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Commentationes Mathematicae Universitatis Carolinae 

9,4 (1968) 

V - MODEL AND DISTRIBUTIVE.* IN BOOLEAN ALGEBEAS 

Lev BUKOVSKt , KoSice 

§ 0» Preliminaries* The main purpose of this paper 

is to study the addition of "new** sets in a V -model 

constructed over a complete Boolean algebra and to inves­

tigate connections between it and the distributive laws 

in the Boolean algebra. A main part of this paper was pre­

sented on the 3rd Congress for Logic in Amsterdam 1967 

(see l2l). Independently, Prof.D. Scott has presented si­

milar results at the Summer Institute on Axiomatic Set 

Theory in Los Angeles 1967T. 

The reader is supposed to be familiar with the paper 

[12]# We remind some definitions, facts and introduce so­

me notations. 

A couple < c,t > is called a topological space iff 

a) t ts JP(c ) ( JP(x) is the set of all subsets of x ), 

b) 0 -> C € t j c) t is closed under finite intersections 

and arbitrary unions, t is called a topology on c • Ot­

her topological terminology is used in an obvious way (see 

e.g.t.51). 

If B is a Boolean algebra (see ClOJ), then 0,1 de­

note the zero and unit element of B respectively. The 

symbols — 7 v , V , /\ 7 A are used for the Boolean 

complement, join and meet. <•/(B) denotes the set of all 
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ultrafliters on B and s is the isomorphism of B on­

to f ( B ) , a field of subsets of *f <B) ., t(B) is the 

weakest topology on tf (B) containing JT (B) • The to­

pological space < yCB) ., iCB) > is called the Stone 

space of the Boolean algebra B • A Boolean algebra B is 

called complete iff there exists the join of any subsets 

of B • 

For a topological space K c,t > , let $i (c,t) de­

note the set of all regular open subsets of c , i.e. the 

set of all u e t for which u =* Int u o It is well known 

that the set &(c,t) ordered by inclusion is a complete 

Boolean algebra. Moreover, for a system vbc e $0 (c , t) , 

P e T we have: 

0 » 0 , 1 = c . 

(see [10J,p.66). For ether consultations the theory of Boo­

lean algebras, see tlOJ. 

All our considerations concern the Godel-Bernays set 

theory JE* with the axioms of groups A - E (see I3J). 

From the text, it will be clear when our considerations a-

re mathematical (i.e. we construct a proof in SI ) and 

when they are metamathematical (i.e. we investigate proper­

ties of the theory £ * )• 

The set theoretical notations are used in an obvious 

way. An ordinal is the set of all less ordinals, a cardi­

nal is an initial ordinal, card(x) * 7 is a cardinal -
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the power of the set x , * y i s the set of a l l func­

t ions defined on x with values in y • Small greek l e t ­

ter always denotes an ordinal, the l e t t e r s m,n,k (with 

indices eventually) denote cardinals, m** * c a r d t U k )~ 

- S . m , cf (m) i s the least cardinal n such that 
Jk.<H 

m i s conf inal with n . 

If 9> i s a normal formula (see T3J), then 

Z e ix : g>(x, X17<"7 \ » > J s <?(Z>, X.,,—, x * t ) -

The existence of the class { x : <y> (x7 X,,,.,,, X^)? is 

proved in [3J» 

The notion of a constructive set is defined in £3J. 

The axiom of constructivity V = L is sometimes used 

(V is the class of all sets, L is the class of all 

constructive sets). GCH stands for the formula 

(V<&) (2*** « ^oc + i ) , i.e. the Generalized Conti­

nuum Hypothesis. 

Let f e *%. , q. e *(P(<ty) . We define t £ s 

s s 9. s (Vx)(xe x —> *(*,) e q, (* )) . Let 

< x^ ,r^ > , i =5- 1,2 be partial ordered sets, i.e. 

X£ is a set and T£ is a binary relation on x>; 

which is a partial ordering. We denote 

i.e. Mafif-X.,, *,,,*£,/t2 ) (shortly Map, (Xn*X2 > ) 

is the set of all non decreasing functions from x1 in­

to xa . 

The notations and results of the paper 112J will be 

used without references. One notion will be denoted in 
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different way only, namely, we shal l write x instead of 

k $ i . e . x i s defined as follows: x e C(B) and 

D Cx ) **{<%.: 04. e x ] and x(y) = 1 for y € x . Let us 

remember, that <p* denotes the translation of the formu­

l a cp in the model \7 (B,z) (see [12J ,p . l57)« 

! • Riatr^uUvg 3,flws in q complete Boolean ftjLflefrrft 

In t h i s paragraph, B denotes always a complete Boolean 

algebras 

Definit ion 1 .1 . Let < x^ , r. > be par t ia l l y orde­

red s e t , i = 1,2, T s *« (P Cx2 ) . Let z be a 

f i l t e r on B . The algebra B i s called (z , #" ) - d i s t r i -

butive (or more prec i se ly (z , T , x^ , rf , x^ , r^ ) -

dis tr ibut ive i f f for every system a^ * € B , i c x^ , 

j € x^ such that 

<-•-> i ^ & , a v e * > 
(1 .2) i f <"*.., i 2 > e ^ , o ^ * \ ^ * 0 , then 

^'i-t i-a^ £ \ 7 * n e following condition holds true 

The ( U ? , D - d i s t r i b u t i v i t y i s called simply f-

di s tr ibut iv i ty . 

Remarks:a) By (1.2) we have CLJ • A cu.A & 0 for 

b) Always . A f V€xa^ * , & & , & , < / a ^ -

c) If <T £ 2*' ? B i s (z , ^ - d i s t r i b u t i v e , then 

B i s a lso ( z , ^ 0 - d i s t r i b u t i v e . 
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Let us remember that B is called homogenous iff 

E is isomorphic to the Boolean algebra {X >' * €* B & 

8c x & Q, 1 for every a € B , a 4* 0 . 

Theorem 1„2. Let B be a homogenous complete Boo­

lean algebra. The following conditions are equivalent: 

(i) B is (41 J , T )-distributive, 

(ii) B is (z, y)-distributive for every filter z on 

B » 

(iii) there is no system CO^> e B satisfying (1.2) 

such that 

•* A >Y«, *** - < > 

Proof. Evidently ( i i )—> ( i )—» ( i i i ) . Let us sup­

pose that ( i i ) does not hold, i . e . there is a f i l t e r z 

and a system o^ • € B satisfying (1.2) such that 

or ш 4үr *Л V4(i} aié ф z 

Let Sir s AX - v f-£ 0) . We define -#£*' S ^ A O * , * 

This system possesses properties (1.2) and (iii)a), but 

<y? At x«» fy-o. 
However, B I Sir -4\x* «x e & & .x £ ^ | is isomorphic 

to B , thus B does not fulfil the condition (iii). 

Q.E.D. 

Now, we shall consider some special cases of dis­

tributive laws. 
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(m.n«k)-distributivitv. Let r^ be the t r i v i a l ordering 

of the cardinal h f i . e . <§V > *%,, = • f - ^ e - f e * f m ^ . 

Let T~ i f : fe^tPCvi) & C Vf) <f e sm-± i Cf ) ^ to>)h 

In t h i s case, the fT -d i s t r ibut iv i ty i s called (m,n,k)-

d i s t r ibut iv i ty ( mtn are ordered by Tffft 9T^ respect ive­

l y ) . 

(m t n t 2)-dis tr ibut iv i ty i s the obvious (m,n)-dis tr i -

but iv i ty , (mtn, coe)-distributivity is the weak (m,n)-dis-

s t r ibut iv i ty in the sense of [ 1 0 ] . 

(m -£ n) -d i s tr ibut iv i tv i s the IT -d i s t r ibut iv i ty , where m , 

n are oredered by T/m t r n respectively and 

$m it *«"-&(<*): C3^)(Vf)(ferm^4(f)€o%-{^l>j . 

Lfifresfflte ctjstr l̂?U^j.Y4t.Yt I»et X be the set of a l l closed 

segments C a tb J ,where 0 » m < b -£ 1 are rational num­

bers. Let 3E0 =r { i : -P e ^ ^ - ^ X & Lebesgue mea­

sure of UW(f) be l ess than one half j • X0 i s ordered 

by inclusion, C00 i s ordered by w € w • Let !F » - C ^ ; 

; X € 10 7 41 3 7 where 

$MCn)m<*zT><*)min.&fc3EoeLX*UurC'f)3 <?&**$(%». 

In this case, 3* -d i s tr ibut iv i ty i s called Lebesgue 

d i s tr ibut iv i ty . 

For the next, the following notation wi l l be useful . 

B i s called ( < m)-distributive i f f B i s ( n , k ) - d i s t r i -

butive for every n < m and every k # 

The def ini t ion of z - Lebesgue d i s tr ibut iv i ty , (z , 

m,n,k)-distr ibutivity ect . i s c lear . 
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§ 2. Some cr i ter ia for d i s tr ibut iv i tv . In th is para­

graph we prove some theorems which allow us to show some 

distributive laws in a Boolean algebra. 

In the paper t i l l , P.Vopgnka has proved that 

(U, CE> ) » /rrvdn{^idLx B does not have a subset of pair-

wise disjoint elements of power ti^ ? 

i s a regular cardinal. Vop&nka's proof was given for topo­

logica l spaces, but the fact mentioned above follows from 

i t direct ly. A direct proof may be given using some resul ts 

of U.S. Pierce (see ill)* (Ct i s a cardinal property, thus 

B may be decomposed in (U> - homogenous factors . For (ex -

homogenous complete Boolean algebra, th is proof i s t r i v i a l . 

The characteristic (tc may be used for proving some 

distributive laws (almost the same resul ts are proved in 

Ll2J ,p . l6 l ) . 

Theorem 2 . 1 . If M 2* (u(&) 7 then B i s (m#*n)-

d is tr ibut ive . 

Proof. Let m ^ fU CE>) . By remark a ) , ft #» § e m 

implies a^? A a^ f = 0. Therefore, A * - £ ? ' <\$ 4* 0 } 

has cardinality less than (U (B) . We define f (^ ) ~ A^ 0 

Evidently f e $T (since (CL (B) i s regular) and 

A fV» S f -*&. fV/.«> S f - Q-E-D-

In a similar way, one can prove 

Theorem 2.2. Every complete Boolean algebra B is 

(mtn, (̂  (B))-distributive for any mtn • 

Definition 2.3. Let < c,t > be a topological spa­

ce. We defines 
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iMDjc.t)^ {*: .x £ c and. xsU*f, Xf closed and 

JrttXc = 01 > 

% c & , t ) - { C x <J nf)-x: x e t & - J t , * e NJ). Ce, t ).? , 

i)(c,t) » mwnirt^i Nl>ac(c.,t> nt * *0i } ? 

^ ^ ^ - ^ W . , * , N B « CC' t ; ' 

A concept D i s defined for a Boolean algebra B 

as D ( B ) » D C y C B ) , t(B )) , (compare £11J) • 

LgmjasL^i. Let O^ < c f ( V C c , £ ) ) , Then J3(c , 

t ) i s an rD^-field of s e t s , ND(c,t) i s an CJ^ - i d e a l . 

Moreover, M ( c , t ) i s isomorphic to the factor algebras 

V ^ / N V ' , " « - *Ce't}/"»Cc,t>. 

Proofs The f i r s t part i s t r i v i a l . To prove the se ­

cond part, i t suff ices to prove that 5&(c,t) i s isomorph­

ic to ^CCft)/N^(cfi:) for any co^ < V (c91) • 

Let 3T be the natural homomorphism of tQ^icjt) 

onto ^ c ^ ^ V N D ^ C C , t ) . For every X € 3i(C,±) we 

define h(x) « 5T (x) . By simple computation we haves 

h(jt)) * 0 , h(c) « 1, h d n t ( c - u ) ) » 1 - h(u) , h ( I n t U x f ) = 

* V h(x | ) . If h(x) » 0 , then x « 0 since ND c c (c , t )n 

n t » { j6 } . For every JUL e ^(c^t ) there is a v € 

e & ( c , t ) such that v • Int "x f where u » ( x - y ) u z , 
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yf2? c ND^ ( c f t ) f thus h(v) -* TT (u) • 

Q.E.D. 

Theorem 2 . 5 . I f <»>£** ^ *>> (c 9 t ) , then 

^ ( c , t ) i s ( 0 ) ^ , o ^ ) -distr ibutive (compare C6]f 

fcJ). 
Proof. Let Ct^ * o>^ # By the lemma 2 .4 f 

^ 3 ^ ( c , t ) i s ( C c ^ i O ^ )-distr ibutive (as cu^.-field) 

and NDy ( c f t ) i s an a y -additive ideal . Therefore, 

the factoralgebra *%- ^ C » * V N D ^ (c.,t ) is also 

( 0 ^ , 0 ) 3 ) -d is tr ibut ive . 

Q.E.D. 

Theorem 2.6 . If < c , t > i s an a y -additive topo­

logical space ( i . e . the intersection of l e s s than CJ^ 

open set i s an open s e t , see L9Jfp«125)f then 3 t ( c , t ) i s 

(< m)-distributive, <YYL m wdm, { cor , i> Cc, t >? . 

Projrf. Let a ^ e ftCc,t), f A^ V<^ a fu * ^ 7 *••• 

Evidently . U ac_, « c for any f e cv . Let 

6* < T7t # Since /m -* %> f c 7 1 ) , we have H U a*. ** C < 

Thus 

V Л Ct c ^c i я 7*tť C Jrct ґ~ì Ci~ ^ . ^влu f€ûk f W ^вЧc^, V*<^ *<*<?' «Чз 

Q.E.B. 

On the other handf one can e a s i l y prove 

Theorem 2.7. Let B be a complete Boolean algebra* 
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