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Y - MODEL AND DISTRIBUTIVITY IN BOOLEAN ALGEBRAS
Lev BUKOVSKY , Ko3ice

§ 0. Preliminaries. The main purpose of this paper
is to study the addition of "new" sets in a V -model
constructed over a complete Boolean algebra and to inves-
tigate comnections between it and the distributive lawe
in the Boolean algebra. A main part of this paper was pre-
sented on the 3rd Congress for Logic in Amsterdam 1967
(see [ 2]). Independently, Prof.D. Scott has presented si=-
milar results at the Summer Institute on Axiomatic Set
Theory in Los Angelés 1967,

The reader 1s supposed to be familiar with the paper
[12], We remind some definitions, facts amd introduce so-
me notations.

A couple ( c,t > is called a topological space iff
a) t = P(c) ( P(x) is the set of all subsets of x ),
) F,c€t, e) t is closed under finite intersections
and arbitrary unions. t 1is called a topology on ¢ . Ot=-
her topological terminology is used in an obvious way (see
e.g.[51).

If B is a Boolean algebra (see [10]), then 0,1 de~-
note the zero and unit element of B respectively. The
symbols -, Vv, V, "N, A are used for the Boolean
complement, join and meet. < (B) denotes the set "of all
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ultrafilters on B and 8 is the isomorphism of B on-
to & (B) , a field of subsets of & (B) . t(B) 4s the
weakest topology on < (B) containing & (B) . The to=
pological space ( Y(B), t(B) > 1is called the Stone
space of the Boolean algebfa B « A Boolean algebra B 1is
called complete iff there exists the join of any subsets
of B .

For a topological space < c,t > , let R (c,t) de-
note the set of all regular open subsets of ¢ , i.e. the
set of all uet for which u =1Int 0 . It is well known
that the set 'R(c,t) ordered by inclusion is a complete
Boolean algebra, Moreover, for a system we € R (e, t),

ge T we have:

= = - = -u)
S{‘\Tu'f = J’ntgguf ’?YT“F = Jntgguf , - =t (c-u),

0=ﬁ,4=c'

(see [10],p.66). For cher consultations the theory of Boo=
lean algebras, see [10],

All our considerations concern the Godel-Bernays set
theory S ™ with the axioms of groups A - E (see [31).
From the text, it will be clegr when our considerations a=-
re mathematical (i.e. we construct a proof in > * ) and
when they are metamathematical (i.e. we investigate proper-
ties of the theory =™ ).

The set theoretical notations are used in an obvious
waye An ordinal is the set of all less ordinals, & cardi-

nal is an initial ordinal, card(x) =X is a cardinal -
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the pover of the set x , xy is the set of all func-
tions defined on x with values in ¥y . Small greek let-
ter always denotes an ordinal, the letters m,n,k (with

indices eventually) denote cardinals. =m" = cardst_%k )=

= 2. n® | cf(m) is the least cardinal n such that
m is confinal with n .

If ¢ is a normal formla (see [3]), then

2 edX:@p (X, X 0y X NV} =g, Xypeeey X, ) -
The existence of the class { X : ¢ (X, X;,..; X, )7 1is
proved in [3].

The notion of a constructive set is defined in [3].
The axiom of constructivity V =L is sometimes used
( V is the class of all sets, L 1is the class of all
constructive sets)s GCH stands for the formla
(V&) (2““’ = ®,,,), ice. the Generalized Conti-

nuum Hypothesis.

Let fe “y,g € XP(y). We define f£< €
S Eg=(Vz)(zex — f(z) € g (2)) , Let
{x; ,r; > , i=1,2 be partial ordered sets, i.e.
x; 1is aset and r; is a binary relation on x;;
which is a partial ordering. We denote
Man (x4, 1, %,, 7, )= {f:f€ x‘.xz &<uv>em1—><+'(u)4(‘lf)>f’57;

i.ee. Maﬂv (0(1 9 K1 7"(21 H’Z ) (shortly Man (Xq ? ‘xz ) )
is the set of all non decreasing functions from x in-

1

to X, -

The notations and results of the paper [12] will be

used without references. One notion will be denoted in
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different way only, namely, we shall write X instead of
k, , l.e. X is defined as follows: X e C(B) and

DX)=4{%:np€ex? and %X(¥) =1 for ye x . Let us
remember, that ¢ ¥* denotes the translation of the formu-

la ¢ in the model V (B,z) (see [12],p.157).

l. Distributive laws in a complete Boolegn algebra
In this parsgraph, B denotes always a complete Boolean
algebra.
Defipition 1.l1. Let ( x,, r; > be partially orde-
red set, i =1,2, % e %M P(x,) . Let z be a
filter on B . The algetra B 1is called (z, F )=distri-
butive (or more precisely (z, # , x, , T, , X, , T, )=

distributive iff for every system aa}: € B,iex,,
J € x, such that

(1.1) A V. a;. €2,

Tex, 3€x, *3
(1.2) 18 (4,4 >en,, a;, Aa,+0, then

{41 3,7 € %, , the following condition holds true

(1.3) Ve Do, Yow %z € % -

The ({11, # )=distributivity is called simply £ -
distributivity.
Remarks:a) By (1.2) we have a . Aa;; = 0 for
. . ?4 J;.
F1* F2 -
b) Always . A V a:. =.V. N\

. .
tex, jex, *3 feF tex, jef(i) 13

.

) It ¥, B is (3, F)-distributive, then
B 1is also (z, £')-distributive.
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Let us remember that B is called homogenous iff
B 1s isomorphic to the Boolean algebra {Xx: X € B &
&Xx &£ a?l forevery a€B,a 0.

Iheorem 1.,2. Let B be a homogenous complete Boo-
lean algebra. The following conditions are equivalent:
(i) B is ({17, F )-distributive,

(ii) B is (z, & )-distributive for every filter z on

B ]
(iii) there is no system a;; € B satisfying (1.2)
such that

a) iex, }\e/x, @iz =1,

Proof. Evidently (ii) —> (1) —> (iii). Let us sup~
pose that (ii) does not hold, i.e. there is a filter z
and a system a,; € B satisfying (1.2) such that
“u =‘a4ﬁ&,§¥;g a,; €z,

v o= VY L V"‘.)a.,;’-é‘z ‘

= 4eF rexy jE

Let & = o -v (% 0). We define ,&;'z.@'/\a‘,.j-

AN
This system possesses properties (1.2) and (iii)a), but

4.}4 a./s\.v, 3\/«0 l'i;; =0.

However, Bl & ={x:sxeB& x £ 6 7 ig jgomorphic

to B, thus B does not fulfil the condition (iii).
QOE.D.

Now, we shall consider some special cases of dis-

tributive laws.
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fm.p.XK)-distributivity. Let =r, be the trivial ordering
of the cardinal h , i.e.<f7)€n, =-§,7eh&f =7 .
Let F={f:fe™Pn)&(VE)(fem—Ff(f)< k).

In this case, the & ~-distributivity is called (m,n,k)-
distributivity ( myn are ordered by r, ,r, respective-
1ly)e

(m,n,2)=distributivity is the obvious (m,n)-distri=-
butivity, (m,n,co,)=distributivity is the weak (m,n)-dis-
stributivity in the sense of [10].

(n# n)-gistributivity is the #F =-distributivity, where m ,

n are oredered by respectively and

Tm +Tm
Pu {$e™Pn): (3 )(VE)(fem > £(flemn-{2])F .

Lebesgue distributivity, Let X  be the set of all closed
segments [a,b] ,where O£ @< bs<1 are rational num-

bers. Let & = {f: f € ﬂ‘EJw.'”' x & Lebesgue mea-
sure of U W(f) be less than one half j + X, is ordered

by inclusion, @, is ordered by " € " . Let £ ={P, :

:x € [0,113% ,where

G )= 58 DH)=n&fe X &x § Uw ] (Fe > Pcx)).

In this case, JF =-distributivity is called Lebesgue
distributivity.

For the next, the following notation will be useful.
B 1s called (< m)-distributive iff B is (n,k)-distri-
butive for every n< m and every Kk .

The definition of 2z - Lebesgue distributivity, (z,
m,n,k)-distributivity ect. is clear.
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§ 2. Some criteria for distributivity. In this para—-

graph we prove some theorems which allow us to show some
distributive laws in a Boolean algebra.
In the paper [11], P.Vop&nka has proved that
@ (B) = min{R_: B does not have a subset of pair-
wise disjoint elements of power ™, 3
is a regular cardinal, Vopénka's proof was given for topo=-
logical spaces, but the fact mentioned above follows from
it directly. A direct proof may be given using some results
of R.S. Pierce (see [7]). ( 4is a cardinal property, thus
B may be decomposed in w = homogenous factors. For w =
homogenous complete Boolean algebra, this proof is trivial,
The characteristic (@ may be used for proving some
distributive laws (almost the same results are proved in
[121,p.161),

Theorem 2,1. If m = « (B)  then B is (m+n)-
distributive.

Broof. Let m = « (B). By remark a), §, +§, e ™
implies Qpg A Qg = 0 . Therefore, A@={f: Uy + g%
has cardinality less than & (B) . We define f£(7) =4,
Evigently £ € ¥ (since (« (B) is regular) and

Q,

In a similar way, one can prove
Theorem 2,2. Every complete Boolean algetra B 1is
(m,n, & (B))-distributive for any m,n .

Definition 2.3, Let < c,t > be a topological spa-

ce. We define:
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ND (c,t)={x: x ¢ and x & () x., X, closed and
Jn,txg = ﬂ} )

B e, t)={f(xumy)-z:xet & y,zxeND (c,t)},

Ve, t)= minfa,: ND (c,t)nt + £43%5 ,
ND (e, t) = %<51(e’£) ND_ (e, t) ,
Ble,t) = w Sty Be (e, t) .

A concept O is defined for a Boolean algebra B
as OB = OCLB), t(B)), (compare [11]) »

lemma 2.4. Let co; < cf (V(c, t)). Then SAlc,
t) 1is an @g=field of sets, ND(c,t) is an GJg-ideal.
Moreover, J2 (c,t) is isomorphic to the factor algebras

t)
B ©OMND e ) am BEOTINDCe, )

Proof. The first part is trivial. To prove the se-
cond part, it suffices to prove that ® (c,t) is isomorph-
ic to jadcc’t)/NIQc(C,H for any co. < ¥ (¢, t).

Let Jr be the natural homomorphism of J3.(c,t)
onto R (c,t)/ND‘ (¢,t). For every X € (c,t) we

define h(x) = g7 (x) . By simple computation we have:

h(f) =0, h(c) =1, h(Int(c=u)) = 1 - h(u), h(xntD?;) =
= V n(xg )o If h(x) =0, then x =8 since ND(c,t)n
N t={P} . Forevery s € B (c,t) there is a v €

e R (c,t) such that v = Int X , where u=(x - y)uz ,
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¥yz € ND_ (c,t) , thus h(v) = ar (u) .

Q.E.D,
. G
Theorem 2,3. If " < » (ec,t) , then
R (e,t) is (e, @W; )-distributive (compare [6],

(81).
Do
Mo Let C‘)T - w/& . By the lemma 2.4’
Sy (eyt) dis (o, @5 )-distributive (as @y -field)

and NDW(c,t) is an @, -additive ideal. Therefore,
the factoralgebra 333— (c, /N D, (c,t) 1is also

(@) 4 &5 )-distributive. ,
Q.E.D.
Theorem 2.8. Ir {c,t > 1is an Wy ~additive topo-
logical space (i.e. the intersection of less than @4

open set is an open set, see [9],p.125), then R (c,t) is
(< m)-distributive, m = min { w,. , » (¢, t){.

Broof. Let @, € R(c,t), N ’z\{w,,a'f'z =1, i.e.
Int (D Int .Ul ag, = ¢ .
Evidently n:Lg,.—“;m =c for ny § € .. Let
Q< M. Since m < w(e,t) , we haveieqk ,%‘ana,ﬂ-- c.
Thus
?‘Xo‘,ﬂ fa, Ooer = Int q%.%,n Int ;Q»‘ o)

= Jntqetajkwﬂ Qw‘a'??‘f) = Int fea, -;%gja)ﬂ Xy = C-

Q'E.b.
On the other hand, one can easily prove

Theorem 2,F. Let B be a complete Boolean algebras
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