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REMARKS ON NONLINEAR FUNCTIONALS
Josef KOLCME, Praha

Intpodugtion. Weakly lower=semicontinous functionals play
an important role in the theory of variational methods. The
following well=known result [l,th.9.1] is basi ¢ in the theory:
of the extrema: Let X be a reflexive linear normed space, f
a weakly lower-semicontinuous finite functional on a bounded
weakly closed subset E of X . Then f is bounded below and
attains its lower bound on E . M.M.Vajnberg [l,chapt.III] has:
introduced so=called m-property of weakly lower-semicontinuous
functionals as follows: A weakly lower-semicontinuous functio-
nal f is said to have the m=property in X if there exist a
bounded weakly closed subset E € X and interior point x, of
E such that f(x) > $(X,) for each X on the boundary
of E . In such spaces X , a G-differentiable (i.,e. a G-de-
rivative f'(x) exists at every x € X ) functional with the
m=-pr¢®perty has at least one critical point. Some recent inves-
tigations in these topics have been obtained by M.M.Vajnberg
{21, R.I.Kadurovskij [3], (4], B.T.Poljak [5],[6], E.S.Levitin-
- B.T.Poljak [7], M.Z.Nashed [ 8] and others.

Section 2 of this note contains a theorem concerning the
global extrema of weakly lower-semicontinuous functionals de=

fined on the whole space X . Thus this theoreﬁ permits to in=-
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vestigate the extrema of such functionals defined not only
on bounded subsets of X , but on the whole X . Purther so-
me basic properties of weakly lower-semicontinuous functio-
nals are described, Section 3 contains some remarks close
related to (9] concerning the G-differentiability and boun-

dedness of convex functionals.

l. Notgtjon and definitiong. Let X be a real linear nor-
med space, X* its dual, E; the set of all real numbers, (x,
€™ ) apairing between 2* € X* and x € X . A functio-
nal f defined on a convex set Mc X is called convex (qua-
si-convex - see for instance [8]) if F(AX +(1-A) )% AFf(X+
+(1-2)f(y) ('F(ﬂx+(4-ﬂ.7y,)_‘e' mae ($(x), § (g ))
for each X, ¢4 €M and A €(0,1). A functional f is
said to be strictly quasi-convex [8] if f (X)) < f (y)
implies f (A X + (41~ A)ay)< f(ay) . We shall use the
symbols " —s * ,'—"‘LV' to denote the strong and weak conver-
gence in X . A functional f£: X —» E  is said to be weakly
lower-semicontinuous (weakly continuous) at x, € X if xn-'—";

M, 4 implies 'F(.X,) £ Im flx,) FRp) — (X)) .

e nyao

We shall use the notions and notations by M.M.Vajnberg [1,
chapt.I) for differentials and derivatives of mappings in ab-
stract spaces. Recall that a reflexive linear normed space is

a Banach space.

2. Wegkly lower-semicontinuous functionals.
In next we shall use the following
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Proposition 1, Suppese that f: X — E, is weakly lower-
semicontinuous on X . Then for each real constant c¢ the
set E(e)= fx € X : f(x) & ¢ } is weakly clo-
sed in X . Conversely if f: D—> X , where D & X and
E*(c) = {f X €D:f(x) £ ¢ § 1is weakly closed in X
for each real constant ¢ , then f 1is weakly lower-semicon-
tinuous on D .

Theorem l. Let X be a reflexive linear normed space,
f: X — E, a weakly lower-semicontinuous functional on X .
Suppose that for some real number a the set E(a)= {xe
e X:f(X) £ ad is bounded in X and f(X) == — c0 for
each X € E(Q). Then f 1is bounded below on X . Furt-
hermore, if E (@) # &, then there exists 44, € X such
that f(uo)=$4':n{ f (x) and 4, € E(a).

Proef. If E(a)= & , then the first assertion is obvi-
ous. Suppose that E (@) =#= Z and is bounded for some a .
Assume f is not bounded below on X . Then there exist x, €
€ X such that #(X,) < —m (m=4 2 ...) Hence the-
re exists an index n, such that for m & m, we have
$(X, )£ @ . Thus x, € E(a) foreach m, m =m,.
According to our assumption, {xn} is bounded in X . Since

X 1is a reflexive Banach space, passing a subsequence {x"%?’

we obtain that .x,% e X, ., Hence 'x""k,e E(a) rfor

each & 2 k‘, . Since f 1is weakly lower=semicontinuous on
X , using Proposition 1, we see that E(a) is weakly closed
in X . Hence X, € E (@) . In view of weak lower-semi-

continuity of £ , £(X,) 5&% 4'(0&,,,*).—. m#(xhﬂ)a- - a0,

which is a contradiction with the fact that f does nat at-
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tain the value . —ao0 on E(a) . Set d,-"lé'fsl(f £(x) . Then
d & a.If d=a, then £(x) = a for each x € E(a) ,
and f attains its lower bound on E(a) . If 4 < a, we
choose a positive number € such thatd + € < @ . The-
re exists a sequence {4, $ € X such that f(w,, ) — A
and hence there exists an index n, such that for each n2
2 n, we have f(4,) & d + € . Therefore &, € E (a)
for each n =2 n, sand {uﬁg is bounded in X . Again, in view
. of reflexivity of X, there exists a subsequence {fu § such
that w”h-—“—’—& A, and w, € X . Since Un, € E(a)

(4

for each & & R, ,«, € E(a). But

' Y - d .
£U,) & Lm §(Un, )= lim £ (Lp,)

On the other hand f(4, ) 2 d . Thus ()= d and’
this completes the proof,

Corollary l. Let X be a reflexive linear normed space,
£f: X E1 a quasi-convex lower-semicontinuous functional
on X , Suppose that for some real number a the set E(a) =
= {xe€ X :4$(x) £ a? is bounded in X and f(x)#
% — 00 for each x € E(a) , Then f is bounded below on X »
If E(a)#+ £ , then there exists u, € X such that
-F(LL‘,)=xigL; f(x) and «, € E(a) . Moreover, if f
is strictly quasi-convex, then u, is unique.

A quasi-convex lower-semicontinuous functional on X is
weakly lower-gemicontinuous. This fact has been observed by
B.T.Poljak [5] and M.Z.Nashed [8]. Since for each real con—-
stant ¢ the set E(¢) ={xe X : f(x) & ¢ ¢ is
convex and closed and hence weakly closed in X , this fact

follows also at once from Proposition 1l.
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Analysing the proof of Theorem 1 it is easy to see that
the assertion of Th.l one may rewrite as follows:

Theorem 2, Let X be a reflexive linear normed space,

f: D—r E, a functional defined on D & X and such that
for some real number a the set E¥@)={xeD :flx)& ajd
is bounded and weakly closed in X . If f is weakly lower-
semicontinuous on E*(a) and f(x)#+ —a for each x €

€ EMa) , then £ 1is bounded below on X . Moreover, if
E*(a) + £ , then there exists 4, € X such that f(u, ) =
=xién)t" £(x) and «, € E*(a) .

Propogition 2. Let X be a linear normed apace, G & non-
empty set of weakly lower-semicontinuous functionals on X .
If f(x) = A»un{Y(x); € G2 for every x € X, then
f is weakly lower-semicontinuous on X . In particular, if
{if',._} is a sequence ofweakly lower-semicontinuous functionals
and £, T f on X, then f is weakly lower-semicontinu-
ous on X .

Proof. Let ¢ be any real number. Set E(e)={xe X :
:$(x) & ¢ § . Ve shall prove that E(c) is weakly closed in X.
Let %, € E(¢) and X, ¥ X, in X . Then f(X,)& C.
Since $(xX)=Aun{P(X): Qe G},P(X )& (X, ) & C
for an arbitrary @ € G . since @ € G are weakly lo-
wer-semicontinuous, < (X,) & @_&_i’__r; g(x,) £ ¢ for any

@ € G . Hence ‘;:u.g« ¢ (X,) € ¢  and therefore fx, ) £
£ ¢c.Thus X, € E(c) and E(c) is weakly closed in X .
According to Proposition 1 f is weakly lower-semicontinuous
on X . If £ _~ f  then we set 4'(‘x)=/aﬁﬁ€,,,(a<) for
every X € X . Using the first part of our theorem to f(x)
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we obtain at once the second assertion. This concludes the
proof,

Corollary 2. let {£,§ be a monotone increasing (decrea-
sing) sequence of functionals fw:)(-o E,, (m=1,2,...) .
Ir £, (m=1,2,...) are weakly continuous on X , then
§ = n&ﬁ £, is weakly lower—semicontinuous (weakly up-
per-semicontinuous) on X .

Propogition 3. Let X be a linear normed space, f: X —>
— E, a functional weakly lower-semicontinuous at X, € X.
Then for easch number A , A < f£(X,) there exist a num—
ber J(A,x,) >0 and 'e’:,'% e X* such that if
[(X=%X,,€% Y < o, then f(x) > A .

Proof. Suppose £ 1is weakly lower-semicontinuous at x, €
€ X . Assume on the contrary that there exists A, < ¥(x,)
1

such that for every d = = and €*€ X¥* there exists

Xy, (m=1,2,...) such that
4

(1) 1(x,-x,,e*) 1< = imply f(X, ) < A,
(m = 4, 2,.., ). Then Xp J—"-} X, and in view of weak lo-
wer-semicontinuity of f at x, , f(x,) & Lme $(x, ) -
m-yoo
But from (1) it follows that
$(x,) & tom flx,) € A, < f£(x,)
m ~% oo

which is a contradiction. This concludes the proof.

Proposition 4. Let X be a linear normed space, f£: X—>
—» E, a weakly lower-semicontinuous functional on X. Ir f
is bounded below on X , then there exists a sequence {f,§ of

functionals f_ : X—» E, weakly continuous on X and such

that £ AN £ .
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Proaf. Let x be an arbitrary point of X and A<
«< f£(x) . According to Proposition 3 there exist o"; > 0

* P *
and eAa”‘ € X7 such that if |(x-X, e,“,“)l < o,

then £(x)> A, . Setf, (x )a.;';n{{f('y.)f-nlﬂy.-.x,-e{,x )72
and use the arguments similar to that [10,chapt.6] -

Remark. We can replace X (as a domain of £ or f )
by an arbitrary convex closed subset of X . The generalized
Dini’s theorem [1,§ 22] is valid under the followin; weaker »
assumptions: X is a reflexive linear normed space, f,, (f)
weakly lower-semicontinuous (w.upper s.) on 1‘ (lxll € R),

g F oon Do

3. Convex functionals. We prcve the following

Theorem 3. Let X be a separable linear normed space, f£: X=§
a convex finite functionali on X. Suppose that there exists an Opeh
subget Us8# of X such that £ is upper bounded on U/in particular,
assume that f is upper-cemicontinuous on X/. Then the set Z of all
x X where the Gateaux derivative ffx) of f exists is a G,--set.

Procf. By[13,chapt.II] f is continucus oa X. The one-cided Ga-
teaux differential Yf(x,h) exists for each xeX and heX[11]. By lem-
ma 2 [9) Yf(x,.) is continuous at h=C for each xeéX. Since Yf(x,h)is
subadditivelll] in heX and Vf (x,C)=C, Yf(x,h) is continuous in heX
for each x € X.Repeating the considerations of the first part of the
proof of Th.6[Jwe see that the set Z of all xeX where the Gateaux
differential Vf(x,h)exists is a G‘-set.But convexity and continuity
of £ imply that Vf¢x,h)= Df(x,h)= f{x)h for each xe&Z.

Propogition 6. Let X be a linear normed space, f: X —*
e d E, a conyex functional continuous at some point x, € X.
If there exists the Gfteaux @ifferential Vf(x, 4 ) then
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£ possesses the GAteaux derivative f£°(x_ ) at x, .

Remark. Under the assumptions of Theorem 8 [91 suppose
that £ 1is also finite on X . Then the assertion b) of Th.8
holds as follows: the one-sided GAteaux differential V, f(x,,
h) is continuous and weakly lower-semicontinuous in h on
X . In fact, V,#(X,, h ) is subsdditive [11] in he X
ad by lemme 2 [9] continuous at h =0, Since ¥V, f(x,,0) =
=0, V* f'-(ux,, A ) 1is continuous on X . Being continuous
and convex [11] in he€X, V,f(x,,4 ) is weakly lower-se-
micontinuous on X .

For some recent results concerning the weaker notion than
the GAteaux derivative of convex functions see [12] and the
papers cited here.

Theorem * Let X be a linear normed space, £: X —> B,
a convex functional on X . If f is lower-semicontinuous at
0, then f is bounded below on any closed ball D (fxll £R) .
Moreover, if f£(0) 4is finite and #(X) £ ¢ for each x €
€ X with I Xl @ R then £ is bounded in D; and con-
tinuous in B (I x Il < R .

Proof. Since f 1is lower-semicontinuous at 0O , for

€, > 0 there exists d: > 0 such that if llx || & O
then f(x) & f(0)~ €, , 1f R & o | then the first
assertion follows at once from the last inequality. Suppose
that R > O and let x be an arbitrary point of Dy

with 1 x| > . Then 2L eD (Ixhso)

and

o
(1) tco)- ¢ & F () -
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d;
Since 3 € (0,1) and £ is convex,

x0s _ s [/
‘f(m): F(('1 lx.)0+mx)é

- % - .

From (1) it follows that

) £(x) ;~-§:’—R+4(0)

for each x € D with I X I > o) . But for each x€ X
with # x | € 0] we have that f(x) & f(0)— £, -
Since #(0)~ g, > f(0)~ a%—- €, , (2) holds for every
x € D . To prove the second assertion it is sufficient to

show that f 1is upper bounded in DR

Assume 4 (0) = 0 and X = 0 is an arbitrary
point of D with AX) < R . Then 0 < -'—‘]’%1

< 1,

We have

pxA
=1 (R 155 %’.) £ (1-2H ¢+
i RX .
+ .__E_,e(m) & $£00)+C

Thus in this case f is bounded on D, . If £(0) < O , we
set g (X) = $(x)—-+(0).Then ¢ 1is convex, lower-semi-
continuous at O and g (0)= (0 . Moreover, g (x) & €~
- 4£(0) for each x€e X with I x Il = R |, Using the a~
bove result to g , we see that g and hence f is bounded
on DR . Being bounded on DK according to Theorem 2 [13,
I1,§ 5], £ is continuous in By .
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Remark. For some result$ concerning the boundedness and
continuity properties of nonlinear functionals see [1l,chapt.
I]J. Ve recall the well-known result of I.M.Gelfand (14], If ¢
is a lower-semicontinuous seminorm (i.e. subadditive and
f(mx)= 1l | ¢ (X) for every & ) on Banach space X ,
then f ‘is bounded and hencd continuous on X . Suppose that
£: X ¥ E1 is subadditive positive homogencous and upper-se-
micontinuous at some x, € X , where X is a linear normed
spaces Then f 1is bounded and continuous. In faet, subadditi-
vity and positive homogeneity of f imply convexity. Accor-
ding to Corollary 1 [13,chapt.II] £ is contimuous. But this
implies the boundedness of f .

Remarke When this note was already prepared to press, I
acquainted with the paper [15), where F.E.Browder firstly has
established the second assertion of Proposition 2 (see [15],
Theorem 3) by an another way.
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