Commentationes Mathematicae Universitatis Caroline

Josef Kolomý
The solvability of non-linear integral equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 2, 273--289

Persistent URL: http://dml.cz/dmlcz/105111

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinas
 8,2 (1967)

THE SOLVABILITY OF NONLINEAR INTEGRAL EQUATIONS
Josef KOLCMY, Praha

1. In this remark we continue the investigations [1] on solutions of nonlinear integral equations. In [1] we gave some conditions for the solvability of Hammerstein integral equations in L_{2}-space. The purpose of this note is to investi= gate the equation $\mu-A h \mu=0$, where $A: L_{q} \rightarrow L_{q}$ $\left(1<q<2, p^{-1}+q^{-1}=1\right)$ is a linear continuous mapping of L_{q} into L_{p} and $h(\mu)=g(\mu(x), x)$ is an operator of Nemyckij such that h is a mapping of L_{q} into L_{q}. To the end of this note we shall slso consider Urysohn integral equations in L_{2}-space. Some recent works in this subject are cited in [1].

First, I must correct the misprint from [1]. In theorem 7 and remark 3 [1] must be mes $G=\infty$ (instead of mes $G<\infty$). The Golomb-Vajnberg theorem also holds for the domains G with mes $G=\infty$, ef. [2].

The theorems 5,7,8 and corollaries 1,3[1]hold in more general form. We can auppose only that $N \leqq g_{x}^{\prime}(x, t) \leqslant M$, $N, M=$ conot and $\lambda M\|A\| \leq 1 \quad$ or $\lambda M\|A\|<1$ (or $M\|A\| \leqq 1$) is atisfied if $M>0$. If $M<0$, then these assumptions are unnecessary. Moreover, we can consider in theorem 5,8,9 [1] the following more general equations: $x-\lambda A \phi(x)=f, x-A \phi(x)=0 \quad A \phi(x)=0 \quad$ inatead of $x(s)-\lambda \int_{G} K(s, t) g(x(t), t) d t=f(s), x(s)-$
$-\int_{G} K(s, t) g(x(t), t) d t=0, \int_{G} K(s, t) g(x(t), t) d t=0$, respectively.
2. Let X, Y be real Banach spaces. A mapping $F: X \rightarrow Y$ is said to be bounded if F transforms bounded sets in X into bounded sets in Y. It is well known that an uniformly continuous (nonlinear) mapping $F: D_{R} \rightarrow Y$, $D_{R}=\{\mu \in X:\|\mu\| \leqq R\}$ is bounded on D_{R}. A mapping $F: X \rightarrow Y$ is said to be quasi-bounded [3] (or linearly upper bounded [4]) if there exist two constants $\alpha>0, \gamma>0$ such that $\|F(\mu)\| \leqslant \gamma\|\mu\|$ for all $\mu \in X$ with $\|\mu\| \leqslant \propto$. In particular, a mapping $F: X \rightarrow Y$ is asymptotic close to zero if $\lim _{\| \rightarrow \infty} \frac{\|F(\mu)\|}{\|\mu\|}=0$.

Denote by E_{p} the euclidean s-space.
Lempa 1. Let $g(\mu, x)$ be a N-functi on [5, chapt. VI] $(\mu \in(-\infty,+\infty), x \in G, G \quad$ denotes a measurable subset of E_{s} with mes $G<\infty$) such that an operator of Nemyckij $h(\mu)=g(\mu(x), x)$ maps $L_{\text {n }}$ into $L_{q}\left(p>2, p^{-1}+q^{-1}=1\right)$. If $|g(\mu, x)| \leq \varphi(x)|\mu|^{1-x}+$ $+\psi(x),(\mu \in(-\infty,+\infty), x \in G)$, where $\varphi(x) \in L_{p} /\{-2$, $\psi(x) \in L_{q}, 0<\alpha<1$, then h is bounded continuous and asymptotic close to zero, i.e. $\lim _{L_{p \rightarrow+\infty}} \frac{\|h(\mu)\|_{L_{a}}}{\|u\|_{L_{R}}}=0$.

Proof. In fact
(1) $\|h(u)\|_{L_{q}}=\left(\left.\int_{\sigma} \lg (u(x), x)\right|^{2} d x\right)^{\frac{1}{a}} \leq$
$\leq\left(\int_{G}\left(\varphi(x)|\mu(x)|^{1-\infty}+\psi(x)\right)^{2} d x\right)^{\frac{1}{2}} \leq$
$\left.\leqq \int_{G}\left(\varphi(x) \mid \mu(x) \|^{1-\alpha}\right)^{a} d x\right)^{\frac{1}{2}}+\|\psi\|_{L_{2}}$.

Applying the Hollder's inequality with $\eta_{1}^{-1}=\frac{n-2}{p-1}, q_{1}^{-1}=\frac{q}{12}$
we obtain
(2) $\left\|\varphi u^{1-\alpha}\right\|_{L_{q}} \leqslant\|\varphi\|_{L_{\mu} / \mu-2}\left\|u^{1-\alpha}\right\|_{L_{\mu}}$.

Using the.Holder's inequality with $\Re_{1}=\alpha^{-1}, q_{1}^{-1}=1-\alpha$
($0<\alpha<1$), then
(3) $\left\|u^{1-\alpha}\right\|_{L_{\uparrow}} \leqslant(\operatorname{mes} G)^{\frac{x}{\pi}}\|u\|_{L_{\uparrow}}^{1-\alpha}$.

From (1), (2),(3) it follows that
(4) $\|h(\mu)\|_{L_{q}} \leq C\|\varphi\|_{L_{h}}\|\mu\|_{L_{\mu}}^{1-\alpha}+\|\psi\|_{L_{q}}$,

$$
C=(\text { mes } G) \frac{G}{\hbar_{2}} . \quad \text { Hence } \lim _{\| \|_{L \rightarrow \pi}^{\infty}}\|h(\mu)\|_{L_{q}}\|\mu\|_{L_{1}}^{-1}=0
$$

From (4) we conclude that h is bounded. Since $h: L_{i} \rightarrow L_{q}$, h is also continuous [6,chapt.I]. This completes the proof.

Lemma 2. Let X, Y, Z be Banach spaces, $A: X \rightarrow Y$
a linear continuous mapping of X into Y. Assume that a mapping $F: Y \rightarrow Z$ is nonlinear bounded and asymptotic close to zero. Then the mapping $F A: X \rightarrow Z \quad$ is bounded and asymptotic close to zero.

This assertion is a slight generalization of George's result [7].

Theorem 1 [1]. Let $\mathrm{F}: X \rightarrow X, \mathrm{P}: X \rightarrow X, T: X \rightarrow X$ be mappings of a Hilbert space X into X, P, T be linear continuous mappings onto X having the inverses P^{-1}, T^{-1}. Let the inequality
$\left\|P F\left(\mu_{1}\right)-P F\left(\mu_{2}\right)-T\left(\mu_{1}-\mu_{2}\right)\right\| \leqslant \alpha\|\mu-v\|$. hold for every ${ }^{\bullet} \mu_{1}, \mu_{2} \in X \quad$ with $a\left\|T^{-1}\right\| \leqslant 1$.

If there exist two positive constants $\alpha, \gamma, \gamma<\left\|T^{-1}\right\|$
such that $\|T(\mu)-P F(\mu)\| \leq \frac{\gamma}{\left\|T^{-1}\right\|}\|\mu\|$ for all $\mu \in X$ with $\|u\| \geq, \alpha$, then the equation $F(\mu)=y$ has at least one solution $u_{0} \in X$ for every $y \in X$.

From theorem 1 it is easy to deduce the following
Corollary 1 [1]. Let $F: X \rightarrow X$ be a mapping of a Eilbert space X into X which has the Gâteaux derivative $F^{\prime}(\mu)$ far every $u \in X$. Let $P F^{\prime}(\mu)$ be a normal operator for every $u \in X$ and such that $\left(P F^{\prime}(u) v, v\right) \geqq$ $\geqq 0$ for every $u \in X, v \in X$, where P is a linear mapping of X into X having an inverse P^{-1} and $\|P\| \leqslant\left(\sup _{\mu \in X}\left\|F^{\prime}(\mu)\right\|\right)^{-1}$.

If there exist two positive constants $\alpha, \gamma, \gamma<1$ such that $\|\mu-P F(\mu)\| \leqslant \gamma\|\mu\|$ for all $\mu \in X$ with $\|u\| \geqq \alpha$, then F is onto.

An another result concerning the solution of functional equations with quasi-bounded operators has been obtained by W.V. Petryshyn [8]. His assertion is as follows: Suppose that A is P-compact quasi-bounded mapping (with constant γ) of a real Banach space X into itself. If $\mu>\gamma$, then $(A-\mu I)$ is onto.

A linear bounded operator $A: X \rightarrow X$ is said to be strictly positive in a Hilbert space X, if $u \neq 0$ im plies $(A \mu, i \mu)>0$.

Lemma 3 [6,chap.I]. Let $K: L_{q} \rightarrow L_{12}$ be a linear continuous mapping of L_{q}, into $L_{q}\left(1<q_{0}<q<2\right.$, $\eta^{-1}+q^{-1}=1$). Suppose that K acts as a continuous atrictly positive self-adjoint mapping from L_{2} into L_{2}. Then K can be represented in the form $K=A A^{*}$, where
$A=K^{\frac{1}{2}}: L_{2} \rightarrow L_{\text {g }}$ is continuous and A^{*} denotes the adjoint of A, so that $A^{*}: L_{a} \rightarrow L_{2}$.

In lemma $3 K^{\frac{1}{2}}$ denotes the positive square root of K. Moreover, it is easy to prove that $\|A\|_{2 \rightarrow L_{n}} \leq K \|_{2}^{\frac{1}{2}} L_{r}$ and $\|A\|_{L_{2} \rightarrow L_{2}} \leqslant\|K\|_{L_{2} \rightarrow L_{2}}^{\frac{1}{2}}$, where $\|A\|_{L_{2} \rightarrow L_{r}}$ (or $\|K\|_{L_{q} \rightarrow L_{\mu}}$) denote e the norm of A (or K) considered as a mapping of L_{2} into L_{p} (or from L_{q} into $L_{\text {凡 }}$).

Under the assumptions of lemma 3 , let $h(\mu)=g(\mu(x), x)$ be an operator of Nemyckij having the property that $h: L_{h} \rightarrow$ $\rightarrow L_{q}$. Consider the equation

$$
\begin{equation*}
\varphi=K h(\varphi) \tag{5}
\end{equation*}
$$

Then the equation (1) investigated in L_{q} is equivalent to

$$
\begin{equation*}
\mu-A^{*} h(A \mu)=0 \tag{6}
\end{equation*}
$$

considered in L_{2} in the following sense: If μ_{0} is a solotion of (6) in L_{2}, then $\varphi_{0}=A \mu_{0}$ is a solution of (5) in L_{\uparrow}. Conversely: if φ_{0} is a solution of (5) in L_{μ}, then $\mu_{0}=A^{*} h\left(\varphi_{0}\right)$ is a solution of (6) in L_{2}.

Theorem 2. Under the assumptions of lemma 3 let the following conditions be fulfilled:
$i^{0} h^{\prime}(\mu)=g_{\mu}^{\prime}(\mu(x), x)$ is a continuous mapping from L_{μ} into $L_{\Re / \Re-2}, N \leq g_{\mu}^{\prime}(\mu, x) \leq M$ for every $u \in(-\infty,+\infty)$ and almost every $x \in G$, where G is a measurable subset of E_{s} with mes $G<\infty$ and
$M\|K\|_{L_{2} \rightarrow L_{2}} \leqslant 1$ if $M>O(N, M=$ const).
$\left.2^{0} \lg (\mu, x)|\leqslant \varphi(x)| \mu\right|^{1-\alpha}+\psi(x),(\mu \in(-\infty,+\infty), x \in G)$,
where $\varphi \in L_{n / n-2}, \psi \in L_{q} \quad$ and $0<\alpha<1$.
Then the equation (5) has at least one solution \mathcal{C}_{0} in $<_{\beta}$.

Proof. The proof of theorem 2 depends on lemma 1-3 and corollary 1. Since $1<q_{0}<q<2$, $\nless 2$. In view of 1° and $[5,520]$ the operator h acts from L_{p} into L_{q} and has a linear Gâteaux differential
$D h(u, v)=g_{u}^{\prime}(u(x), x) v(x), u, v \in L_{n}$. Since $g_{\mu}^{\prime}(\mu, x)$ is bounded,
$\|D h(\mu, v)\|_{L_{2}} \leqslant\left\|h^{\prime}(\mu)\right\|_{L_{n}}^{1-2}\|v\|_{L_{\mu}} \leqq N_{2}\|v\|_{L_{n}}$, $N_{2}=N_{1}$ (mes $\left.G\right), N_{1}=\operatorname{Max}(|M|,|N|)$. Thus $D h(u, v)$ is bounded in L_{μ} and continuous in $\mu \in L_{n}$ for an arbitrary (but fixed) $v \in L_{\eta}$. Corsider the equation (6) in L_{2}. Using lemma 3, we have that $K=A A^{*}$, where A 1s a continuous mapping of L_{2} into L_{n}. Set $Q(\mu)=$ $=A^{*} h(A \mu)$. Then the mapping $Q: L_{2} \rightarrow L_{2}$ has a linear bounded Gateaux differential
$D Q(u, v)=A^{*} g_{u}^{\prime}(A u(x), x) A v=Q_{1}^{\prime}(u) v, v, u \in L_{2}$ on the space $L_{2}\left(Q^{\prime}(\mu)\right.$ denotes the Gâteaux derivative at the point $\mu \in L_{2}$). Furthermore, assuming 1° $\left\|Q^{\prime}(\mu) v\right\|^{2}=\left\|A^{*} g_{u}^{\prime}(A \mu(x), x) A v(x)\right\|^{2} \leqslant$

$$
\begin{gathered}
\leqq\|A\|_{L_{2} \rightarrow L_{1}}^{2} \int_{\theta}\left|g_{\mu}^{\prime}(A \mu, x) A v\right|^{2} d x \leq \\
\leqslant N_{1}^{2}\|A\|_{L_{2} \rightarrow L_{\mu}}^{2}\|A\|_{L_{2} \rightarrow L_{2}}^{2}\|v\|_{L_{2}}^{2} \leqslant N_{1}^{2}\|K\|_{L_{2}+L_{\mu}}\|K\|_{L_{2}+L_{2}}\|v\|_{L_{2}}^{2} .
\end{gathered}
$$

Hence $k=\sup _{\mu \in L_{2}}\left\|F^{\prime}(\mu)\right\| 1+N_{1}\|K\|_{L_{R} \rightarrow L_{n}}^{1 / 2}\|K\|_{L_{2} \rightarrow L_{2}}^{1 / 2}$, where $F(\mu)=\mu-Q(\mu)$. Suppose $M<0$, then

$$
\left(F^{\prime}(u) v, v\right) \geq\|v\|^{2}, u, v \in L_{2}
$$

If $M>0$, we have

$$
\begin{aligned}
\left(Q^{\prime}(u) v, v\right) & =\left(A^{*} g_{u}^{\prime}(A \mu, x) A v, v\right)=\int_{G} g_{u}^{\prime}(A \mu, x)(A v)^{2} d x \\
& \leqq M\|A v\|_{L_{2}}^{2} \leqq M\|A\|_{L_{2}+L_{2}}^{2}\|v\|_{L_{2}}^{2} \leqq M\|K\|_{L_{2} \rightarrow L_{2}}\|v\|_{L_{2}}^{2} .
\end{aligned}
$$

Thus $\left(F^{\prime}(u) v_{1} v\right) \geqq 0$ for every $u \in L_{2}$ and $v \in L_{2}$. Moreover, $A^{*} h(A \mu)=\operatorname{grad} f(A \mu)$, where

$$
f(u)=f_{0}+\int_{G} d x \int_{0}^{\mu} g(v, x) d v .
$$

Using theorem 5.1 [5] we see that
($\left.D h\left(\mu, v_{1}\right), v_{2}\right)=\left(D h\left(\mu, v_{2}\right), v_{1}\right)$
for every $v_{1}, v_{2} \in L_{2}$ and $u \in L_{2}$. Hence
$\left(D Q\left(\mu, v_{1}\right), v_{2}\right)=\left(A^{*} D h\left(A \mu, A v_{1}\right), v_{2}\right)=$
$=\left(D h\left(A \mu, A v_{1}\right), A v_{2}\right)=\left(D h\left(A \mu, A v_{2}\right), A v_{1}\right)=$
$=\left(A^{*} D h\left(A \mu, A v_{2}\right), v_{1}\right)=\left(v_{1}, D Q\left(\mu, v_{2}\right)\right)$.

Hence $Q^{\prime}(\mu)$ is self-adjoint mapping in L_{2} for every $u \in L_{2}$.

According to lemma $1,2 h A: L_{2} \rightarrow L_{h}$ and obviously A^{*} h A are asymptotic close to zero. Set $P=\vartheta I$, where ϑ is a fixed number satisfying the inequality $0<\vartheta<\left(1+N_{1}\|K\|_{L_{2} \rightarrow L_{i}}^{\frac{1}{2}}\|K\|_{L_{2} \rightarrow L_{2}}^{1 / 2}\right)^{-1}$. Taking $0<\varepsilon<v$, there exists positive number N_{2} such that for every $\mu \in L_{2}$ with $\|\mu\| \geqq N_{2}$, we have $\vartheta\left\|A^{*} h(A \mu)\right\|<\varepsilon\|\mu\|$. Clearly, for every $\mu \in L_{2}$ with $\|\mu\| \geq N_{2}$ there is $\|u-v F(u)\| \leq r\|u\|$, where $\gamma=1-v+\varepsilon<1$. Using corollary 1. we see that the euqgition (6) has at least ose solution μ^{*} in L_{2}. Hence $\varphi_{0}=A^{*} \mu^{*}$ is a solution of (5). This concludes the proof.

Remark 1. Recall that the condition 1° of theorem 2 inplies the boundedness of $h: L_{p} \rightarrow L_{q}$ on L_{p}.

Moreover, h is Lipschitzian on L_{p}. Indeed, from the equality $\left(\mu, v \in L_{n}\right)$
$h(u)-h(v)=(\mu(x)-v(x)) \int_{0}^{1} g_{u}^{\prime}(v(x)+t(u(x)-v(x)), x) d x$
it follows [5, § 20] that

$$
\|h(u)-h(v)\|_{L_{a}} \leqslant\|u-v\|_{L_{n}} .
$$

$$
\cdot\left(\int_{0}^{1} d t \int_{G} \left\lvert\, g_{\mu}^{\prime}\left(v(x)+\left.t(\mu(x)-v(x), x)\right|^{\frac{n}{n-2}} d x\right)^{\frac{n-2}{\pi_{2}}}\right.\right.
$$

Since $g_{\mu}^{\prime}(\mu, x)$ is bounded, $\|h(\mu)-h(v)\|_{L_{2}} \leq N_{2}\|u-v\|_{L_{n}},$.
$N_{2}=N_{1}$ mes $G, \quad N_{1}=\operatorname{Max}(|M|,|N|)$.
Assume that K is an operator determined by

$$
\begin{equation*}
K(\mu)=\int_{G} K(s, t) \mu(t) d t \tag{7}
\end{equation*}
$$

where $K(s, t)$ is defined on $G \times G, G$ is a mealsurable subset of E_{s} with mes $G<\infty$.

Theorem 3. Under the conditions of theorem 2 let K be an operator defined by (7), where the kernel $K(s, t)$ is such that veal sup $|K(s, t)|=d^{2}<\infty$. Then the -quation (5) has at least one solution φ_{0} such that $\operatorname{veai}_{x \in G}$ sur $\left|y_{0}(x)\right|<\infty$.

Proof. According to theorem 2 the equation (6) has at least one solution $\mu_{0} \in L_{2}$. Then $\mathscr{y}_{0}=A \mu_{0} \quad$ is a solution of (5). By the Vajnberg-Golomb theorem $\left(A=K^{\frac{1}{2}}\right.$) we obtain
$\operatorname{veai}_{x \in G} \sup \left|K^{\frac{1}{2}} \mu_{0}\right| \leq d\left\|\mu_{0}\right\|_{L_{2}}$. This concludes the proof.

Theorem 4. Under the assumptions of lemma 3 let the following conditions be fulfilled:
$1^{0} K$ is defined by (7) and vaciempleG $|K(s, t)|=d^{2}<\infty$;
$2^{\circ} h^{\prime}(\mu)=g_{\mu}^{\prime}(\mu(x), x)$ is a continuous mapping from
L_{p} into $L_{\mu / p-2}$, where $g_{\mu}^{\prime}(\mu, x)$ is such that for every $\mu \in\langle-c, c\rangle,(c\rangle O)$ and almost every $x \in G$ there is $N \leqslant g^{\prime} \mu(\mu, x) \leqslant M,(N, M=$ const).
If either a) $M<0,0<\lambda<R\|A h(0)\|^{-1}$, where $R=c d^{-1}$, or b) $M>0$,
$|\lambda|<\operatorname{Min}\left(\frac{1}{M H K H_{2} \rightarrow L_{2}}, \frac{R m}{A A h(0) H}\right)$,
where $m=1-|\lambda| M\|K\|_{L_{2}} \rightarrow h_{2}$, then the equation $\varphi(s)-\lambda \int_{\sigma} K(s, t) g(g(t), t) d t=0$.
has at least one solution $\mathscr{\varphi}_{0} * A\left(D_{R}\right)$ such that
$\underset{x \in G}{\operatorname{vrai}}$ sup $\left|\rho_{0}(x)\right|<+\infty$, where $D_{R}=$ $=\left\{u \in L_{2}:\|u\| \leq R, R=c d^{-1}\right\}$.
Proof. Instead of the equation

$$
\begin{equation*}
\varphi-\lambda K h(g)=0 \tag{8}
\end{equation*}
$$

we shall solve the equation

$$
\begin{equation*}
\mu-\lambda A^{*} h(A \mu)=0 \tag{9}
\end{equation*}
$$

$\operatorname{In} \mathcal{L}_{2}$. By the Golomb-Vajmberg theorem we have that veacmur $|A \mu| \leqq d \| \mu L_{L_{a}}$ entry $\mu \in L_{2}$. Thus for every $\mu \in D_{R}=\left\{\mu \in L_{1} ; \| \mu \in R, R=c d^{-1}\right\}$ there is vrai sup $|A \mu| \leqslant C$ and

$$
\begin{equation*}
N \leq q_{\mu}^{\prime}(A \mu, x) \leq M \tag{10}
\end{equation*}
$$

By 2°, (10) and according to $[5, \S 20]$ we see that the mapping $Q(\mu)=A^{*} h(A \mu), Q: L_{2} \rightarrow L_{2}$, has for every $\mu \in D_{R}, v \in L_{2}$,
a Linear bounded Gâteaux differential $D Q(\mu, v)=$
$=A^{*} g_{u}^{\prime}(A \mu, x) A v$.
Suppose a), then $\left(F^{\prime}(u) v, v\right) \geqslant\|v\|^{2} \quad f=0$ every $\mu \in D_{R}$ and $v \in L_{2}$, where $F(\mu)=\mu-\lambda Q_{1}(u)$. We shall apply theorem $3[1]$ with $E=D_{R}, \mu_{0}=0, m=1$, $P_{1}=I \quad\left(I\right.$ denotes the identity mapping of $\left.L_{q}\right)$ and $k=\left(1+|\lambda| N_{1}\|K\|_{L_{q} \rightarrow L_{n}}^{\frac{1}{2}}\|K\|_{L_{2} \rightarrow L_{2}}^{\frac{1}{2}}\right)^{2}, N_{1}=\operatorname{Max}(|M|,|N|)$. It remains to prove that $D_{R_{v}}=\left\{\mu \in L_{2} ;\left\|u-\mu_{1}\right\| \leqslant R_{*}\right\} \subset D_{R}$, where

$$
\begin{aligned}
& u_{1}=v \lambda A^{*} h(0), R_{v}=\alpha_{v}\left(1-\alpha_{v}\right)^{-1} v\left\|u_{1}\right\|, \\
& \alpha_{v}=\sup _{u \in D_{R}}\left\|I-v F^{\prime}(u)\right\| \leqslant\left(1-2 v+v^{2} k\right)^{\frac{1}{2}}<1 .
\end{aligned}
$$

A number ϑ satisfies
(11) $0<\vartheta<\operatorname{Min}\left(k^{-1}, 2 R a b^{-1}\right)$, where $a=R-\lambda\left\|A^{*} h(0)\right\|, b=R^{2} k-\lambda^{2}\left\|A^{*} h(0)\right\|^{2}$. For the verification of this assertion of. the proof of therem 6 [1].

Assuming b) we have ($\left.F^{\prime}(\mu) v, v\right) \geqq m\|v\|^{2}$ for every $\mu \in D_{R}, v \in L_{2}$ with $m=1-|\lambda| M\|K\|_{L_{2} \rightarrow L_{2}}$. It is easy to show that

$$
D_{R_{*}}^{*}=\left\{\mu \in L_{2}:\left\|\mu-\mu_{1}\right\| \leqslant R_{*}^{*}\right\} \subset D_{R},
$$

where $\mu_{1}=v \lambda A^{*} h(0), R_{v}^{*}=\alpha_{v}^{*}\left(1-\alpha_{*}^{*}\right)^{-1} v\left\|\mu_{1}\right\|$, $\alpha_{刃}^{*} \leqq\left(1-2 m v+v^{2} k\right)^{\frac{1}{2}}<1$. In this case a number satisfies the inequality

$$
\begin{equation*}
0<v<\operatorname{Min}\left(\frac{m}{k}, \frac{2 R a_{1}}{b_{1}}\right), \tag{12}
\end{equation*}
$$

where $a_{1}=R m-\left\|\lambda A^{*} h(0)\right\|, b_{1}=R^{2} k-\left\|\lambda A^{*} h(0)\right\|^{2}$.
Therefore, according to theorem 3 [1] the equation (9) has a unique solution μ^{*} in $D_{R_{v}}\left(D_{R_{A}} \subset D_{R} \subset L_{2}\right)$ (or
in D_{R}^{*}). Hence $\varphi_{0}=A \mu^{*} \in A\left(D_{R}\right)$. is a solution of (8) in L_{n}. Moreover, by Vajnberg-Golomb theorem $\underset{x \in G}{\operatorname{vrai}}$ sup $\left|\varphi_{0}\right|<+\infty$. This completes the proof of theorem 4.

Remark 2. If the conditions of theorem 4 are satisfied, then $\varphi_{n} \rightarrow \varphi_{0} \quad$ in the norm topology of L_{n}, where $\varphi_{n}=A u_{n}, u_{n+1}(1-v) u_{n}+\lambda v A^{*} h\left(A u_{n}\right), u_{0}=0$ and φ_{0} denotes a solution of (8). A positive number ϑ is determined according to the condition a) or b) by (11), or by (12). Suppose for instance a), then the equation (9) has a solution μ^{*} in $D_{R} \subset L_{2}$ and $\lim _{n \rightarrow \infty}\left\|\mu_{n}-\mu^{*}\right\|_{L_{2}}=0$. So that $\varphi_{0}=A u^{*} \in A\left(D_{R}\right)$ is a solution of (8) and $\left\|\varphi_{0}-\varphi_{n}\right\|_{L_{n}}=\left\|A \mu^{*}-A \mu_{n}\right\| \leqslant\|A\|_{L_{2} \rightarrow L_{i}}\left\|\mu_{n}-\mu^{*}\right\|_{L_{2}} \rightarrow 0$ whenever $n \rightarrow \infty$. Since $\|A\|=\left\|A^{*}\right\|$ and
$\|A\|_{L_{2} \rightarrow L_{\pi}} \leq\|K\|_{L_{2} \rightarrow L_{\mu}}^{\frac{1}{2}}$, we have that
$\|A\|_{L_{2} \rightarrow L_{r}}\left\|A^{*} h(0)\right\| \leqslant\|A\|_{L_{2}+L_{n}}^{2}\|h(0)\| \leqslant\|K\|_{L_{2} \rightarrow L_{n}}\|h(0)\|_{L_{2}}$. Hence

$$
\begin{aligned}
\left\|\varphi_{0}-\varphi_{n}\right\|_{L_{\mu}} & \leq \lambda v \alpha_{2}^{n}\left(1-\alpha_{v}\right)^{-1}\|A\|_{L_{2} \rightarrow L_{\mu}}\left\|A^{*} h(0)\right\| \\
& \leq \lambda v \alpha_{v}^{n}\left(1-\alpha_{v}\right)^{-1}\|K\|_{L_{2} \rightarrow L_{\mu}}\|h(0)\|_{L_{q}} .
\end{aligned}
$$

Similar assertions also hold for the case b).

3. Consider Urysohn integral equation

$$
\begin{equation*}
\mu(s)-\int_{G} K(s, t, \mu(t)) d t=y(s) \tag{13}
\end{equation*}
$$

in a real space $L_{2}(G)$, where a function $K(s, t, \mu)$ is defined for $s, t \in G, \mu \in(-\infty,+\infty), G$ is a measurable subset of E_{s} with mes $G<\infty$ and $y \in L_{2}$.

Assume that $K(s, t, \mu)$ defines an operator

$$
\begin{equation*}
A(\mu)=\int_{G} K(s, t, \mu(t)) d t ? \tag{14}
\end{equation*}
$$

which maps L_{2} into L_{2}. Let $Q: L_{2} \rightarrow L_{2}$ be a continous mapping from L_{q} into L_{q} defined by

$$
\begin{equation*}
Q(u)=\int_{G} Q(s, t) u(t) d t \tag{15}
\end{equation*}
$$

where $Q(s, t)$ is determined on $G \times G$. Set
$T=I-\lambda Q\left(I\right.$ denotes the identity mapping of L_{2}, λ a real number). Suppose that λ is a regular value of Q - Under these conditions, using theorem 1 , we shall provo the following

Theorem 5. Let the following conditions be fulfilled: 1^{0} for every $\mu_{1}, \mu_{2} \in(-\infty,+\infty), s, t \in G$.

$$
\left|K\left(s, t, u_{1}\right)-K\left(s, t, u_{2}\right)-\lambda Q(s, t)\left(u_{1}-\mu_{2}\right)\right| \leq \varphi(s, t)\left|u_{1}-\mu_{2}\right|
$$

where $\alpha=\left(\int_{0} \int_{G} \varphi^{2}(s, t) d s d t\right)^{\frac{1}{2}} \leqslant \frac{1}{\left\|T^{-1}\right\|}$.
$2^{0}|K(s, t, u)-\lambda Q(s, t) \mu| \leqslant \sum_{k=1}^{n} g_{k}(s, t)|\mu|^{1-\alpha_{k}}+h(s, t)$
$(s, t \in G, \mu \in(-\infty,+\infty))$, where $0<\alpha_{k}<1$, $(k=1,2, \ldots, n), k(s, t) \in L_{G \approx G}^{2}$ and the functions $g_{k}(s, t)$, $(k=1,2, \ldots, n)$ are such that

$$
\begin{equation*}
\int_{G}\left(\int_{G}\left|g_{h}(s, t)\right|^{\frac{2}{\alpha_{f}}} d t\right)^{\frac{\alpha_{k}}{2}} d s<\infty \tag{16}
\end{equation*}
$$

Then the equation (13) has at least one solution $\mu_{0} \in L_{2}$ for every $y \in L_{2}$.

Proof. Assuming 2°, then for every $\mu \in L_{2}$

$$
\begin{aligned}
\|T(\mu)-F(\mu)\| & =\|\lambda Q(\mu)-A(\mu)\| \\
& \leq C\left(M \sum_{k=1}^{n}\|\mu\|^{1-\alpha_{k}}+N\right)^{\frac{1}{2}}
\end{aligned}
$$

where $M=\max _{k=1,2, \ldots, n} \int_{G}\left(\int_{\theta}\left|g_{k}(s, t)\right|^{\frac{2}{\alpha_{n}}} d t\right)^{\frac{\alpha_{k}}{2}} d \dot{s}$,
$N=\int_{G} \int_{G} h^{2}(s, t) d s d t, F(\mu)=\mu-A(\mu), C=\operatorname{mes} G$.
Hence

$$
\lim _{\| \| \rightarrow \infty} \frac{\|T(\mu)-F(u)\|}{\|u\|}=0 .
$$

In view of 1^{0} for every $\mu_{1}, \mu_{2} \in L_{2}$
$\left\|F\left(\mu_{1}\right)-F\left(\mu_{2}\right)-T\left(\mu_{1}-\mu_{2}\right)\right\|=\left\|A\left(\mu_{1}\right)-A\left(\mu_{2}\right)-\lambda Q\left(\mu_{1}-\mu_{2}\right)\right\| \leqslant$

$$
\leqq x\left\|u_{1}-u_{2}\right\|
$$

with $\alpha \leqq \frac{1}{\left\|T^{-1}\right\|}$. Thus all the assumptions of theorem 1 are satisfied. This completes the proof.

Theorem 6. Let $K(s, t, \mu)$ be a Punction satisfying the following conditions:
1^{0} For every $\mu_{1}, \mu_{2} \in(-\infty,+\infty),(s, t \in G)$ there is $\left|K\left(s, t, \mu_{1}\right)-K\left(s, t, \mu_{2}\right)\right| \leqq \varphi(s, t)\left|\mu_{1}-\mu_{2}\right|$. $2^{0}|K(s, t, \mu)| \leqslant \beta|\mu|+\sum_{k=1}^{n} g_{k}(s, t)|\mu|^{1+a_{n}} h(s, t)$,
$(s, t \in G, \mu \in(-\infty,+\infty))$, where $0<\alpha_{n}<1(k=1,2, \ldots, n)$ $h(s, t) \in L_{G \times G}^{2}, \quad \beta \quad$ is a number sufficiently small $(0 \leqslant \beta \leqslant \varepsilon<1)$ and the functions $g_{m}(s, t)$ ($k=1,2, \ldots, n$) satisfy (16).

If $|2| \leqslant \frac{1}{\|\varphi\|_{L_{G \times G}}}$ then the equation

$$
\mu(s)-\lambda \int_{0} K(s, t, \mu(t)) d t=y(s)
$$

has at least one solution $\mu_{0} \in L_{2}$. for every $y \in L_{2}$.
Proof. The proof is similar to the proof of theorem 5.
In next we auppose that A is defined by (14), where
$K(s, t, \mu)$ is a function given on $G \times G \times(-\infty,+\infty)$
and G is a bounded closed subset of E_{s}.
Lerma_ 4. Let X be a Banach space, $A: X \rightarrow X$ a completely continuous mapping of X int $Q, Q: X \rightarrow X$ a linear mapping such that

$$
\lim _{\| \| \rightarrow \infty} \frac{\|A(\mu)-\lambda Q(\mu)\|}{\|\mu\|}=0 .
$$

If $\lambda \neq 0$ is not a characteristic number of Q, then the equation

$$
\begin{equation*}
u-A(u)=y \tag{17}
\end{equation*}
$$

has at least one solution $\mu_{0} \in X$ for every $y \in X$.
Proof. By [6,chapt.IV,lemma 3.1] the operator Q is completely continuous. Since λ is a regular value of Q, $Q_{\lambda}^{-1}=(I-\lambda Q)^{-1}$ exists, is bounded and everywhere defined. The equation $F(\mu)=y \quad$ with $F=I-A \quad$ is equivalent to

$$
\begin{equation*}
u=R(u)+Q_{a}^{-1} y, \tag{18}
\end{equation*}
$$

where $R(\mu)=Q_{2}^{-1}\left(Q_{\lambda}(\mu)-F(\mu)\right)=Q_{\lambda}^{-1}(A(\mu)-\lambda Q(\mu))$.
Furthermore, since Q_{λ}^{-1} is continuous and $A-\lambda Q$ completely continuous, R is completely continuous. In view of $\|R(u)\| \leq\left\|Q_{\lambda}^{-1}\right\|\|A(\mu)-\lambda Q(\mu)\|$
we have that $\lim _{\|\mu\| \rightarrow \infty} \frac{\|R(\mu)\|}{\|\mu\|}=0$. Using the theorem of Dubrovskij [9,chapt.II] we see that (18) has at least one solution in X. Thus the equation (17) has at least one solution $\mu_{0} \in X$ for every $y \in X$. This concludes the proof.

Theorem 7. Let one of the following conditions be fulfilled:
1° The operstor $A(\mu)$ defined by (14) is completely continuous in L_{2}-space and the function $K(s, t, \mu)$ is

such that

(19) $\mid K(s, t, u)-\lambda Q\left(s, t,\left.u|\leqslant a+b| u\right|^{\alpha}\right.$,
($s, t \in G, \mu \in(-\infty,+\infty)$, where $a, b>0,0 \leqslant a<1$, $Q(s, t)$ is a kernel of (15) and $\lambda \neq 0$ is not a characteristic value of Q -
$2^{0} K(s, t, 0)=0,(s, t \in G), K(s, t, \mu)$ has a bounded as $\mu \rightarrow \infty$ uniformly with respect to $s, t \in G$, where $Q(s, t)$ is either identically equal to zero, or defines a linear operator (15) having the property that 1 is not a characteristic value of Q

Then the equation (13) has at least one solution $\mu_{0} \in$ $\in L_{2}$ for every y $\in L_{2}$.

Proof. The proof of theorem 7 depends on lemma 4. Assuming 1^{0}, it is sufficient to prove that $\lim _{\| \mu \rightarrow \infty} \| A(\mu)$ -$-\lambda Q(\mu)\| \| \mu \|^{-1}=0$. In fact, using (19)
(20) $\|A(u)-\lambda Q(u)\| \leqslant(\text { mes } G)^{\frac{1}{2}}\left[a\right.$ mes $\left.G+b \int_{G} \mid \mu(t) \|^{\infty} d t\right]$. Applying the Hölder's inequality with $\Re^{-1}=\alpha, q^{-1}=1-\alpha$ we obt ain that
(21) $\int_{G}|\mu(t)|^{\alpha} d t \leq(\operatorname{mes} G)^{1-\alpha}\left(\int_{G}|\mu(t)| d t\right)^{\alpha}$.

According to Cauchy-Schwarz inequality
(22) $\left(\int_{G}|\mu(t)| d t\right)^{\infty} \leq(\text { mes } G)^{\frac{\alpha}{2}}\|\mu\|^{\alpha}$.

By (20), (21) and (22)
$\lim _{\| u \rightarrow \infty} \frac{\|A(\mu)-\lambda Q(\mu)\|}{\|\mu\|} \leqslant(\operatorname{mes} G)^{\frac{3}{2}} \lim _{\|\mu\| \rightarrow \infty}\left[\frac{a}{\|\mu\|}+\frac{b(\operatorname{mes} G)^{-\frac{\alpha}{2}}}{\|\mu\|^{1-a}}\right]=0$.
Assuming 2°, we see that $|K(s, t, \mu)| \leqslant M|\mu|$ for every $s, t \in G, \mu \in(-\infty,+\infty), M=$ const.

According to [6,chapt.I,th.3.2] the mapping $A(\mu)$ acts from L_{2} into L_{2} and is completely continuous. Furthermore, A is asymptotic close to a linear mapping $Q[c f .6$, chapt.V,§ 3]. Thus all the assumptions of lemma 4 are satisfied. This completes the proof.

Remark 3. Some results concerning the solutions of homogeneous Hammerstein integral equations being asymptotic close to linear ones has been established by M.A. Krasnoselskij [6,chapt.III, §4,5].
4. Theorem 8. Let $F: X \rightarrow X$ be mapping of uniformly convex Banach space X into X such that for every μ_{1}, $\mu_{2} \in D_{R}=\{\mu \in X:\|\mu\| \leqslant R\}$ there is
$\left\|P F\left(\mu_{1}\right)-P F\left(\mu_{2}\right)-K\left(\mu_{1}-\mu_{2}\right)\right\| \leqslant \alpha\left\|\mu_{1}-\mu_{2}\right\|$, where $P: X \xrightarrow{\text { onto }} X, K: X \xrightarrow{\text { onto }} X$ are linear mappings having the inverses P^{-1}, K^{-1}. Let F be a Fréchet-differentiable at $0, F(0)=0, a=\left\|K-P F^{\prime}(0)\right\|<1$ and $a\left\|K^{-1}\right\| \leqslant 1$. Let ε be an arbitrary positive namber such that $\varepsilon<1-a$.

Then there exists a positive number σ^{σ} such that for any $y \in X$ with $\|y\| \leq \frac{\sigma(1-(a+\varepsilon))}{\|P\|}$ the equation $F(u)=y$ has at least one solution in the ball $D_{\sigma}=\{\mu \in X:\|\mu\| \leq \delta\}$.
proof. To prove the theorem 8, use the same arguments as in [10] and the Browder's fixed point theorem [11].
References
[1] J. KんOMY: Application of some existence theorems for. the solutions of Hammerstein integral equations. Comment.Math.Univ.Carolime 7,4(1966), 461-478.
[2] А.И. ПоволОцКИЙ: обобщение одной теоремы о разщеплении линейного оператора.Труды Ленингр.Лесотехн.акад., 78 (1957), 27-30.
[3] A. GRANAS: The theory of compact vector fields and some of its applications to topology of functional spaces (I).Rozpr.Matematyczne XXX (1962), 1-93.
[4] S YAMAMURO: A note on the boundedness property of nonlinear operators. Yokohama Math.J., Vol. H(19ez), 19-23.
[5] М.М. ВАЙнВЕРГ: Варизцибнные методы исследования нелинейных операторов. Москва 1才56.
[6] М.А. КРАСНОСЕЛЬСКИЙ: ТопСЛсГические методы в теории нелинейных интегральных уравнений. Москва 1956.
[7] M.D. GEORGE: Completely well posed problems for nonlinear differential equations.Proc.Am.Math.Soc., Vol. 15(1964), No 1,96-100.
[8] W.V. PETRYSHYN: Further remarks on nonlinear P-compact operators in Banach spce.Journ. of Math.Anal. Appl.16(1966),243-253.
[9] М.A. КРАСНОСЕЛЬСКИЙ: Нечоторые вадачи нелимейного аналива. Усп.мат. наук, т. IX (1954), вып.3,57-114.
[10] J. KひOMÝ: Some existence theorems for nonlinear problems. Comment. Math.Univ.Varol.,7,2(1966),207-217.
[11] E.F. BROWDER: Nonexpansive nonlinear operators in Banach space.Proc.Nat.Acad.Sci.U.S.A.Vol.54(1965), 1041-1043.
[12] E.F. BROWDER: Existence of periodic solutions for nonlinear equations of evolutions. Proc.Nat.Acad. Sci.U.S.A.Vol. 53 (1965), No 5,1100-1103.
(Received January 30,1967)

