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1. INTRODUCTION

If we consider, besides a group @, even a group A4, which is a subgroup of the group
of all automorphisms of ¢, we can form a so called 4-decomposition on G. Article 2
deals with the properties of classes of an 4-decomposition and with relations between
A-decompositions in dependence on A. Article 3 concerns relations between A-
decompositions and subgroups admissible with respect to 4. The last three articles
deal with the relation between the right and left cosets of a subgroup..

In this paper G denotes a group with automorphism group 4(G@) and inner auto-
morphism group I(#). All the expressions that deal with decompositions are taken
from [1]. Especially, if F, H are decompositions on &, the infimum and the supremum
of F, H will be denoted by (F, H) or [F, H], respectively. Decompositions F. R
are commuting if for every two elements fe F, he H; f, h < 4, % e [F, H], there
holds f N k 5~ (. A cover of a set M in a decomposition F, M C F, is the set of all
elements of F which are coincident with M. The elements f, 7 € F can be connected
in H, when there exists a finite sequence of elements in F, fi, f5, ..., fn (0 = 2)
with the properties: f; = f, fo= g; fr, fria (r = 1,2, ..., n — 1) are always coincident
with the same element A, € H

2. A- DECOMPOSITION AND ITS PROPERTIES

Let A be an arbitrary subgroup of 4(@).

-The mapping associating with each element g € ¢ the set gA of all elements 9o,
a€ 4, is an equivalence relation on @. The decomposition belonging to this equi-
valence relation will be called 4-decomposition of ¢ and noted 4.

The product of two classes g1, g2 € 4 consists of some classes of the decomposition
A. In fact, if g1 € g1, g2 € g2, x € A, then (9:192) @ = g1 . g2, i.e. an element, which
is an image of an element of ¢,§; is also contained in this product. :

If ge 4, then g8 € 4 (g8 is the set of s-powers of the elements of ). Indeed, if
h = g, then k¢ = géx i.e. g8 is a part of some element of 4 and, according to the
previous paragraph, we have gse 4.

. Let M =@ be an arbitrary nonempty set. Let N(M) be the set of all automorp-
hisms of A(G@) which map M onto M. N (M) is a subgroup of 4(Q). If g€ @, then
there ev1dentlv holds

card gA = card A/,(N(g) N 4).

Let G be a ﬁ:mte group of order n. Let an A4- decomposmon of G be formed by the
classes go, ¢1, - - ., Jk- Among these classes there-ig also the class of elements in
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which the identity e of @ is contained; let us suppose it is go. This class go contains
only one element e. The number A; of elements in the class ¢; (¢ =1,2, ..., k) is
equal to card A/,(N(gi) N A), where g; is an arbitrary element contained in g;. Accord-
ing to Lagrange’s theorem about the index of a subgroup, hq is a divisor of the order
of A. There holds the so called classes equation

n=l+h1+h2+...+hk.

Thus order n of a finite group @ is a sum of some divisors of the order of 4.

Let A, B be subgroups of 4(G). Let us denote A N\ B=1I, {4, B} = 2. We have
ev1dently

Theorem 1. If A = B, then 4 < B.

Theorem 2. 4 = B holds if, and only if, the equation

(Ny=) ACA(@)Ng)=BC A/ Ng) (=N
holds for all ge G.

Proof. If 4 = B, then to every element g € G and every automorphism « € 4
(B € B) there exists f' e B (o' €. A) with the property ga = gf’ (9 = ga'). This.
implies in the first case gaf’~! =g, gf'a~1 =g, whence af’~!, f'a~le N(g) and
finally N(g) « = N(g) f’. Analogously N(g) B = N(g) ' in the second case. This
completes the proof of the equality N, =~N,. Conversely, since N, = N,, there
exists to every element ge G and every automorphism a € 4 (f € B) an automorphism
B’ € B (a' € 4), f’ € N(g)x (&’ € N(g)f), hence ga = g’ (9f = g«'); 4 = B.

Example. Let a group G be determined by generators a, b, ¢ and defining relations
a8 = b8 = ¢4 = ¢, b~lab = a’, clac = a5, ¢"1bc = ash. The automorphism a:a — a5,
b—>b,c— c is an outer automorphism of G and maps every class of conjugate
elements of G onto itself ([2] p. 107). Evidently, the decompositions belonging to
groups I(@), {I(G), «} are equal.

The relations IT < A, IT < B, theorem 1 and the properties of the infimum of
decompositons imply I7 < (4, B). We shall demonstrate the case IT # (4, B).

Example. Let us consider the same group as in the above example. We put 4 =
= {a}, B = I(G). The group 4 has two elements, the identity automorphism ¢ and
the outer automorphism «, hence /T = (4 N B) = {e}. Every class of II contains
only one element of the group G. « maps every class of conjugate elements onto
itself, therefore B = 4, (4, B) = A. The class a4 € 4 contains two elements a, as,
therefore IT + A = (4, B).

Theorem 3. [4, B] = Z.

Proof. Therelations A<X, B < X, theorem 1 and the properties of the supremum,
of decompositions imply [4, B] £ X. Now we shall prove that [4, B] = 2 is true.
If g€ G, then there exist e [4, B], €2, GN38#0, ge(inN ). The class s is
equal to g2 Considering that X is generated by 4 and B, every element o € X' can
be expressed in the form ¢ = fiouf.0z ... fnon, Where n is an integer, as€ 4,
pieB; i =1,2,...,n If the product on the right-hand side of the last equality
does not begin with an element from B or does not end with an element from A4,
we put §; = & or an = &, where ¢ i8 the identity automorphism. Let us denote go =
= gy. There-exist elements k€ 8, g¢ € 8; k¢_18; = ki (ko = @), kyoy = g; and clasges
keB gued,ged; kic s, uc8 9< 8 giacki(go=9), kicgi,geg, gnSon.
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Hgnce ki€ ki, g; € g;. Therefore the classes 9:¢-1, 9¢ (§o = §) have common elements
Wlth the class k;; i.e. every two classes of the decomposition 4 which are contained
In 8 can be connected with the class g € 4 in the decomposition B. But the class ¢
igin 7 (4 £ [4, B])and, according to the definition of the supremum of decomposit-
lons, all classes of 4 which can be connected with ¢ in B are included in @ ([1] p. 14).
Hence 3 < & and also X' < [4, B]. This relation together with [4, B] < X complete
the proof.

Theorem 4. Let 4, B be subgroups of 4(@). The decompositions 4, B are commu-
ting if, and only if,

(N1 =) ABC A(Q)[N(g) = BAC A(G)N(g) (=N,
holds for every ge G.

Proof. Let the decompositions 4, B be commuting. Choose arbitrary ge @,
a€ A, Be B. N(g)xB e N,. Let us denote b = gaff; since 4, B are commuting, the
classes gB € B, kA € 4 coincide because g, h are in the same class of the decompo-

sition X, where X' = {4, B}. There exist automorphisms «' € 4, f’ € B such that
h = gp'«’, hence for g the equality goaff = gf'a’ is true. Therefore f'a’ € N(g)af,
ie. N(g)ap = N(g)f'a’ . N(g)f’'«’ € N5, so that Ny £ N,. Analogously, one can
prove N, < N,. Thus N, = N,. '
Now suppose that N; = N,. We shall prove that 4, B are commuting decomposi-
tions. Let g4 € 4, kB € B be two classes which are ¢ontained in one and the same .

class of X. There exist elements oy, a2, ..., an€4; p1, P2, ..., Pun€ B with the
property h = g(asf10zfz - .. anfn). The supposition implies af = vf'a’ (fa =
= ya"B") for every two elements x € 4, f € B(x€ A, f € B), where v € N(g), f' € B,
«'e€A(veN(g),a"€ A, f”€ B) are convenient elements. Therefore the product
®1P1. .. anfn can be expressed in the form yxf, where ve(N)g; acd; feB. Hence
h = g(afi ... anfn) = g(vap) = gv(af) = gap which implies gx € (94 N hB), which
is what we were to prove.

3. ADMISSIBLE SUBGROUPS AND A-DECOMPOSITIONS

Let 4 be a subgroup of A(G). A nonempty subset H < G is called admissible
with respect to 4, in short, admigsible, if He = H holds for every a € A. A decom-
position H in @ is called admissible with respect to 4, if to every element ke H
and to every automorphism o € A there exists an element ¢ € H with the property
g = ha. If H < G is an admissible subgroup, then the decompositions G/ H, G/ H
are admigsible. Obviously (g4) « = g4 holds for every class g4 € 4 and for every
automorphism « € 4, i.e. every admisgible subset is a union of some classes of the
decomposition 4. A subgroup of @, generated by an admissible subset of G, is an
admissible subgroup. Indeed, every element of {Ma} is an element of {M} « and
conversely, hence {M} a = {Ma} = {M}, because Ma = M. :

A group @ is called 4-simple, if G and {e} are its only admissible subgroups with
respect to 4. From the above considerations there follows: A group G is A-simple
if, and only if, G = {g4} for every ge G, g # .

Let @ be of order n. The order of every admissible subgroup H with respect to 4
is equal to & sum of the number 1 and some of the summands A, upto A from the
classes equation, since H contains the identity of G and since H contains all ga,
xe€ A for every ge H.
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Theorem 1. Let K be an arbitrary subgroup of ¢. Then

H=nNKa, F ={uKa}
a€d acd
are the admissible subgroups of G, H is the greatest admissible subgroup of G con-
tained in K, and F is the least admissible subgroup of @ containing K.

Proof. Let H' be a union of the classes of the decompositon 4 which are contained
in K. H' # @, since the class containing the only element e € @ is always in 4. H’
is admissible and H' < Ko for every a € A; thus H' « H. Since H cannot contain
other elements than the elements of H', we have H = H’'. Therefore H is an ad-
missible subgroup of G and evidently H is the greatest admissible subgroup of
G contained in K.

Let F” be a union of all classes of 4 which are coincident with K. F’ is the admi-
ssible subset consisting of the elements ka; k€ K, a€ A. Evidently F' = U Ka.

a€d
An admissible subgroup containing K necessarily contains F’. The least of such
subgroups is {F'} = F

Theorem 2. If ¥ is an arbitrary admissible subgroup of @, then the decompositions
4, G/,F and 4, G/,F are commuting.

Proof. The statement will be proved only for G/;F. The proof for G/,F is analo-
gical. Put U = [4, G/;F]. Let weU, g.F € G[\H, g F € G[,F, ke A; g.F < i, goF <
c u, k < @, ¢2.F N k + @ be arbitrary classes. It is sufficient to prove gnF Nk £ 0 .
g1F can be connected with g,F in A ([1] p. 14) i.e. there exists such a sequence
aF, g.F, ..., g, F, that every two classes g;F, g; . F (1 =1, 2,....n—1) are
coincident with the same class k; € 4. The statement is obvious if » = 1. We shall
proceed by induction on n. Let n =2, g;jF Nk #0for j=1,2,...,n—1. We
shall prove g,F N k # 0. The classes gp_1F, goF are coincident with k,_, € 4. Since
dnF Nk #0, there exists an element ke (g,_1F N k), therefore gy_F = kF.
Further, there exists fe F and a € A such that kf € (kn_1 N gn1F), (kf) 2 € (kn_1 N
N gnF). Hence guF = (kf) . F = (ko . fa) F = ka(fa . F), but fa.F = F (F is
admissible), therefore g,F = ko . F Since kaxek, we have kae (kN guF), ie.
kN g,F # 0, and the theorem is proved. R

4 COMMON ELEMENTS OF TWO DECOMPOSITIONS INDUCED
oA : BY SUBGROUPS

Let F, H be subgroups of G. Let gF = gH or Fg = Hg hold for some element
g € G; every such equality implies F = H. So, if F, H are different subgroups of G,
then the decompositions Q[ F, G[iH or G,/F, G,/H have no common elements.

Suppose that Fg = gH is a common element of the decompositions G/ F, G[iH.
The equality Fg = gH implies H = g-1Fg. Conversely, if F, H are conjugate sub-
groups, then there exists an element g € @ with the property H.= g-1Fg and the
decompositions G[,F, G}H = G[,g-1Fg have the common element Fg = g(g-1Fg) =
= gH. Therefore the decompositions G/ .F, G[;H have a common element if, and
only if, the subgroups F, H are conjugate. If H = g-1Fg, then H = (ng)~1F(ng) =
=:g~1Fg, where n is an arbitrary element of the normalizer N of F in G. Also Fng =
= ngH for every n€ N. Fnig = Fnyg for ny, n,€ N if, and only if, Fny = Fn,.
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We conclude
card (G[.F N G[;H) = card N/,.F

and the common elements of the decompositions G/,F, G/,H form the set Ng.

5. THE INFIMUM OF DECOMPOSITIONS G/,F AND G/.H

Put P = (G[,F, G[:H). Let g€ G be an arbitrary element. Let us consider the
cosets gF € G\F, Hg e G H. If we denote D = g-tHg N F, then gF N Hg = gD.
The equality g7'Hg, = g-1Hg, holds if, and only if, the elements g¢,, g.€ G are
contained in the same right coset of the normalizer N of H. Therefore the inter-
sections of elements of G/, F and G/ H in the same right coset of N are equal to some
left cosets of D. Hence

P = y[NgC G[y(F N g~ Hy)].

geq

6. THE SUPREMUM OF DECOMPOSITIONS G[,F AND G/.H

[G/\F, G,[H] is the set of all double cosets HgF (g € G). The decompositions G/, F, -
G[rH are commuting ([1] p. 147). Let g € G be an arbitrary element. F = HgF C
C G/,F,H = HgF C G/H are decompositions on HgF. Let us denote D = g-1Hg N
N F. According to [2] p. 25, there is

card H = card F/[.D
card F = card g-'Hyg/,D.

Choose F = H, then D = g-1FgNF. If F,= FgF C G[,F. F, = FgF C G/,F,
then
card F, = card F/.D

card F; = card g-1Fg/,D.

If F is a finite subgroup of @, then g~1Fg, D are also finite subgroups. By Lagrange’s
theorem the decompositions F/.D, g-1Fg/;D and also F,, F; have the same number
of elements. If F is not finite, the relation card F, = card F; is not necessarily true.

Example. Let G be the group of permutations of the set of integers. M < @
consists of permutations

(1,2),(2,3), ..., m,m 4+ 1), ... n > 0.
Put F={M},g=(..,—k, ...,—2,—1,0,1,2, ...k, ...), then
gln,n+1)g=mn-+1n+2)

i.e. g~1Mg is a proper subset of M. Evidently, g-1Fg = {g~1Mg} is a proper subgroup
of F ([3] p. 70), hence D = g-1Fg N F = g-1Fg. There holds

card F, = card F[,g-1Fg > 1
card F; = card g-1Fg/;g—1 Fg = 1.
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