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1. INTRODUCTION 

If we consider., besides a group G, even a group A, which is a subgroup of the group 
of all automorphisms of G, we can form a so called A -decomposition on G. Article 2 
deals with the properties of classes of an .4-decomposition and with relations between 
A.-decompositions in dependence on A. Article 3 concerns relatione between A-
decompositions and subgroups admissible with respect to A. The last three articles 
deal with the relation between the right and left cosets of a subgroup.. 

In this paper G denotes a group with automorphism group .A(tT) and inner auto­
morphism group 1(G). All the expressions that deal with decompositions are taken 
from [1]. Especially, if F, R are decompositions on G, the infimum and the supremum 
of F, R will be denoted by (F, R) or [F, R], respectively. Decompositions F, S 
are commuting if for every two elements f e F, %eR; f, ^ <=- u, ue [F, R], there 
holds / n h T^ 0. A cover of a set M in a decomposition F, M C F, is the set of all 
elements of F which are coincident with M. The elements/, a e F can be connected 
in R, when there exists a finite sequence of elements in F,fi,f2, .. .,fn (n ^ 2) 
with the properties :/i = f,fn = g;fr,fr+i (r -= 1,2, .. .,n — 1) are always coincident 
with the same element KreR. 

2. A-DECOMPOSITION AND ITS PROPERTIES 

Let A be an arbitrary subgroup of A (G). 
The mapping associating with each element g e G the set gA of all elements goc, 

oceA, is an equivalence relation on G. The decomposition belonging to this equi­
valence relation will be called A -decomposition of G and noted A. 

The product of two classes g\,g2e A consists of some classes of the decomposition 
A. In fact, if gxegi, g2eg2, oce A, then (gig2) a = g\oc. g2oc, i.e. an element, which 
is an image of an element of Q\g2 is also contained in this product. 

If g e A, then g8 e A (g8 is the set of B-powers of the elements of g). Indeed, if 
h = goc, then h8 = g8oc i.e. g8 is a part of some element of A and, according to the 
previous paragraph, we have g8 e A. 

Let M aG be an arbitrary nonempty set. Let N(M) be the set of all automorp­
hisms of A(G) which map M onto M. N(M) is a subgroup of A(G). If ge G, then 
there evidently holds 

card gA = card A/r(N(g) O A). 

Let G be a finite group of order n. Let an A -decomposition of G be formed by the 
classes g0, Q\, . . .,gk> Among these classes there ig also the class of elements in 

23 



which the identity e of 0 is contained; let us suppose it is í?o- This class Q0 contains 
only one element e. The number Ä< of elements in the class < (ť = 1, 2, . . . , k) is 
equal to card Ajr(N(gi) ПA), where ør< is an arbitrary element containedin ÿ<. Accord-
ing to Lagrange'0 theorem about the inđex of a subgroup, A< is a divisor of the order 
of A. There holds the so called classes equation 

= 1 + h\ + h2 + . . . + hk. 

Thua order n of a finite group ö is a sum of some divisoгs of the order of A. 
Let A, B be subgroups of J ( в ) . Let us denote AnB = П,{A,B} = E. We have 

evidently 
Theorem 1. If A a B, then Ä < B. 
Theorem 2. Ă = B holds if, and only if, the equation 

< # , « ) AzA(G)lrҖg) = BLA(G)lrN(g) (=N2) 

holds for ail g є G. 
Proof. If Ä = B, then to every element geG and every automorphism ocєA 

(ß є B) there exists ß' єB(oc' єA) with the property goc = gß' (gß = goc'). This 
implies in the first case gocß'~l = g, gß'oгl = g, whence ocß'~l, ß'oгl є N(g) and 
finally N(g) ą = N(g) ß', Analogously N(g) ß = N(g) oc' in the second case. This 
completes the pгoof of the equality Ñx = Ñ2. Conversely, since Ni = N2, there 
exists to every element geG and every automorphism ocєA (ßєB) an automorphism 
ß[ єB(oc'є A), ß' є N(g)oc (oc' є N(g)ß), hence goc = gß' (gß = goc'); Ä = B. 

Example. Let a group G be determined by generators a,b, c and defining relations 
a* = bs = c4 = e, ò-křò = as, c~lac = as, c~Њc = aбb. The automorphism oc:a ~> a5, 
ò -> 6, c -> c is an outer automorphism of G and maps eveгy class of conjugate 
elements of 0 onto itself ([2] p. 107). Evidently, the decompositions belonging to 
groups I(G), {1(0), oc} are equal. 

The relations П c A, П ^ B, theorem 1 and the properties of the infimum of 
decompositons imply П й (Ä, B). We shall demonstrate the case П Ф (Ä, B). 

Ëxample. Let us consider the same group as in the above example. We put A = 
= {oc}, B = 1(0). The group A has two elements, the identity automorphism є and 
the outer automorphism a, hence П = (A Г\ B) = {є}. Every clas of П contains 
only one element of the group G. oc maps every class of conjugate elements onto 
itself, therefore B ^ Ä, (Ä, B) = Ä. The class aAєĂ contains two elements a, a5, 
therefore ПфÄ= (Ä, B). 

Theorem 8. [Ä, B] == 2ľ. 
Proof. The relations A d2ľ, B <-- 2ľ, theorem 1 and the properties of the supremurą 

of decompositions imply [Ã, B] S 2ľ. Now we shall prove that [Ă, B] ^ 2ľ is true. 
If gє 0, then there exist Uє[Ä, B], sє£; UПS ФØ, gє(UПS). The class Ä ІS 
equal to gZ. Considering that 2ľ is generated by A and B, every elemen a є2ľ ean 
be expressed in the foгm a = ßiOCiß2ocг . . . j9Äaц, where n is an integer, a<€.á, 
ßi e B; ť = 1, 2, . . . , n. If the pгoduct on the right-hand side of the last equality 
does not begin with an element from B or does not end with an element from A, 
we put ßi = є or otn = є, where є i& the iđentity automorphism. Let us denote ga = 
«= örл. There-exist elements kţ єз, gtєs; k^ißţ -== &< (k0 = g), i<a< « gr< and classes 
ІІЄB, ўiЄÄ, gєÄ; í< c з, gt<=. s, g <= s; gimm%є£< (g0 » ^), &<єø<>øєø, flrцбўц. 
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Hence ҺІ є k, gt є gi. Therefore the classes ø<_ь gt (g0 = g) have common elements 
with the class ҺІ ; i.e. every two classes of the decomposition Ã which aгe contained 
in 5 can be connected with the class g є Ã in the decomposition B. But the class g 
is in Ti (Ã < [Ä, B]) and, according to the definition of the supremum of decomposit-
ions, all classes of Ä which can be connected with g in B are included in ü ([1] p. 14). 
Hence 5 c ӯ and also E й [-í> B]. This relation together with [Ã, B] ś E complete 
the proof. 

Theorem 4. Let A, B be subgroups of A(G). The decompositions Ã, B are commu-
ting if, and only if, 

(Ñг=) ABüA(G)lrN(g) = BA£A(G)lrN(g) (= N2) 

holds for every g є G. 
Proof. Let the decompositions A, B be commuting. Choose arbitrary gєG, 

ocєA, ßєB. N(g)ocß є N i . Let us denote h = gocß; since Ă, B are commuting, the 
classes gB є B,ҺAє Ä coincide b cause g, h are in the same class of the decompo-
sition E, where E = {A, B}. There exist automorphisms oc' є A, ß' єB such that 
h = gß'oc', hence for g the equality gocß = gß'oc' is true. Therefore ß'oc' є N(g)ocß, 
i.e. N(g)ocß = N(g)ß'oc' -_N(g)fľoc' є N2, so that Nг < N2. Analogously, one can 
prove NгѓRi- Thus Ni =_N 2. 

Now suppose that Ni = N2. We shall prove that Ã, B are commuting decomposi-
tions. Let gA є Ä, ҺB є B be two classes which are òontained in one and the same 
class of E. There exist elements oci, oc2, ..., ocnєA; ßíf ß2, ...fßnєB with the 
property h = g(ociß\oc2ßг ... ocnßn)- The supposition implies ocß = vß'oc' (ßã = 
= voc"ß") for every two elements cxє A, ß є B (ocє A, ß є B)f where v є N(g), ß'єBf 

oc'єA(vєN(g), oc" єA, ß"єB) are convenient element . Therefore the product 
ocißi • • * ocnßn c a n be expressed in the form vcxß9 where vє(N)g; acєA; ßєB. Hence 
h = g(ocißx . . . ocnßn) == g(v<*ß) = gv(otß) = gocß which implies goc є (gA П ҺB), which 
is what we were to pгove. 

3. A D M I S S I B L E S U B G R O U P S AND A-DECOMPOSITIONS 

Let A be a subgroup of A(G). A nonempty subset H c: G is calleđ admissible 
with respect to A, in short, admissible, if Hoc = H holds for every otєA.A decom-
position B in G is called ađmissible with respect to .A, if to every element hєB 
and to every automorphism ocє A there exists an elemént gєR with the property 
g = ћot. If H e G ìв an admissible subgroup, then the decompositions GjiH, G\rH 
are admissible. Obviously (gA) oc = gA holds for every class gAєÄ and for every 
automorphism ocєA, i.e. every admissible subset is a union of some classes of the 
decomposition A. A subgroup of G, generated by an ađmissibie subset of G, is an 
admissible subgroup. Indeed, every element of {Жa} is an element of {M} oc and 
conversely, hence {M} oc = {Moc} -== {M}, because Moc -=» M. 

A group G is called Л-simple, if G and {$} are its only admІÄSІble subgroups with 
respect to A. From the above consiđerations there follows: A group G ïш A- imple 
if, anđ only if, G = {gA} for every gєG, gфe. 

Let G be of order n. The order of every admissible subgroup H with respect to A 
is equal to a sum of the number 1 and some of the summands ћt upto hъ from the 
classes equation, since H contains the identity of G and since H contains all gocf 

otє A for every gєH. 
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Theorem 1. Let K be an aгbitrary subgroup of G. Then 

H = Г\ Koc, F = {кjKoc} 
aєA aєA 

are the admissible subgroups of G, H is the greatest admissible subgroup of G con-
tained in K, and F is the least admissible subgroup of G containing K. 

Proof. Let be a union of the classes of the decompositon Ä which are contained 
in K. Ф 0, since the class containing the only element e є G is always in Ä. 
is admissible and cz Koc foг every ocєA; thus <r H. Since H cannot contain 
other elements than the elements of , we have H = . Therefoгe H is an ad-
missible subgroup of ö and evidently H is the greatest admissible subgroup of 
G contained in K. 

Let F' be a union of all classes of Ä which are coincident with K. F' is the admi-
ssible subset consisting of the elements koc; kєK, ocєA. Evidently F' = u K a . 

aєA 

An admissible subgroup containing K necessarily contains F'. The least of such 
subgroups is {F'} = F. 

Theorem 2. If F is an arbitrary admissible subgroup of G, then the decompositions 
Ä, G[iF and Ã, G[rF are commuting. 

Proof. The statement will be proved only for G[iF. The proof for G[rF is analo-
gical. Put Ű = [Ä, G[гF]. Let й єÜ, gгF є G[гH, gnF є G[jF, k є Ä; gxF <= ü, gnF c 
c- u, k c: ä, g\F П k ФØЬe arbitrary classes. It is sufficient to prove gnF П k Ф 0 . 
g\F can be connected with gnF in Ä ([1] p. 14) i.e. there exists such a sequence 
g\F, g2F, .. .,gnF, that every two classes gtF, gi+1F (i = l, 2, n— 1) are 
coincident with the same elass k% є Ä. The statement is obvious if n = 1. We shałl 
proceed by induction on n. Let n ^ 2, gjF П k Ф 0 for j = l, 2, ..., n — 1. We 
вћall prove gnF П k Ф 0. The classes gП-\F, gnF are coincident with kn_\ є Ă. Sincę 
$П-\F П k Ф 0, there exists an element кє(gn_\F nk), tћerefore gn_\F = кF. 
Further, there exists fє F and ocє A such that кfє (kn_г П gn„\F), (кf) oc є (kn^\ П 
П gnF). Hence gnF = (кf) oc. F= (кoc .foc)F = кoc(foc. F), but foc. F = F (F is 
admissible), therefore gnF = кoc. F. Since кocєк, we have кoc є (k П gnF), • i. * 
k П gnF Ф 0, anđ the theprem is proved. 

4. COMMON ELEMENTS OF TWO DECOMPOSITIONS I N D U C E D 
BY SUBGROUPS 

Let F, H be subgroups of G. Let gF = gH or Fg = Hg hold for some element 
g e G; every such equality implies F = H. So, if F, H are different subgroups of G1jm 

then the decompositions G[iF, G[iH or Gr[F, Gr[H have no common elements. 
Suppose that Fg = gH is a common element of the decompositions ,G[rF, G[iH. 

The equality Fg = gH implies H = g~xFg. Conversely, if F, H are conjugate sub­
groups, then there exists an element geG with the property H = g~xFg and the 
decompositions G[rF, G[iH = G[ig~xFg have the common element Fg = g(g~xFg) =?. 
== gH. Therefore the decompositions G[rF, G[iH have a common element if, and 
only if, the subgroups F, H are conjugate. If H = g^Fg, then H = (ng)~lF(ng) ,=? 
= g~xFg> where n is an arbitrary element of the normalizer N of F in G. Also Fng =* 
= ngH for every n e N. Fnxg = Kn2sr for m, n2eN if, and only if, Fnt = Fn2. 
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We conclude 
card (G[rF П G[iH) = card N/rF 

and the common elements of the decompositions G[rF, G\\H form the set Ng. 

5. THE INFIMUM OF DECOMPOSITIONS G[tF AND G[rH 

Put P = (G[iF, G[rH). Let g e G be an arbitrary element. Let us consider the 
cosets gF e G[tF, Hg e G[rH. If we denote D = g-^Hg n F, then gF n Hg == gD. 
The equality g~~xHg\ = g~1Hg2 holds if, and only if, the elements g\, gieG are 
contained in the same right coset of the normalizer N of H. Therefore the inter­
sections of elements of G[\F and G[rH in the same right coset of N are equal to some 
left cosets of D. Hence 

P=Kj[Ng£G[l(Fng~iHg)]. 
geQ 

6. THE SUPREMUM OF DECOMPOSITIONS G[iF AND G[rH 

[GliF, Gr[H] is the set of all double cosets HgF (g eG). The decompositions G[iF, 
G[rH are commuting ([1] p. 147). Let g e G be an arbitrary element. F = HgF C 
C G[iF, R = HgF C G[rH are decompositions on HgF. Let us denote D = g~lHg C\ 
n F. According to [2] p. 25, there is 

card R = card F/rD 

card F = card g~lHg[iD. 

Choose F = H, then D = g-*Fg n F. If Ft = FgF C £/zF, Fr = FsrF C ^/rF, 
then 

card Fr = card F/rD 

card Fi = card g~xFg[iD. 

If F is a finite subgroup of G, then g~xFg, D are also finite subgroups. By Lagrange's 
theorem the decompositions F/rD, g~xFg\iD and also Fr, Fi have the same number 
of elements. If F is not finite, the relation card Fr = card F\ is not necessarily true. 

Example. Let G be the group of permutations of the set of integers. M c G 
consists of permutations 

(1, 2), (2, 3), ...,(n,n + l), ... n > 0. 

Put F = {M}, g=(..., —k, ..., —2, — 1, 0, 1, 2, . . . , h, . . . ) , then 

g~Hn,n + l)g=~(n+ 1, n + 2) 

i.e. g~xMg is a proper subset of M. Evidently, g~xFg = {g^Mg} is a proper subgroup 
of F ([3] p. 70), hence D = g-^Fg C\ F = g^Fg. There holds 

card Fr = card F/rg^Fg > 1 

card Fi = card g^Fg/ig-1 Fg = 1. 
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