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Comment a t it>nes Mathematicae U n i v e r s i t a t i s Carolinae 

9 ,1 (1968) 

REMARKS ON NONI.JNEAR FUNCTIONALS 

Josef KOLCMf, Praha 

Introduction. Weakly lower-semicontinous functionals play 

an important role in the theory of variational methods. The 

following well-known result [ l , th.9«l . l is basic in the theory-

of the extrema: Let X be a reflexive l inear normed space, f 

a weakly lower-semicontinuous f in i te functional on a bounded 

weakly closed subset E of X • Then f is bounded below and 

at tains i t s lower bound on E . M.M.Vajnberg [ l , chapt . I I I J haa 

introduced so-called m-property of weakly lower-semicontinuous 

functionals as follows: A weakly lower-semicontinuous functio­

nal f is said to have the m-property in X if there exist a 

bounded weakly closed subset E c X and inter ior point x0 of 

E such that -fCx) -> *f (xff ) for each x on the boundary 

of E . In such spaces X , a G-differentiable (i .e» a G-de-

rivat ive f (x) exists at every x € X ) functional with the 

m-puftperty has at least one c r i t i ca l point. Some recent inves­

t igat ions in these topics have been obtained by M.M.Vajnberg 

(2J t . R.J.Kacurovskij [3],C4J t B.T.Poljak C5J, C61, E.S.Levitin-

- B.T.Poljak [7J , M.Z.Nashed [ 8J and others. 

Section 2 of th is note contains a theorem concerning the 

global extrema of weakly lower-semicontinuous functionals de­

fined on the whole space X • Thus this theorem permits to in-
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w s t i g a t e the extrema of such functional a defined not only 

on bounded subsets of X , but on the whole X . Further so ­

me basic properties of weakly lower-semicontinuous funct io -

nals are described* Section 3 contains some remarks c lose 

re la ted t o L9J concerning the G-d i f f erent lab i l i ty and boun-

dedness of convex funct ionals . 

--• Notation and d e f i n i t i o n s . Let X be a real l inear nor-

med space, X*" i t s dual, E^ the se t of a l l rea l numbers, (x, 

•e* ) a pairing between «e* e. X * and x e X • A funct io ­

nal f defined on a convex se t M c X i s ca l led convex (qua­

s i -convex - see for instance C8J) i f -f (X* + (l~X)n±,)6Af6x)+ 

+(\-%)U<+) (f(Kx + (1-Xl<&)£ ma* C4C*), *(<&)) 
for each »x; /y, € M and A € (0f A ) * A functional f i s 

sa id to be s t r i c t l y quasi-convex £ 8 } i f f f «X > < 4 Cn^) 

imp l i e s -f (PlC* + (1 - X )n#)< f (>y ) . We sha l l use the 

symbols * y * ; * - ^ » * to denote the strong and weak conver­

gence in X . A functional f: X —> E i s sa id to be weakly 
1 

lower-semicontinuous (weakly continuous) at x 0 e X i f 

*£+ x a implies +(*,) * h& "fC*-) (i(o^) -+ -f(Xc)) 
x 

*A~ 

We s h a l l use the notions and notations by M.M.Va;jnberg [lt 

c h a p t . i l for d i f f e r e n t i a l s and derivat ives of mappings in ab­

s tract spaces . Recall that a re f l ex ive l inear normed space i s 

a Banach space. 

£• Weakly lower-semicontinuous funct ionals . 

In next we s h a l l use the following 

146 -



Propos i t ion 1. Suppose t h a t f: X —* £,, i s weakly lower-

semi continuous on X . Then for each r e a l constant c the 

s e t E (C ) » { * e X i 4 (* ) & c } i s weakly c l o ­

sed in X . Conversely i f f: D —» X , where D Se X and 

E * (c) m t * € D:f(x ) £ c ? i s weakly closed in X 

for each r e a l constant c , then f i s weakly lower-semi con­

t inuous on D • 

Theorem 1 . Let X be a r e f l e x i v e l i n e a r normed space, 

f; X —» E. a weakly lower-semicontinuous func t iona l on X . 

Suppose t h a t fo r some r e a l number a the s e t E(c^) * { < \ C 

c X :-rY;x) 4k al i s bounded in X and 4(x) *¥ - oo f o r 

each *X € E (Q, ) . Then f i s bounded below on X . F u r t ­

hermore, i f E (CL ) 4» 0 , then t h e r e e x i s t s x^, e A such 

t h a t f (U*c ) as imf 4 f\x ) and ^ e £ (a, ) * 

Proof. I f ECct) « 0 f then the f i r s t a s s e r t i o n i s obvi ­

ous . Suppose t ha t E (&) -# 0 and i s bounded for some a • 

Assume f i s not bounded below on X . Then t he re ex i s t xM £ 

€ X such t h a t 4 (<x^ ) < ~ m, (*t ** 17 2, <*> ) .Hence t h e ­

r e e x i s t s an index n^ such tha t f o r nv & ^ l ^ we have 

4(<Xn, ) £ a* ' Thus tX.̂  e E (a, ) for each <n,? rrt £. m.o. 

According t o our assumption, - f x ^ / i s bounded in X • Since 

X i s a r e f l e x i v e Banach space , passing a subsequence { x ^ ? , 

we ob ta in t h a t X ^ - ^ » *XA , Hence ,X^ 6 £ ( a ) f 
*ч '*, ° ' ^ 

or 

each Ms & <fe0 . Since f i s weakly lower-semicontinuous on 

X , using P r o p o s i t i o n 1, we see t h a t E(a) i s weakly closed 

in X • Hence *xe € E (CL ) . In view of v/eak lower-semi-

c o n t i n u i t y of f , f 6x ) £ lorn, -PC*- /-* <&*n, ^6X4, )-=» - a o , 

which i s a con t r ad i c t i on with the fac t t h a t f does not a t -
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t a i n the value — oo on E(a) • Set dim Lrtf 4Co< ) .. Then 
-X6X 

& & a, . If d =- a , t hen f (x) -* a for each x € E(a) , 

and f a t t a i n s i t s lower bound on E(a) . I f d < a, we 

choose a p o s i t i v e number £, such t ha t cL +• £•> -*-* Cu . The­

r e e x i s t s a sequence {u^j € X such tha t -fC-tt^, ) —* d 

and hence the re e x i s t s an index n , such t h a t for each n s 

£ n we have -f (<u>^,) -= cL -*- £, . Therefore u,^ & E Cd) 

for each n £ n^ .and -fit ? i s bounded in X • Again, in view 

, of r e f l e x i v i t y of X, there e x i s t s a subsequence { u*-. / such 

t h a t u, ^ * M,0 and AJLQ e X * Since ^ t , . 6 E (a,) 

for each ^t/ fe. M,^ f UQ 6 ECd). But 

On the other hand -f (AA,C ) £ cL . Thus -f (U,c)-=r cL and 

th i s , completes the proof. 

Corol lary ! • Let X be a r e f l ex ive l i n e a r normed space , 

f: X —* E1 a quasi-convex lower-semicontinuous funct ional 

on X • Suppose t h a t for some r e a l number a the s e t E(a) = 

» { x e X : t Cc<> £ a, % i s bounded i n X and f ( x ) # 

-+—00 for each x 6 E(a) • Then f i s bounded below on X • 

I f E ( a ) «# # f t hen there e x i s t s u p 6 X such tha t 

-f (U0 ) -=- 4/nf f Cx ) and u. € E (CL) . Moreover, i f f 
° x e x * 

i s s t r i c t l y quasi-convex, then u 0 i s unique. 

A quasi-convex lower-semicontinuous func t iona l on X i s 

weakly lower-semicontinuous. This fac t has been observed by 

B.T.Poljak £5j and M.Z.Nashed £8J. Since for each rea l con­

s t an t c the s e t E (c) * -f iX € X i f (X ) £ C / i s 

convex and closed and hence weakly closed in X , t h i s f ac t 

fol lows a l so at once from Propos i t ion 1. 
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Analysing the proof of Theorem 1 i t i s easy t o see t h a t 

the a s s e r t i o n of T h . l one may r e w r i t e as fo l lows : 

Theorem 2 . Let X be a r e f l e x i v e l i n e a r normed space, 

f: D —* E^ a func t iona l defined on D £. X and such tha t 

fo r some r e a l number a the s e t E*(a,)m {.x € 3 * *rY.x) & <**$ 

i s bounded and weakly closed in X . I f f i s weakiy lower-

semi continuous on E*(a), and f ( x ) # * ~ o 0 f o r each x € 

£ E*(a) | then f i s bounded below on X . Moreover, i f 

E * C a ) 4- 0 , t h e n the re e x i s t s K^ e K such tha t f ( u 0 ) » 

*-- inf f ( x ) and AU> € £ * Co,) . 

-proposition 2» Let X be a l i n e a r normed apace, G a non­

empty se t of weakly lower-semicontinuous func t iona l s on X • 

I f - f d x ) - /*JU{v\Cf(x)>7Cf e G % f o r every x € X, then 

f i s weakly lower-semicontinuous on X . In p a r t i c u l a r , i f 

{ f^J i s a sequence of weakly lower-semicontinuous func t iona l s 

and -f^ S* i on X , then f i s weakly lower-semicontinu­

ous on X . 

Proof. Let c be any r e a l number. Set E Cc ) ~ {<xe X ; 

• f-dx ) £. c J . We s h a l l prove that ECc) is weakly closed in X . 

Let \ 6 £ ( e ) and J C ^ »'ur > 0<o in X . Then JC*^) £ C* 

Since f C»x)~ /XJUfy^CfCx^'.Cfe G } ,<pCc<^) £ tCx^) £ C 
for an a r b i t r a r y Cf € G . Since cp € G are weakly l o ­

wer-semicontinuous, c$ Co<0) 4* MATV CfCiX^) ^ c fo r any 

Of e, G . Hence JirWflf Cf C\x«, ) & C and t h e r e f o r e fCx0 ) h 

£ c • Thus, x0 & E-Cc) and £(c) i s weakly closed in X • 

According t o P ropos i t i on 1 f i s weakly lower-semicontinuous 

on X . I f ^ / » f ; then we se t 4 CiX ) ~ <<*%{*> i^C*) f o r 

every x 6 X . Using the f i r s t par t of our theorem t o f (x) 
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we obtain at once the second assert ion . This concludes the 

proof. 

Corollary 2 . Let f - ^ j be a monotone increasing (decrea­

s ing) sequence of functionals 1^;X—* E-* ("l ** 4 , 2 , * » . ) » 

I f fn, (W ** 4, I,*** ) are weakly continuous on X , then 

.f *•. JLOftv 4^ i s weakly lower-semi continuous (weakly up-

per-semicontinuous) on X . 

Proposition 3 . Let X be a l inear normecl space, f: X—• 

—• Ê j a functional weakly lower-semicontinuous at x o € X » 

Then for each number A f A <: f(XQ ) there ex i s t a num­

ber (f(Af*x0 ) > 0 and -&*^ 6 X * such that i f 

K * - X* , -eA%, ) I < oT , then f C**x ) >• A . 

Proof. Suppose f i s weakly lower-semicontinuous at x 0 e 

€ X . Assume on the contrary that there e x i s t s A0 < -f(x0) 

such that for every c £ » ;— and -£ 6 X there e x i s t s 

^ v ('*'* 4, 1,.*. ) such that 

(1) I f*^- * X , , e * ) K ^ imply f f x ^ K ^ , 

('TV -» /ff 2 , „ , ) . Then X ^ - 2 - ^ X̂̂  and in view of weak l o -

wer-semicontinu ity of f at x_ , f(xm) 4k Jlim^ f (X^ ) * 

But from ( l ) i t fo l lows that 

*(*,) & Msxk. ft**, ) € A, <• -f (X9 ) 

which is a contradiction. This concludes the proof. 

Proposition 4. Let X be a linear normed space, f- X—V 

—> E,. a weakly lower-semicontinuous functional on X. If f 

is bounded below on X , then there exista a sequence f-̂ if Q? 

functionals f : X—* E^ weakly continuous on X and such 

that i^ /* f , 
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£rog£. Let x be an arbi trary point of X and A^< 

<-«£• f (x) • According to Proposition 3 there exist cT >* Q 
* * * * 

and e . € A such that if I f#-«X, ^ ~ ) f •< c£ , 

then «f C%, ) > A . # Set £_ £«x)* W f f ^ f ^ J ^ - i X ^ * >!/ 

and use the arguments similar to that flO,chapt.6J » 

Remark. We can replace X (as a domain of f or f ) 

by an arbitrary convex closed subset of X . The generalized 

Dini's theorem f l ,§ 22 3 is valid under the following weaker 

assumptions: X is a reflexive l inear normed sp^ce, f^(f) 

weakly lower-semicontinuous (w.upper s .) on It (l)x \\ & R ) , 

i / * « -V • 
3» Convex functionals. We prove the following 

Theorem 3* Let X be a separable linear normed space, f: &-s*Î  

a convex finite functional on X. Suppose that there exists an open 

subset B-$# of X such that f is upper bounded on U/in particular, 

assume that f is upper-semi continuous on X A Then the set Z of all 

x * X where the Gateaux derivative f (x) of f exists is a &--set. 

Proof. S^£l3tChapt.IlJ f is continuous oa X. The one-sided-Ga­

teaux differential Iff 6c,hj exists for each x*X and h#X£LlJ. By lem­

ma 2£§Jl{f(xf.) is continuous at h~C for each x*X. Since ljf{x,h)is 

subadditive IllJ in h#X and T£f 6-,C)--Ct l[f 6->ni is continuous in h # X 

for each x*X.Repeating the considerations of the first part of the 

proof of th.6f<?7we see that the set Z of all x * X where the Gateaux 

differential Vf(x,h)exists is a CL-set.But convexity and continuity 

of f imply that Vf^x,h)= .D£Cx,hJ-s ffxjh for each x e Z . 

Proposition 6. Let X be a linear normed space, f: X -* 

—> E^ a convex functional continuous at some point x0 e X • 

If there exista the Gateaux differential V f (x9 4%, ) then 
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t possesses the GaHeaux derivat ive f ( x 0 ) at x 0 • 

Remarko Under the assumptions of Theorem 8 £91 suppose 

t h a t f i s also f i n i t e on X . Then the assert ion b) of Th»8 

holds as fo l lows: the one-sided GSteaux d i f f e r e n t i a l V̂  f ( x 0 , 

h) i s continuous and weakly lower-semicontinuous in h on 

X . In f a c t , \£ 4 (X9y Jfa ) i s subadditive t i l l in h e X 

and by lemmai Z [ 9 ] continuous at h =* 0 • Since ¥\ f (x o , 0 ) * 
36 0 > ^4. 4(X0J M,) i s continuous on X • Being continuoua 

and convex [11] in h € X , ^ f (Xo7Jt ) i s weakly lower-se­

micontinuous on X • 

For some recent re su l t s concerning the weaker notion than 

the Gateaux derivative of convex functions see D23 and the 

papers c i ted here* 

Theorem "%> Let X be a l inear normed space, f: X —> B̂  

a convex functional on X . If f i s lower-semicontinuous at 

0 , then f i s bounded below on any closed b a l l Dft(Hxll -feR) • 

Moreover, i f f(O) i s f i n i t e and 4(X) * C for each x € 

€ X with II o< II •» R» f then f i s bounded in D^ and con­

tinuous in B>R ( II X I) < R ) • 

Proof« Since f i s lower-semicontinuous at 0 , for 

£, > 0 there e x i s t s cT > 0 such that i f II «X II -t» cT, 

then f (oc) & 4(0)-~ B0 , It R & <% } then the f i r s t 

asser t ion fol lows at once from the l a s t inequality*. Suppose 

that R > o£ and l e t x be an arb itrary point of DR 

<r. with I x I > < . Then f x t ~ 6 D^ C II X II 6 < 

and 

(1) f fO) - e, 6 K T x i r ~ ) * 

) 
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Since J^f j f € ( 0 , 4 ) and f i s convex* 

^ - ^ j ^ . + g-ff-O • 

From (1) i t fo l lows that 

(2) «f COO fe - - 4 ? - R + f ( 0 ) 

for each x € DR with I X II > o£ . But for each x e X 

with It X I £ <f0 we have that f CX ) & f (0) - B0 * 

Since < P ( 0 ) ~ t9 >- 4(0)- J U £0 , (2) holds for every 

X 6 -DR . To prove the second assert ion i t i s su f f i c i en t t o 

show that f i s upper bounded in DR . 

Assume 4 (0) £ 0 and X -f* 0 i s an arbitrary 

point of D^ with I iX I «: R . Then 0 < ' j ^ * <z 1 , 

-jr-rjj- 6 S R CJ X I ~ R ) and hence 4 C jgj ) -6 

We have 

.£- 1*1) é H --ЦM ) f ҐØ) + 

Thus in th i s case f i s bounded on DR . It 4(0) *z 0 , we 

set a ( X ) ** -f Cx ) — + ( 0 ) . Then y> i s convex, lower-semi-

continuous at 0 and a. (0) » 0 . Moreover, <^- fx ) jj* & ~ 

- - ? ( 0 ) for each x 6 X with II x II * R . Using the a-

bove result to g , we see that g and hence f i s bounded 

on D* • Being bounded on D- according to Theorem Z £13 , 

I I , § 5J , f i s continuous in B* , 
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Remark. For some re suits concerning the boundedness and 

continuity properties of nonlinear functionals see £l fchapt. 

110 We reca l l the well-known result of I.M.Gelfand U4J. If f 

I s a lower-semicontinuous seminorm ( i . e . subadditive and 

-f (*COi) m | oc I 4 C X ) for every <X ) on Banach space X f 

then f i s bounded and hence* continuous on X . Suppose that 

f: X —*r Ê  is subadditive positive homogeneous and upper-se-

micontinuous at some x0 c X f where X is a l inear normed 

space. Then f is bounded and continuous. In fac t , subadditi-

vi ty and positive homogeneity of f imply convexity* Accor­

ding to Corollary 1 t l3 ,chapt . I I J f i s continuous. But t h i s 

implies the boundedness of f • 

Remark When th i s note was already prepared to press, I 

acquainted with the paper [15J, where F.E.Browder f i r s t l y has 

established the second assertion of Proposition 2 (see £l5J, 

Theorem 3) by an another way* 
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