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VARIATIONAL-HEMIVARIATIONAL INEQUALITIES 
IN NONLINEAR ELASTICITY. THE COERCIVE CASE 

P. D. PANAGIOTOPOULOS 

(Received September 25, 1985) 

Summary. Existence of a solution of the problem of nonlinear elasticity with non-classical 
boundary conditions, when the relationship between the corresponding dual quantities is given 
in terms of a nonmonotone and generally multivalued relation. The mathematical formulation 
leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemi-
variational inequalities and to the determination of the so called substationary points of the given 
potential. 

Keywords: Variational-hemivariational inequalities, nonlinear elasticity, substationary points 
of the potential. 
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1. INTRODUCTION 

In mechanics and physics there is a variety of variational inequality formulations 
which arise when the material laws and/or the boundary conditions are derived 
by a convex, generally not everywhere differentiable and finite superpotential (cf. 
[1], [2], [3]). The variational inequalities have a precise physical meaning: they 
express the principle of virtual work (or power) in its inequality form, introduced 
by Fourier in 1823 and since then only very rarely used (cf. e.g. [3] p. 124, 374). 
Prototypes of BVP's leading to variational inequalities are the Signorini-Fichera 
problem [4], [5] and the friction problem in the theory of elasticity [2]. The con­
vexity of the superpotentials implies the monotonicity of the corresponding stress-
strain or reaction-displacement laws. However, there exists a variety of nonmonotone 
laws which manifests the need for the derivation of variational formulations for 
nonconvex and not everywhere differentiable and finite energy functions (nonconvex 
superpotentials). Such variational formulations have been called by the author 
hemivariational inequalities [6], [7] and describe large families of important problems 
in physics and engineering. Similarly to the variational inequalities, the hemivariation­
al inequalities express the principle of virtual work (or power) in its inequality form 
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and therefore we call all the corresponding BVP's, both in the case of convexity 
and nonconvexity, unilateral BVP's. It should also be noted that the hemivariational 
inequalities are closely connected to the notion of the generalized gradient of Clarke-
Rockafellar (see e.g. [8], [9]), which in the case of lack of convexity plays the same 
role as the subdifferential in the case of convexity (at least for static mechanical 
problems). 

In [10], [11], [12] we studied coercive and semicoercive hemivariational ine­
qualities arising in the static theory of Kirchhoff and von Karman plates, whereas 
in [3], [13]. [14] we dealt with static hemivariational inequalities in the theory 
of nonmonotone semipermeability problems. Several applications in engineering 
can be found in [7], [15] and [16]. 

Here we formulate hemivariational inequalities for twodimensional and three-
dimensional coercive problems in the theory of nonlinear elasticity, holonomic 
elastoplasticity, and the theory of locking materials, and study the resulting mathe­
matical problems. Compactness arguments are combined with monotonicity argu­
ments to yield approximation and existence results for BVP's arising for materials 
which obey monotone stress-strain laws and are formulated for nonmonotone 
boundary conditions [3], 

2. CLASSICAL FORMULATIONS OF THE PROBLEMS AND DERIVATION 
OF THE VARIATIONAL EXPRESSIONS 

Let Q be an open, bounded, connected subset of R3 occupied by a deformable 
body in its undeformed state. We denote by F the boundary of Q which is assumed 
to be Lipschitzian. 

Let a = {r/0} and e = {efj)? i,j = 1 — 3 be respectively the stress and strain tensors 
of the body and letf = {fj u = {uj be the volume force and displacement vectors, 
respectively denote by n = {raj the outward unit normal vector to F; then St = 
= (7^ (summation convention) are the boundary forces. Let SN ans ST be their 
normal and tangential components, respectively. The corresponding boundary 
displacement components are uN and uT (see Fig. la). We assume further that the 
boundary is divided into three disjoint open subsets FU9 FF9 and Fs, i.e. F = F^ u 
u FF \J Fs. On Fv the displacements are given, i.e., 

(2.1) ut = Ui9 U( = Ut(x) on rU9 

on FF the forces are prescribed, i.e., 

(2.2) Si = Fi, Fi = Fi(x) on FF, 

and on Fs nonmonotone boundary conditions hold causing, as we shall see further, 
the formulation of the problem as a hemivariational inequality ([3] Ch. 4). We 
consider the following model problems: 
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P r o b l e m 1 (P x ) : We assume that the tangential forces are given on Fs, i.e. 

(2.3) STi = CTi, CTi = CTi(x), 

and that if 

(2.3) uN < 0 then SN = 0 

and if 

(2.3b) uN = 0 then - S * = fc(wiV) , 

where k = k(uN) is generally a nonmonotone function of u^. Relations (2.3a, b) 

describe the unilateral contact problem of a deformable body with a granular support 

or concrete, which causes the nonmonotone reaction-displacement diagram. As we 

shall see further the function k = k(uN) may be very general and may include jumps 
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Fig. 1. Nonmonotone boundary conditions. 
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which describe local crushing effects. So, e.g., in Fig. lb — dotted line — we have 

a crushing of the support at point A with ideally brittle (AB) or semibrittle behaviour 

(AB«). 

P r o b l e m 2 (P2): Again (2.3) holds and SN is related to uN by a law whose graph 
is depicted in Fig. lc or Fig. Id. The first graph describes the behaviour of adhesive 
joints (the joint can sustain a small traction) or of boundary cracks, the second graph 
describes the stress-strain diagram of springs simulating the behaviour of reinforced 
concrete (e.g. in the case of anchoring). In this respect Scanlon's effect for tensile 
stress in reinforced concrete is worth noting (see e.g. [3] p. 152, [17] and [18], and 
cf. Fig. Id). Due to the multivalued character of the precious laws we may write 
them in the form 

(2.4) -SNepN(uN) 

where $N: R -> R are multivalued functions with graphs (£, /?#(£)) given in Figs, lc 
and Id. 

P r o b l e m 3 (P3): We assume that in this problem Q c R2 and that SN is given 

on rs. i.e. 

(2.5) SN = CN, CN = CN(x), 

and that 

(2.6) -STepT(uT) 

where fiT: R -» R is a multivalued function. 
We can have, for instance, the law of Fig. le which describes cracking and/or 

adhesive behaviour in the tangential direction, or the laws of Figs. If and lg which 
describe more realistic frictional effects and nonmonotone shearing. 

Due to the nonmonotone character of the multivalued functions (or multifunctions) 
fiN and j]T a convex analysis approach to this problem is not possible. Note that if 
pN and/or fiT were monotone increasing, then we could determine convex, lower 
semicontinuous and proper functional jN and j T such that pN = djN and J3T = 
= djT (here 8 denotes the subdifferentiation operator, see e.g. [3], Ch. 3). As we shall 
see. further, in the present nonmonotone cases, we can determine locally Lipschitz 
continuous functions j N : R -» R and j T : R -> R such that ([19]) 

(2.7) pN = d'jN and $T = d'jT 

where d' denotes the generalized gradient of Clarke (see e.g. [8], [9], [3]). jN a n d j r 

are the ""potentials" of the reaction-displacement law or the nonconvex super-
potentials in the terminology of [6], [7] and they result, roughly speaking, by "inter-
grating" $N and pT over R. 

In the framework of small strains and nonlinear monotone elastic behaviour 
of the body Q we write the relations 

(2.8) crUJ + ft = 0 , 
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(2-9) Cy = i ( u u + uJ,t) > 

(210) (7 6 dw(s) e R6(ox R4) if Q cz /^3(or /^2) 

where the comma denotes differentiation, O1 is the subdifferential of convex analysis 
and w: R6 ->(— oo, + o o ] , w =|= oo, is a convex lower semicontinuous function. 
It is well-known, [20], [3] (Ch. 3 and Ch. 6) that with appropriate choice of w (2A0) 
describes in general Hooke's elastic materials, the elastic ideally locking materials, 
the elastic workhardening materials, the elastic-ideally "plastic" materials (Hencky's 
theory) and the materials obeying the law of the deformation theory of plasticity. 
The two last classes of materials belong to the so-called "holonomic" plasticity 
in order to distinguish them from the flow theory of plasticity. By definition (2.4) 
and (2.6) are equivalent (due to (2.7)) to the hemivariational inequalities (2.11) 

(2.11) jN(uN, vN - uN) ^ -SN(vN - uN) VvNeR9 

(2.12) JT(UT> VT — UT) ^ —ST(vT — uT) MvT e R , 

respectively. Here jN(% •) (and analogously jT(% •)) is the directional derivative 
of Clarke defined by 

(2.13) fN(C, z) - lim ropMC + * + ^ ) - M C + *) . 
fc->0 k 

A-+0 + 

(2A0) is by definition equivalent to the variational inequality 

(2.14) w[f) - w(s) ^ au(^j - e y ) Vs* G R* (or R6) . 

From (2.8) and (2.9) we obtain the variational equality (formal application of the 
Green-Gauss theorem) 

(2-15) °tA*tÁv) - su(u))áQ = / Í ( » Í - «,) dfí + 

+ ľ F ^ , - ii,) dF + ľ [ S Д % - uN) + S г ( v г - и г ) ] dF Vi? є Uad 

JГғ J Гs 

for u e Uad. We denote by Uad the set of all kinematically admissible displacements, 
i.e. Uad = {v | veU, vt = U, on F^}, where U is the displacement space which 
will be chosen later. 

Using (2.15) we obtain from (2.14) with (2.11) and (2.12) the following variational-
hemivariational inequalities: 

Find u e Uad with w(s(u)) < oo such as to satisfy for (Pj) and (P 2) 

(2.16) f [w(s(v)) - W(e(м))] dí2 + f fN(uN, vN - u„) dГ 
J ß J r s 

> 
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= J ft(vt - ut) dQ + j Fi(vi - Ui) dr + f Cr/(vTi - uTi) dF Vv G Uad , 
J ft J TF J TS 

and for (P3) 

(2A7) J [w(e(vj) - w(e(u))] dQ + jT(uT, vT - ur) dF ^ 

^ f f(v, - ut) dQ + f F,(vt- - Ui) dF + f CN(vN - u„) dF Vv G Uad . 
J ft J TF J TS 

It is worth noting that if the (a, e)-law is nonmonotone and is given by a e~d'w(e), 
where w is nonconvex (e.g. for composite materials, or for "complete" laws, see e.g. 
[3], [7] and [18](, then in (2.16) and (2A7) the term w(e(v)) - w(e(u)) is replaced 
by wT(e(u), e(v — u)), where wT(% •) is generally the upper-subderivative of Rocka-
fellar [9]. (2A6) and (2A7) express the principle of virtual work for the respective 
problems. The hemivariational inequalities do not imply minimum problems but 
only substationarity problems for the total potential energy, see e.g. [3], [7]. It is 
worth noting that any local minimum of the potential energy is also a substationarity 
point but not conversely. Moreover, due to the lack of convexity there is generally 
nonuniqueness of the solution. As usual, for the corresponding dynamic p rob lems / 
is replaced in (2.16) and (2.17) by the t e r m / — Q d1ui\dt2. Initial conditions for the 
displacements and velocities must be considered on the additional assumption 
of small displacements. 

3. FUNCTIONAL FRAMEWORK AND IMPLEMENTATION 
OF THE VARIATIONAL EXPRESSIONS 

We further assume that Ui,vte W1,P(Q) with p > 3 for Q <= R3 and p > 2 for 
Q cz R2 (the well-known Sobolev space, see e.g., [21]) and that F£GL€'(FF) and CN 

and CTi are elements of Lq\r$) (1/g + ljqr = 1 and q ^ 1 arbitrary). Moreover, 
we assume that Ut e V(rv) which is a space with the property that there exists uf G 
G W1,p such that uf \T = Ut on F^uf/F is the trace of uf on F which is an element 
on W1"1^'^)). We further assume that rv is nonempty. For the sake of simplicity 
let Ut = 0 on rv and thus Uad = {v/vf e W^P(Q), vt = 0 on rv}. (If Ut * 0 on f , 
we perform the translation v = v — u* and u = u — u*). We also assume that 
fteLp\Q) (\jp + \\p' = 1), and let (•, •) denote the duality pairing on LP(Q) x 
x LP\Q). 

If grad w(*) exists as is the case in the deformation theory of plasticity, the polygonal 
stress-strain laws etc., then it is easy to show that (2.16), for instance, is equivalent 
to the hemivariational inequality 

(3.1) f [MM] 8<̂ - _ M) dQ + f ; o ( % j -N _ UN) dr ^ 
Jn L ds Aij }rs 
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> /,(»-. - щ) áQ + í Ft(vt - u,) dF + Г CГI(SГI - uTÍ) dF Vv є Uađ . 
Я J T> J Гs 

This results easily by setting in (2A6) v = u + X(v — u), X > 0, for A -> 0+. 
Note that j^u^, •) is positively homogeneous. Conversely, from (3.1) and the ob­
vious inequality 

(3.2) w(є(v)) - w(s(u)) ^ 
дe(ü) Дeř>-«) 

holding for every s(v) e R6 we get (2.16). It is also easy to verify that (2.16) (or (3.1)) 
is equivalent to the hemivariational inequality 

(3-3) f P i p ] 8«(5 - ") dQ + \ !>»' g« -«*) dr ̂  

^ f /.<»i - «,) dfi + f F,(p, - «,) dE + f Cr£(»„ - uTi) dr Vt5 e Uad . 
J n J rF J r s 

Indeed, (3.1) together with the monotonicity inequality 

(3.4) l8^} _ M<u))l (_ __ u) ^ Q V£(_)? g(w) e ^6 (of r ) 
L ^ 3fi Jy 

implies (3.1). Conversely, in (3.3) we put v = u + A(v — u), 0 < A < 1 and due to the 
monotonicity of X -» [(grad w(s(u + A(v — u)))0- el7(v — u)] we get the inequality 
(3.1) as the limit for X -» 0+. Analogously we may argue for (2.17) and for every 
variational hemivariational inequality of this form. Let us set vt — ut = ±(pte C™(Q) 
in (3.1). This implies 

(3.5) [gradw(8(ii))]y j+/ l-=0 

in the sense of distributions on Q. But due to ft e LF'(Q) we may apply the Green-
Grauss theorem and write (215) in the given functional framework, for a^ = 
= [grad w(e(M))]l7. The resulting expression together with (3.3) implies first the 
boundary conditions (2.2) and (2.3) as equalities in the space [W1_1/p 'p(F)]', and 
secondly the boundary condition (2.4) in the weak form, 

(3.6) f fN(uN, vN - uN) dr ^ - <SN, vN - uN> V% e w1 - l'"-"(r). 
Jrs 

where <•, •> denotes the duality pairing on Wi~lp>p(r) x [Wx~1/P*p(r)]f. 
Similarly we may argue for (2.17). The aforementioned arguments do not hold 

in the general case. i.e. when w(*) is nondifferentiable, for a locking material. As 
usual in the variational approach (cf. [2] p. 286), in this case (2.16) and (2.17) may 
be considered as definitions, from the standpoint of mechanics, of the problem. 
For a material obeying the law of classical deformation theory of plasticity we obtain, 
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using the notation of [23] Ch, 8, that 

(3.7) w(e(u)) = ^ ( e ; ; ( w ) ) 2 + \ f ' " ' " W ) ^ 
Jo 

where K is the bulk modulus of the material. Note that vv(*) is a strictly convex 
and continuously differentiable function of s. Then (2A6) and (2.17) become (cf. also 
(3A)): Find u e Uad such as to satisfy for (P x) and (P 2) 

(3.8) f [(K - i fi(r2(u))) su(u) su(v - u) + 2 //(F2(u)) stj(u) stj(v - u)] dQ + 
J n 

jN(uN, vN - uN) dF ^ fi(vi - ut) dQ + 
s J& 

+ CTi(vTi - uTi) 

J rs 

Ffa -щ)dГ + 
Гғ 

\аГ V» elf . 

For (P 3) an analogous formulation is obtained. For such a material and under the 

assumptions of [23] Ch. 8 a study in H1 — space would be more adequate. However, 

in the functional framework presented herein we may study a generalization of such 

a material resulting by replacing the linear relation between au and su by a super-

linear one e.g. by assuming that in (3.7) K is not a constant but an appropriate 

differentiable and convex function of su(u), and by modifying appropriately the 

assumptions on ji. 

For a linear elastic ideally locking material we have 

(3-9) w(s) = iCijhkSijShk + IR(s) 

where C = {Cijhk}, with Cijhk e Lҷ(Q), is Hooke's strain tensor with the well-known 
symmetry and ellipticity properties, and K is a convex closed subset of the strain 
space defined by the locking criterion; Ig(s) — {0 if s e K, oo otherwise). For a three-
dimensional generalization of a polygonal stress-strain law we refer to [3] p. 97. 
Note that in order to treat cases where w(m) can take the value + oo we define the 
functional 

, w(s)dQ if w(s)el}(Q), 
(3.10) W(s) - ' {I 

oo otherwise. 

W(') is a convex, proper and lower semicontinuous functional on [L p (0)] 6 . For 

atj e IF(Q) the relation a e dW(s) is the extension for stj, atj e I?(Q) (cf. [20]) of the 

relation (2A0) holding a.e. on Q. 

The method which we will follow for the study of the arising variational-hemi-

variational inequalities assumes much more general "functions" @N rnd fiT than 

the ones leading to (P x), (P 2) and (P 3 ) : Let b: R -> R be a locally bounded measur-
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able function, i.e. b e L°°(I) on every compact subset I of R (see Fig. 2a). Function 
B (Fig. 2b) results, roughly speaking, from b by "filling in the discontinuities" of 
the graph of b, and is a multivalued function. Mathematically the same can b e 
achieved in the following way: 

ЫІU Ь(1)A 

(a) (b) 

Fig. 2. Illustration of the general form of the boundary conditions. 

For 5 > 0 and £ e R we define 

(3.11) Bd(£) = esssup b(Ci) and 

(3.12) _b^)=-essinfb(^) 

which are increasing and decreasing functions of 3, respectively. Therefore the 
limit as 8 -> 0 exists. We denote by 5(£) and _b(£) the limits lim 5d(£,) and lim -b5(^), 

5 - 0 <5~*oo 

respectively, and define the multivalued function 

(313) $(Z) = [_b(Z),B(S)l 

where [•, •] denotes a closed interval in R. So, e.g., in Fig. 2a we have -b(£0) == FT 
and B(Q = jff2 and therefore 6({0) = [>i, )52]. 

Chang [19] has shown that if b(£±0) exists at every { e R, then a locally Lipschitz 
continuous function <p: R -* R can be determined such that 

(3.14) í(f)-ð>(í). 
Here we can write, up to a constant, the equality <?(<.;) = j ^ b(^) d^. However, 
in what follows, only the expression <p°(£, z) defined by 

(3.15) <p°(Ç9 z) = lim sup 
л-»o 

A-+0 + 

Ь(íi) díi 
ś + ft 

is needed; for the mechanical problem this constitutes a remark of major importance. 
According to [7] the <p(') is called superpotential of the boundary constraint and 
<p°(%, z) is simply the virtual wotk of the constraint at a displacement £ for a virtual 
displacement z. 
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Let us further introduce a linear continuous functional on the displacement 
space, / = {/J, lte [Wl>p(Q)]f defined by the right hand sides of (2.16) and (2.17) 
and let us denote by Vthe kinematically admissible subspace 

(3.16) V= {v\v = ( v j , vt e W^P(Q), v \r = o on rv} . 

In the next sections we deal with the following problem: 

(P): Find ue Vsuch that 

(3.17) W(e(v)) - W(e(u)) + f <p°(uN9 vN - uN) dP ^ (I, v - u) Vv e V. 
JTs 

The study is completely analogous when <p represents j T and not j N . We shall 
distinguish two cases: in the first, called "differentiable case" we assume that 
grad w(') exists everywhere, in the second w may take the value + oo, w ^ oo and is 
generally lower semicontinuous and not everywhere differentiable ("nondifferentiable 
case"). 

4. STUDY OF THE DIFFERENTIABLE CASE 
% 

Let us consider a mollifier p, i.e., p e C*(— 1, +1) with p ^ 0 and jl™ p(£) d£ = 1. 
Let 

(4.1) ^ ) = IP(a) 

and let us form the convolution 

(4.2) be = pe*b, e > 0 . 

It is well-known that be e C00^). We call be the "regularized form of b". We may 
now pose the following variational equality (the regularized form of (P)). 

(Pe): Find we e Vsuch that 

(4.3) (gгad w(e(и.)), є(t>)) + be{uNe)vNdr = (l,v) VÍ; e V. 
TS 

In order to discretize (Pe) we consider a basis {wj of V. Let Vm be the corresponding 
m-dimensional subspace of V Then we formulate the finite-dimensional problem 

\*em)' 

(Pem): Find uem e Vm such that 

(4.4) (grd w(e(uem)), e(v)) + | be(uN8m) vN dP = (/, v) Mv e Vm . 

Jrs 

Further, we assume that for some £, 

(4.5) esssup b(£) rg essinf b(<J) . 
( - o o , - $ ) ( $ , + oo) 
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Then, without loss of generality, using an appropriate translation of the coordinate 
axes we can assume that for some £ 

(4.6) essup b(f) = 0 = essinf &(<*) 
( -oo.-O (€,+ «>) 

Moreover, we assume that the energy function w has the following property: For 
every u = {u j , ut e W1,P(Q) there exists c > 0 such that 

(4.7) (grad w(e(v)), в(v)) ià c Ы»)e,X«')]'/2d---

It can be easily verified that (4.7) is fulfilled for the three- or twodimensional generaliza­

tions of the polynomial laws (e.g. for a ~ e6, Q = n — 1 + r, n = 2 or 3 and 

r > 0) [28], and the superlinear generalizations of the deformation theory of plasticity. 

At this point we can also mention the regularized elastici deally locking laws, a wide 

class of materials of the hyperelastic type, as well as the three- or twodimensional 

generalizations of rubber-like materials [29]. 

Lemma 4.1. Suppose that (4.6) and (4.7) hold. Then (PEm) has a solution. 

Proof. The imbedding WUp(Q) c C°(D) c C°(F) c L°°(r) for p > n implies 
that we can write (4.4) in the form 

(4.8) (T(u£m),v) = 0 VveV m , 

where T: Vm -» Vm. We shall apply Brouwer's fixed point theorem in the following 
well-known version ([24], p. 53): if / : Rm -> Rm is continuous and such that for 
r > 0, Yj{f{a))i ai = 0 Va = {a J with |a | = r, then a0 exists with |a0 | ^ r such that 

i 

f(a0) = 0. Indeed, (4.6) implies that we can determine Qt > 0 and Q2 > 0 such that 

&.(£) = 0 if f > Q19 bB(£) = 0 if { < Ql and \bM) = Qi ^ \t\ < Qi • 

Moreover, due to (4.7) and Korn's first inequality in W1 ^(^-spaces p > 1 we have 
the relation(1) 

(4.9) (grad w(e(u)), e(u)) = ct f [ely(ii) c y (u) ]^ 2 d.Q = c2||up Vu e V, 
J-Q 

c1? c2 const > 0 

where || - | denotes the [W1,p(Q)]-norm, with n = 3 or 2. Thus we find that 

(1) We refer the reader to [20] [27] [30] [31]. For a counterexample in the case p = 1 cf. [32]. 
Korn's inequality implies that £•: u-^s(u) is a continuous linear function from [W1,p(Q)]n to 
[Lp(Q)2n. 
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(4.10) (T(w,m), w£m) .> cju^p + wN£m b£(wN£m) dF - pi* \\uem\\ ^ 
JTs 

^ c1||wem|jp - c2\\ueml - c3 p > 3 for Q a R3,p > 2 for Q c W2 

since 

(4.11). be(uNem)uNemdr = + ^ 0 - Oi^mesFs. 
J T5 J 1 t/NcmC*) | > (? 1 J I "NemO) | ^ 01 

Here JJ - jj^ denotes the [lW1,p(;Qy]n-norm and cu c2, c3 are positive constants. (4.10) 
implies, by setting in the foregoing version of Brouwer's fixed point theorem u£m = 

m 

= Y, aiwt a n d f(a)i = (T(uem), wf), that (4.8) has a solution such that ||wem|| < c, 

q.e.d. 
Further, we shall investigate the behaviour of the solution w£m of the finite dimen­

sional problem (P£m) as e -> 0 and m -> oo. Due to the fact that {w£m} is bounded 
in Vwe may extract a subsequence again denoted by {w£m} such that 

(4.12) usm -> u weakly in V. 

However, ([33], p. 344) WliP(Q) is compactly imbedded into U(F), q > 1; thus 
denoting here for the sake of simplicity the trace on F as the function itself, we 
obtain that(p > n) 

(4.13) w£m->w strongly in [L2(F)]" 

and accordingly 

(4.14) u£m -> u a.e. on F . 

Further, we shall investigate the behaviour of be(uNem) as s -> 0 and m -> oo. 

Lemma 4.2. On the assumption (4.6), {be(uNem)} is weakly precompact in L}(rs)-

Proof. By the Dunford-Pettis theorem (see [25], p. 139) we will show that for 
each a > 0 a constant can be determined such that for g a Fs with mes g < y 

(4.15) \K(uNen) áT\ < a 

holds. Let us consider the inequality (cf. [26]) 

(4.16) \be(i) Z\ + ?;0 sup \bB(z)\ze0Mt)\ 

which implies that 

(4.17) f \be(uNem)\ ar <; - i f \be(uNen) uNem\ dr + [ sup \be(uNen)\ dr. 
J £ 0 J , J,|-N„(*)IS«0 
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Due to (4.9) and ||wem]| < c we have 

bE(uNEm) uNem dF + 
\UNem(x)\>Qi. 

b£(uNem) uNem dF + 
rs 

(4.18) f \K(uNEm)uNem\dr = 
Jrs 

+ \K(uNem)uNem\dr 
J l«2vr«m(^)l^ei 

+ 2 lfea(wNJ uNem\ dF = - (grad w(e(uem)), £(uem)) + 
J \UNem(x)\^Ql 

+ 0> uem) + 2 |6«K«w) WNJ dF ^ c + 2QXQ2 mes Fs . 
J \UN£m(x)\^Qi 

We choose £o s u c n l n a t 

(4.19) i J \be(uNem) uNfiw| dF < ? 
£oJrs

 2 

for all m and e. Let y be such that for mesg < y (cf. also (4.2)) 

(4.20) f sup be(uNem)| dF = y essup |6(£)| < -? . 
J g |ttNem<*)l.£«0 |« |S«0+1 2 

Then (4.17), (4.18), (4.19) and (4.20) imply (4.15), qfe.d. 
From Lemma 4.2 we find that as e -> 0 and m -> oo, 

(4.21) K(uNsm)-»X weakly in l}(rs). 

Proposition 4.1. u is a solution of the problem (P). 

Proof. In order to pass to the limit e -> 0, m -> oo in (4.4) we have to pay special 
attention to the term grad e(uem), e(vj). The following method is a combination of the 
well-known monotonicity argument (Minty's method) which is often encountered 
in the theory of variational inequalities, with a compactness argument. 

a) We shall first show that (4.4) and (4.21) imply, as e -> 0 and m -> oo, the 
equality 

(4.22) (grad w(e(u% e(v)) + f %vN dF = (Z, v) Vv e Vm . 
Jrs 

Indeed, ve Vm c [W^p(Q)]n, v\r e [L°°(F)]n and thus vN e L°°(F) (n = {nt} e 
e [L°°(F)2, cf. [23] p. 19). Accordingly, jbevN -> /#%. Vet us formulate the non-
negative expression 

(4.23) Xm = (grad W(s(usm)) - grad w(e(cp)), e(usm) - e(cp)) ^ 0 V<p e [Wl •"(«)]" 
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which by means of (4.4) becomes 

(4.24) Xm = (I, uem) - f be(uNem) uNem dT - (grad w(e(uem)), e(cp)) -
JTS 

- (grad w(s(cp)), s(uem - ?)) = 0 Vc^e [W1'P(°)T 

From (4.4) we easily obtain that the sequence |(grad w(s(uem)), ^m% where u£W, vm e 
e Vm, is bounded and thus ||grad w(s(uem))\\iLP>mf ^ c. Therefore, as e -> 0, m -> oo, 

«(« + 1) 
(4.25) grad w(s(u£W)) -> <P weakly in [Lp (Q)\\ n = - ^ 

Thus (4.4) (4.21) and (4.25) yield the equality 

(4.26) (W9 s(v)) + j x% ^ = (/, v) Vv e Vw 

JTs 

and its extension by density to V(i.e. V v e V). We denite this extension by (4.26a). 

We assume at the moment that 

(4.27) lim I be(uNem) uNem dF = | XUN ^ • 
J Ts J rs 

This last relation will be shown later in lemma 4.3. From (4.27) and (4.24), (4.25) 
(4.26a) we find that 

(4.28) lim Kw = (W, s(u - cp)) - (grad w(s(cp% s(u - cp)) ^ 0 V<p e [ W 1 ^ ) ] " . 

In (4.28) let us set u — <D = Afl, A > 0. We get the relation 

(4.29) (W, s(6)) - (grad w(s(u - Afl)), e(0)) = 0 Vfl e [W1'p(Q)]n . 

Due to the monotonicity of X -> (grad w(e(u — X9)), s(Q)), we may take X -> 0 + in 
(4.29), thus finding for ± fl that 

(4.30) W = grad w(s(u)) . 

(4.30) and (4.26) imply (4.22). 
b) It remains to show that x e d'<p(uN) a.e. on Fs, or equivalently, that 

(4.31) x e 6(%) i.e. _&(%) ^ x = %N) a-e. on Fs . 

Given y > 0, due to (4.14) we may choose g c Fs with mesg < 7 such that, as e -> 0 
m -> 00 (Egoroff's theorem), 

(4.32) uiV£W -> uN uniformly on Fs — g 

where uNeLcx>(rs - g). (4.32) implies that for any <5 > 0 we may find m0 > 2/<5 
and e0 < <5/2 such that for m > m0 and s < e0, 

(4.33) |wNem(x) - UN(X) < <5/2 for all x e Fs - g . 
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From (4.2) we obtain 

(4.34) btf) = (Pe * 6) ({) = f+ '&(. - 0 p8(t) dt g 
J —_ 

« + « 

< 

I.Є. 

(4.35) 

/* + e 

esssup b(£ - t) pe(t) dt = esssup b(£ — t) 
M-5« J - 8 l-l_le 

ba(uNem(x)) = esssup 6(<J). 
I«iv.m(^)-.l_ie 

But due to (4.33) and (3.12) (4.35) implies that 

(4.36) esssup b(£) g esssup b(£) S essup b(£) = h£uN(x)) 
i«iVem(^)-.|__E |«_V_m(x)-^|<5/2 |u*(*) ~ £| _I <? 

and analogously 

(4-37) _6,(%(x))^&8(M„e m(x)). 

From (4.36, 37) we obtain for e ^ 0 a.e. on Fs — g and e e n°(rs — g) that 

(4.38) I _ bd(uN(x)) e d r s \ b.(uNJx)) e dT < f S . M * ) ) e dT , 
Jrs-g J rs — g Jrs~g 

which implies as e -> 0, m —> co, 

(4.39) f M"N(X)) e d r ^ t xedr^t B3(uN(xj) e dF . 
J rs-g Jrs-g Jrs-g 

This last relation implies by passing to the limit S -> 0 + the relation 

(4.40) J -b(uN(x)) e dF g | ^ dF g f b(MN(*)) e dF . 
J rs-g J rs-g Jrs-g 

From (4.40) we obtain, since e is arbitrary, that 

(4.41) x e [-b(wH), b(wN)] a-e- on Fs - g , 

and by taking y as small as possible we get (4.31), q.e.d. 
In order to complete the proof we have to show (4.27). 

Lemma 4.3. (4.27) holds. 

Proof. We recall (4.12), (4A3) and (4.21) and form the difference 

(4.42) \pa(uNam) uNem - xuN] dF = be(uNem) (uNem - uN) dF + 
J rs Jrs 

uN(be(uNem) - x)dr = A + B . 
Гs 

263 



Due to imbeddings WUp(Q) c C°(Q) c C°(F) c L°°(F), uN eL°°(F) and due to 
(4.21), limB = 0. We estimate the first summand in (4.42). From WlfP(Q) c L00^) 
and (4A2) we get that 

(4.43) uNem -> uN strongly in L°°(F) . 

Similarly (4.21) implies 

(4.44) \\be(uNem)\\LHrs) < c2 . 

Therefore 

ú \\K(u JVím;||L»(rs) || "JV, (4.45) |A | = bfi(
wlvem) (uNsm ~ uN) dF 

JTS 

From (4.44) and (4.45) we obtain that lim (A + B) = 0, q.e.d. 

uN — u -V|,L«(Гs) 

5. STUDY OF THE NONDIFFERENTIABLE CASE 

If in problem (P) the internal energy function w(>) is nondifferentiabfe, as is the 
case e.g. for ideally locking materials, then we introduce a sequence of convex 
functions wQ depending on a parameter Q such that 

(i) as Q -> 0 , 

(5.1) wp(e(v)) dQ -* W(e(v)) ЧveV; 

(ii) if vQ -> v weakly in Vfor Q -> 0 and jnWQ(e(vQ)) dQ < c, then 

(5.2) lim inf j we(e(vQ)) dQ ^ W(e(v)) ; 
e-*° Jn 

(iii) relation (4.7) holds for every wp with c independent of O. 
Now we define the following regularized problem (PeQ). 

(PeQ): Find uEp e Vsuch that 

(5.3) (gгad w0(e(uee)), e(v)) + be(uNвв) vN áГ = (l, v) Ü є V, 

and by means of a basis the problem (PSQm). 
(PeQm): Find uEQm e Vm such that 

/» 
(5.4) (grad wQ(s(uEQm)), e(v)) + be(uNeQmyvN dF = (/, v) VveVm. 

JTS 

Proposition 5.1. Suppose that (4.6) holds and that wQ satisfies (i), (ii), (iii). Then (P) 
has a solution. 
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Proof. For problem (PeQm) we can prove as in Lemma 4A that a solution exists 
and that 

(5.5) \\uEQm\\ < c 

where c is independent of e, Q and m. Thus as s -> 0, m -> oo, 

(5.6) uEQm -> uQ weakly in V, 

and thus strongly in [L2(F)]2 and a.e. on F. Moreover, Lemma 4.2 obviously holds 
for {bE(uNEQm)} with a in (4A5) independent of e, m and Q. Thus 

(5.7) be(uNeom) -> xe weakly in Ii(Fs). 

Note that (5.5) implies that, as Q -> 0, 

(5.8) uQ -> u weakly in V. 

On the other hand, from (4A5) we easily find that 

(5.9) xe -> X weakly in LX(FS) . 

From (5.4) we obtain that 

(5.10) \\gmdwQ(s(ueQm))\\lLP,wf < c 

where c is independent of e, m, Q and thus, as 8 -> 0, n -> oo, 

(5.11) gmdwQ(s(uEQm))-»¥Q weakly in [ # ' ( £ ) ] * . 

From (5.4) we obtain, by passing to the limit s -> 0 m ~> oo and by density, the 
variational equality 

(5.12) (¥Q9s(v))+{ xQvNdr = (l,v) \fveV. 
JTS 

As in Proposition 4.1, by means of the monotonicity argument we obtain that 

(5.13) «Pe = gradwe(e(«e)) 

where we make use of the fact that 

(5.14) lim bE(uNeQm) uNEQm dF = xQuNe dF . 
£-*° JT5 JTS 

m~* oo 

The proof of this last assertion is the same as that of Lemma 4.3. 
Further, we pass to the limit with respect to Q. From (5.12) and (5.13) we find, 

due to the convexity of wQ (use (3.3)), the relation 

(5.15) ґ [wв(в(v)) - wв(e(ue))-] dü 
JSÌ 

+ Xe(vN - uNe) dr ^ (l, v - ue) V^eV . 
Гs 
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In (5A5) Jet us take v such that W(s(v)) < oo. Then, due to (5A), jwe(s(v)) dQ < c and 

from (5A5) we obtain that 

(5.16) wв(e(uв)) dQ < c 

n 

and therefore due to (5.8) the relation (5.2) holds. From (5A5) we find, as O -> 0, 

(5.17) lim inf I" f wQ(s(v)) dQ + f xevN dFj = 

^ lim inf J f wQ(e(u6)) dQ + f XQUNQ dF + (l v - uQ)\ 

for every ve Vwith W(s(v)) < oo. But from (5.1), (5.2), (5.9) and the fact that 

(5.18) l i m f XQuNedr = f xuNdT 
e->oJrs Jrs 

(the proof is the same as that of Lemma 5.3) we conclude that the inequality 

(5.19) W(s(v)) - W(s(u)) + f x(vN - uN) dF ^ (J, v - u) Vv e V 

Jrs 

is satisfied by we V with W(s(u)) < oo. Finally, as in part b) of the proof of 

Proposition 4A we show (4.31) and thus u is a solution of problem (P), q.e.d. 

It should be noted that the regularization of w defined by (i), (ii), (iii) seems to be 

very reasonable and useful for practical applications (cf. also [2], [3]). Regularizations 

of more technical character, as the one based on the Yosida approximation of w, 

can also be applied affecting only slightly the proof of Proposition 5A. It is wotrh 

noting that the imbedding W1,P(Q) c L°°(F) is necessary for the whole proof and 

especially for the proof of Lemma 4.3. Therefore we have assumed that p > n where 

where n = 2 or 3 depending on the dimensions of the body consideted. Of course, 

the proofs are general and hold for any n. 

Acknowledgement. The author express his thanks to Prof. J. Haslinger for help­

ful discussions. 
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Ѕ о u h r n 

VАRIАČNÍ-НЕMIVАRIАČNÍ NЕROVNOЅTI V NЕLINЕÁRNI ЕLАЅTICIT . 
KOЕRCIVNÍ PŘÍPАD 

P. D. PАNАGЮTOPOULOЅ 

Jе dоkázána еxiѕtеncе řеѕеní prоblému nеlinеární еlaѕticity ѕ nеklaѕickými оkrajоvými pоd-
mínkami, kdy vztah mеzi оdpоvídajícími duálními vеličinami jе dán pоmоcí nеmоnоtоnní a 
оbеcn nеhladké rеlacе. Matеmatická fоrmulacе vеdе na prоblеmatiku nеhladké h nеkоnvеxní 
оptimalizacе a vе ѕlabé fоrm k nalеzеní tzv. ѕubѕtaciоnárních bоdů danéhо pоtеnnciálu. 

P е з ю м е 

BАPИАЦИOHHЫЕ - ПOЛУBАPИАЦИOHHЫЕ HЕPАBЕHCTBА 
B HЕЛИHЕЙHOЙ ЭЛАCTИЧHOCTИ. KOЭPЦИTИBHЫЙ CЛУЧАЙ 

P. D. PАNАGIOTOPOULOЅ 

Докaзaно cyщеcтвовaние pешения пpоблемы нелинейной элacтичноcти c неклaccичеcкими 
кpaевыми ycловиями в cлyчaе, когдa cоответcтвyющие двойcтвенные величины cвязaны 
немонотонным и, вообще говоpя, не глaдким отношением. Maтемaтичеcкaя фоpмyлиpовкa 
ведет к пpоблеме неглaдкой и невыпyклой оптимизaции и в cлaбой фоpме к отыcкaнию 
т. н. cyбcтaционapныx точек дaнного потенциaлa. 
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