Vo€V,

I's

Proposition 5.1. Suppose that (4.6) holds and that w, satisfies (i), (ii), (iii). Then (P)
has a solution.
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Proof. For problem (P,,,) we can prove as in Lemma 4.1 that a solution exists
and that

(5.5) lteenl] < €
where ¢ is independent of ¢, ¢ and m. Thus as ¢ -» 0, m — oo,

(5.6) Uyom = U, weaklyin V,

e

and thus strongly in [L*(I')]* and a.e. on I'. Moreover, Lemma 4.2 obviously holds
for {b,(tyeom)} With o in (4.15) independent of &, m and g. Thus

(5.7) bo(Uneom) = %, weakly in L'(I).
Note that (5.5) implies that, as ¢ — 0,

(5.8) u,>u weaklyin V.
On the other hand, from (4.15) we easily find that

(5.9) %o = x weakly in L'(T).
From (5.4) we obtain that

(5.10) lgrad w,(e(ttem)) [rreroy < ¢

where ¢ is independent of ¢, m, ¢ and thus, as ¢ - 0, n - o0,
(5.11) grad w,(e(u,pm) » ¥, weakly in [IZ'(Q)]".

From (5.4) we obtain, by passing to the limit ¢ > 0 m — co and by density, the
variational equality

(5.12) (P, e(v)) + J‘ xoydl = (I,v) YveV.

I's

As in Proposition 4.1, by means of the monotonicity argument we obtain that
(5.13) ¥, = grad wy(e(u,))
where we make use of the fact that

(5.14) lim f by(Uneom) Uneom AT =J Loy, AT .
I's T's

£—=0
m=— o

The proof of this last assertion is the same as that of Lemma 4.3.
Further, we pass to the limit with respect to ¢. From (5.12) and (5.13) we find,
due to the convexity of w, (use (3.3)), the relation

(5.15) L [wy(e(0)) — w,(e(u)] 42 + J 10w — uxg) AT = (v — u)) Voe V.

I's
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In (5.15) Jet us take v such that W (g(v)) < oo. Then, due to (5.1), fw,(¢(v)) d2 < ¢ and
from (5.15) we obtain that

(5.16) j w(e(u,)) 42 < ¢
Q2
and therefore due to (5.8) the relation (5.2) holds. From (5.15) we find, as ¢ — 0,

(5.17) liminfUng(s(v)) dQ + LxeuN dl"] =
> lim inf[ j () 42 + f

I's

XeUne dr + (l’ v = ua):]

for every ve V with W(g(v)) < co. But from (5.1), (5.2), (5.9) and the fact that

(5.18) limf Aoy, AT =J quy dI
=0 Jre Is
(the proof is the same as that of Lemma 5.3) we conclude that the inequality
(5.19) W(e(v)) — W(e(u)) + j 10w — uy) AT = (Lo — u) Yo e V
I's

is satisfied by ueV with W(g(u)) < co. Finally, as in part b) of the proof of
Proposition 4.1 we show (4.31) and thus u is a solution of problem (P), q.e.d.

It should be noted that the regularization of w defined by (i), (ii), (iii) seems to be
very reasonable and useful for practical applications (cf. also [2], [3]). Regularizations
of more technical character, as the one based on the Yosida approximation of w,
can also be applied affecting only slightly the proof of Proposition 5.1. It is wotrh
noting that the imbedding W*?(Q) = L*(I') is necessary for the whole proof and
especially for the proof of Lemma 4.3. Therefore we have assumed that p > n where
where n = 2 or 3 depending on the dimensions of the body consideted. Of course,
the proofs are general and hold for any n.
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Souhrn

VARIACNI-HEMIVARTACNI NEROVNOSTI V NELINEARNI ELASTICITE.
KOERCIVNI PRIPAD

P. D. PANAGIOTOPOULOS

Je dokdzana existence feSeni problému nelinearni elasticity s neklasickymi okrajovymi pod-
minkami, kdy vztah mezi odpovidajicimi dudlnimi veli¢inami je din pomoci nemonotonni a
obecné nehladké relace. Matematickd formulace vede na problematiku nehladké % nekonvexni
optimalizace a ve slabé formé& k nalezeni tzv. substacionarnich bodi daného potenncialu.

Pe3ome

BAPUAIIMMOHHBIE - ITOJIVBAPMALIMOHHBIE HEPABEHCTBA
B HEJIMHEMHOM DJIACTUYHOCTU. KOOPLIUTUBHBIN CIIVUAU

P. D. PANAGIOTOPOULOS

Jloxa3aHo CyLIECTBOBAHME PELICHUs] MPOGJIEMbI HEJIMHEHHOM 3JIACTHYHOCTH C HEKIIACCUYECKUMH
KpaeBbIMH YCJIIOBHAMHM B Cliyyae, KOrJa COOTBETCTBYIOIIME [BOHCTBEHHBIE BEJMYMHBI CBSA3aHBI
HEMOHOTOHHBIM M, BOOOI[E TOBOPS, HE TJAIKNM OTHOIEHWeM. MaTtematnyeckass GopmynupoBka
BeJeT K mpobJjieMe HerjaJKoi M HEBBIMYKJIOW ONTUMM3ALUM M B C1aboil opMe K OTBHICKAHHIO
T. H. CyOCTalIMOHAPHBIX TOYEK JaHHOTO MOTEHIMAIA.
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