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Commentationes Mathematicae Universitatis Carolinae 

10,3(1969) 

REMARKS ON NONLINEAR OPERATORS AND FUNCTIONALS 

Josef KOLOMf, Praha 

Introduction. The purpose of this note is to estab-

lishsome conditions under which a mapping F or a subaddi

tive functional f is additive, linear or positive homoge

neous on a linear space X . A typical result (Theorem 4) 

is as follows. Let f be a subadditive functional on X . 

Assume there exist a neighborhood V(0) of 0 and a 

functional a, defined on V(0) so that (^(0)= 0 and 

i(w) £ fy(vu) for each AJU e, V(0) m If £. possesses a 

linear Gateaux differential Dc.j. (07 Jk) at 0 , then f is 

linear on X Theorem 7 deals with the boundedness proper

ty of even subadditive functionals, while Theorem 8 concerns 

the uniform boundedness of the Gateaux derivative f (AM) of 

a convex subadditive functional. 

§ 1. Terminology and notations. Let X , Y be real li

near normed spaces, X * dual of X , E i 1-dimensional 

Euclidean space. A mapping F : X —> Y is said to be 

(a) additive on X if F (^ + AJU2 ) ** F(AJL^ ) + ^ (^2) for 

every AJL. , XL e X . 

(b) homogeneous (positively homogeneous) if F(t<L)*s t FCAA,) 

for every t € &* (for each t £ 0 ) and every AJL € X . 

(c) linear if F is additive and homogeneous 

391 



(d) bounded if for each bounded subset M c X F(M)is 

bounded in y . 

A functional f defined on X is called 

(1) subadditive itfCAA^+AA^) <£ f (AJU^ ) +f(4A>2) for 

every AA,^ , AA*2 e X • 

(2) convex on a convex set M c X if 

i(t4A,+ (1-t)<*) £ tf (AA,) + (1-t) f (V) 
for each t € < 0 , 4> and each juuf nr e M . 

(3) odd (even) on X if f (-AJU )=-!(AJU) (f C-AA,) = f(AM)) 

for every .*a, e X -

We shall say that a mapping F: X-+Y possesses the 

Baire property in the set M c X of the second category 

in X if there exists a subset N c M of the 1st catego

ry in M such that the restriction F/jvj_/\̂  of F toM-N 

is continuous. A set N c X is said to be a Baire set in 

X if there exists an open set Gr c X so that fr—N, N—(r 

are both the sets of the 1st category in X . For Gatea

ux differentials ana Gateaux derivative we use the notions 

and notations given in the Vajnberg's book C1,chapt.I3• 

By the one-sided Gateaux differential V^f (wo\Jh,) of a con

vex functional f at JU^e X we mean the limit 

t ^ ^ C f (u0+tH)-f(ue)l~ V+f(AjLe,to,) , Ave X . 

If f is convex and finite on X , the one-sided Gateaux 

differential Vf(ii9<tv)exists for everyAAfJh,e X and it is 

subadditive positive homogeneous functional in Av e X for 

every (but fixed) JUL e X [ 2,chapt.l0j. Therefore 

i(JUL + th)~i(AA.)~ V¥f(4A,9tJk)+G>¥(Uoft4%), AA,, Afi X , 

where ЛЬ* <%(*;**> • 0 . 
f-*0, * 
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§ 2. We start with the following 

Theorem 1. Let X, V be linear normed spaces, 

F : X — » y so that F f t ^ ) m tF(ju,) for every,*te X 

and t e CO, t0 ) , where t0 <: 4 . Under this assumption 

the following assertions are valid: 

(a) F is positively homogeneous on X • 

(b) If F possesses a linear Gateaux differential 

D F C O , Jh.) at 0 , then F is linear on X . 

(c) If F has a Gateaux derivative F'(0) ,at 0 , 

then F is linear and continuous on X . 

(d) If F has a linear Gateaux differential D F C ^ , ^ ) 

on the segment (09t^o ) =- {AXC X ; iL-tfyf 0< t -<: t0 ? 

for some 0 ± % € X and JUsm, \ .DFCi%9% ) II — 0 , 

Xi^v -^ I <*> (t% , tM, ) I =- 0 fo* an arbitrary (but 

fixed) .1ft e X , then F is ISjtear on X 

Proof, (a) By our hypothesis there exists 
M^v FCO+tH)-F(0> <£ ymMmik% FCtM « F(*v) 
t-*0+ t + > t-*o+ t 

for every >K e X . As V F(09 Jv ) is positively homo

geneous in Jh- e X , F(Jv) has the same property. 

(b) is a strengthening of Th.l L3J. It can be proved mo

re simply as follows: V+ F(Q,M,) exists and \£ F(Q,<fo) ~ 

m F(*i),He X* Since F has J) F C O , A ) at 0 , 

then V£.FCO,>k)- T>F(0,*i)~ F(H), Jrv e X and hen

ce F must be linear in fa € X • 

(c) is cltar. (d) is a slight generalisation of Tiu2 [ 3J. 

Theorem 2. Let F : X —* y be a mapping of X 

into y so that FCO)» O0 Assume F possesses the 

iGateaux differential V F C O , A ) at 0 . Then F is 

homogeneous on X <ss*sfi the remainder cO (0, M,) of 
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V F (Q7 fo) is homogeneous on X . Moreover, let F po

ssess a linear Gateaux differential J) F (0 7 Jh) at 0 . 

Then its remainder CO (07M,) is homogeneous in H C X&& 

<-~gssa> p is linear on X 

Proof. Since F(0) » 0 and F possesses the 

Gfiteaux differential VF(0,Ji) at (5 , we have that 

FCta) - VF(0,t,u,)+ co C0,tu,) , 

t FOo,) - t VFCO, 4JU)+ t-coCO, AJU) 

for every JUU 6 X and t € E^ . Being VFC07 u,) ho

mogeneous in /CC € X , 

F ( t u ) - t FGa) - oCO, t-u,)- t o CO, -*>) . 

Hence Fltu) ~ tFto), u,e X, te E, ««=-$>^ CO, t-u,)- *ctf<fyuJ, 

/(// 6 A , t 6 c^ . The second assertion follows at once 

from the first part of Th.2 and from the results (a),(b) 

of Th.l. Theorem is proved. 

Theorem 3. Let X be a linear normed space, f a 

convex finite functional on X . Under this assumption 

the following assertions are valid: 

(a) If f(tu,) » tf CAJL ) for every JLL e X and each t e 

€ C07 te ) 7 where t0 < A , then f is subadditive 

and positive homogeneous on X . Moreover, if f posse

sses the Gateaux differential Vf (Qf H) at 0 , then f 

is linear on X . 

(b) If f C O ) « 0 and &+ (0,Jh) is subadditive in He X, 

then f is subadditive on X 

(c) If f CO) « 0 7 then f is positive homogeneous on 

X <mmm*> cJ^ (0, M, ) is positively homogeneous on X . 

(d) If f is continuous subadditive functional on X 
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and 4(0) m 0, then i(tAJL) £ t4(u,) for every 44, e 

e X and each t Si 0 • 

Proof, (a) Being 4 convex, V 4 (AJL7 M, ) (for 

fixed ix, €• X ) is subadditive and positive homogene

ous on X . As f (0) mt 0 , we have for JUL, V € X , t € 

6 (07 t0) that 

f CtCo-Tir))- yh4(0,t(u+ir))+a^ (07t(xc + v)) , 

(1) f(t4A,)- V+4(09tjU,)+ C\(09t4i,) , 

f C t v ) « V+f (07 tir)+ o+(0,tv) * 

Since 4 i s convex, a) (07 M,) S 0 for every %v € X 

( Lemma 2 £4J). In view of subadd itivity of V + f (AJL74V) 

and our hypothesis 

4(U, + V)~4(AA,)-'?(V) 4 ^co+(0,t(<Lu + ir)) -

-±<^C0,t^>~£a>+C0,t^) 6 I o>+ CO-tOo,*^)) 

for every /e^, 4r 6 X , t € CO, t 0 ) * As 

$O>+(0,t(u,+ <v)) > 0 whenever t —• 0^ , 

f C\a, T or ) £ 4 ( JUL ) + 4 (v) for every AJL$ if € X 

The second assertion of a) is an immediate consequence of 

The.1(a),(b) and Remark 2 131. 

(b) To prove (b) write (1) without t on the left and 

right sides and use the property that V+ 4 (07 Jv) > 

Cd.(0~M,) are both subadditive on X 
T 7 

(c) The one-sided differential V̂ . 4 (0, A ) of -f at 0 

is positively homogeneous on X • Hence the assertion 

(c) is a consequence of Theorem 2# 

(d) Convexity of 4 implies (AM, € X , t € < 0 f 4 > ) 

that 
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4(i4A,)--f(tu + (1-i)0)6 tf(4jL) + (1~t)4 (0)~tf(4A,) . 

Hence f(tu) £ t f (u,) for each ̂  € X and tc <07 1>. 

Let /t — Zpr- be a rational number {/m^ m are positi

ve integers). In view of subadditivity of f and the 

last inequality we have that 

f (#-.*> A mfC&M.)* %i(") . 

Let t be a positive irrational number. Then there ex

ists a sequence of rational numbers ft >- 0 so that 

/t — • t m Continuity of f gives 

f Ct-U,)- Mjrtv4U4JL) £ M*rv/C^4(*L)~t-P(u) , 

which proves c). This concludes the proof of our theorem. 

Remark 1. The assertion (a) of Th.3 one may prove 

simpler using the properties of V+ f (07 Jh,) . But we ga

ve preference to the given proof (a) because the proof 

of the assertion (b) is based on the same arguments as 

(a). 

Theorem 4* Let f be a subadditive functional 

on X . Assume there exist a neighborhood V(0) of 0 

and a functional CL defined on V(0) so that Qs(0)= 0 

and fGw,) -6 Q,(AJL ) for each AJU e V(O)0 if £. possesses 

a linear Gateaux differential Dty (07Jv) at 0 , then f 

if linear on X . 

Proof. Subadditivity of f implies that f ( 0 ) is 

& 24(0). Hence fCO) -5 0 . But 0 &, fCO) &<^(0)~ 

- . 0 — ^ fCO)-, 0 . Suppose AjLeX7HeX;t2>0. Then 

fC<a)« $(JUL + M,- Jh,) & f C ^ 4 - A ) - f . f C - ^ ) 

and subadditivity of f implies that 
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(2) - f C-Jfa) £ f (A4, + Jfa)~f(AA,) £ f C A ) . 

For suff ic iently small t ^ 0 , t A e V(0) -=--.> 

**$CtH) & tyCtM,). Replace in (2) tJfa for A and 

divide i t by t > 0 ? we have for t > 0 small enough 

that 

As ^CtJH)-r ] )^CO, t i i , ) 4- OC09 tJfa) 9 w e obtain 

that 
jX}(07Jh,)-±-a>(0,tC-*i))£ % It(4i, + W>-*<*)!* 

( 3 ) ^ 
£ .D<^ CO, A ) + £ co C09t&,) . 

Since the limits on the left and the right side of (3) e-

xist and are equal to Dty, C0}A), we conclude that 

JUm, ^ lf(4t + th,)-.f(4JL)l- V+4Cu,Jh,)~ltyC07Ji) 

for each A e X and AA, e X . Hence V. -PC-a*, A ) -* 

« — V -fC-U-^A) — Dc^CO, .A) for every w e X and 

A/ e X . Therefore *f possesses the Gateaux differen

tial V"F (AA,, A ) for every AJU e X and Vf C-tt, A ) -* 

~ D<^ C 0, A ) for every ^ € X , A € X . As 4CO) - Q, 

by the mean-value theorem 

U*A,)~ Vi(XAA,,AA,) ~ T>C},(074M), M, e X , 0* * < 4 • 

Since D^- (0, At) is linear on X , our theorem is 

proved. 

Remark 2. The final part of the proof of Th.4 may 

be done as follows: From (3) it follows that 
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As t —¥ 0 f the term on the right side tends to 0 . Hen

ce f possesses a Gateaux differential Vf (AJL7JV) at 

every point AJL e X and V4(AJL^H) - D9- (0y An,)yAn, eX, 

AJL € X • By the mean-value theorem f (AJL)=* V4(VAC7 4C) = 

= J>9̂  (Oy AJL) ; -a, € X . 

Corollary 1. Let f be a subadditive functional 

on X so that 4(0) » 0. Assume 4 possesses a linear 

Gateaux differential 1)4(0, Av ) at 0 . Then 4 is 

linear on X . 

Corollary 2. Let f be a convex finite function

al on X • Assume there exist a neighborhood V(0) of 

0 e X and a functional ĉ  defined on V(0) so 

that <j,(0) ^ 0 and V+ f fAJL0 , A ) * c^(Av) for 

each <fv e V(0) and for some 44^ e X . If £- has a li

near Gateaux differential J>g, (07 An,) at 0 , then f 

posse39es a linear Gateaux differential J)4 (AA,07JV ) at 

JLL0 • Moreover, if f is continuous, then 4 possess

es the G&teaux derivative 4' (Ai>e ) at AJL0 . 

Proof. The one-sided Gateaux differential 

V+ 4 (AJ,0> AV) is subadditive functional on X . From 

Theorem 4 it follows that V 4 (AL0f Jfa) is linear in 

JheX on X . Hence V+4(AA,07 Jh,) - V . f C a , , > v ) 

for every An, & X . This shows that 4 has the Gateaux 

differential Vf (AA,0 , A%) at <U0 . But convexity of 

f implies that V4 (AJL0,AV) *» b4 ( AJL0 , A*) , Ave* 

(Remark 2 (33). If f is continuous, using Proposition 
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6 [53, we obtain that J ) f ( ^ ; l i ) s 4'(AJLP) Jh, 7 M, e X . 

This completes the proof. 

Corollary 3. Let 4 be a continuous subadditive 

functional on X . If 4(tAJb ) £ & (t ) 4 (44,) for e-

very 4JL e X and t e (07 t0) 7 where tp < A, <p 

is a real function on (07 td) so that Mm - ^ r — ~ 0, 
7 *-*0+ * 

then 4 (AA,) - 0 for every AAJ e X . 

Proof. First of all, 4 has the Gateaux deriva

tive 4'(AAJ) on X and 4'(AJL)** 0 for every AA, & X. 

By Theorem 8.6.1 £6J,Chapt.VIII (here we must point out 

that this theorem is valid even for mappings which have 

the G&teaux derivative only) we get that -fCtc)*- c'-» caiult. 

for every AJL e X . Since 4 (0) ^ 0, c & 0 . Suppose 

that e > 0 . Then we have C - -fCt^) £ cp(t)4(4A,) -
— 6 y-Ct) for every .ct € X and each t e CO, t0 ) . Hence 
1 <yCt) 

^ M - ^or eacn .£ & (Q7 fo ) which con

tradicts with the fact that Jtimrv -2- Cf(t) a* Q # The* 

refore C « {? and fCcc) » 0 for every ^c e X . 

This completes the proof. Corollaries 1,3 show that 

functionals considered inTheorem 1 111, Th.l f8J, Th. 4 

[31 are linear. 

Theorem 5. Let 4 be an odd subadditive functio

nal on X . Suppose *f is continuous at 0 . Then 4 

is linear and continuous on X • 

Proof. The inequality 14(0) d 4(0) imp

lies that 4 (0) & 0 . On the other hand we have for 

AM e X that 0 * 4(0) « 4 (4A, - AA, ) £ *(4JL) + 
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-hf (-44,)** -P (Ms) - fCu.) - 0 . Thus fC0)-*r0 and f 

being continuous at 0 , it is continuous on X . For 

arbitrary /tt;ire X we obtain 

fCr lr-)« f CC^ + Or-)- ,oJ ^ f(4A, + <v)+-f(-<U) -

=. f C ^ 4 - ^ ) ~ fC/U.)^ fCir) . 

Hence f (<v>) & f (AA,+ir) - f (AA,) & f(<v) implies 

the equalities among these terms. This means that f 

is additive on X and being continuous on X , f 

is linear on X . This completes the proof. 

Theorem 6. Let f be a subadditive functional on 

X having a linear Gateaux differential Df (4A,07 <h, ) 

at some point AA,0 e X . If f C-/a^)-r- f (AA,0) 7 then f 

is linear on X . 

Proof. From 0 £ f (0) « f C ^ - ̂ 0 > -̂  f^tf*) + 

+ f(-Uo)*0 it follows that f CO) » 0 . If AJU0 =* 0 , 

then f is linear by Corollary 1. Suppose that AA,0 -̂  0 

and that Jin e X is an arbitrary element of X • From 

f Ot0 ) *. f 0a e- -*v 4- J O ^ f Cx 0̂ ->k ) + 4 (M,) and u-

sing our hypothesis we have that 

$(Uo)-f(4JLo-Jh,)£4(Jh)=f((4A,0 + to,)~4A,o) & 

^f(u0+M,)+f(-U0)^f(4A0 + H)^f(44.0) . 

Consider t >• 0 7 replace in these inequalities Jv 

by tJh, and then divide by t >• 0 ? we get that 

|[fOt,)-fC^-ti*)J £ I fCtA) *s 

*•£ EfOc., + tJi.> - -P<-~*0)J . 

Since f possesses a linear Gâteaux differential 

Df (M,c 7 M, ) at ̂  ? we obtain ( t > 0 ) 
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J>f(u.,Jh.)- *>("*,*<-*>» * fCtJQ ^ 

*J*Cu.,*)+ "«*'**>> . 

These inequalities imply that there exists 

sfcm, — a n3 that this limit is equal to 
t -v 0+ t 

Pf (AJL0? <H) for every Jfa e X . From this fact we 

conclude that f possesses a linear Gateaux differen

tial Df (AJU7 M, ) on X and that P f C ^ , ^ t ) - . D f C ^ . , - ^ > 

for every JUL ., Av e X , According to the mean-value theo

rem $(AJL) ~ M (TAJL, AX, ) -=- Pf C^d o A ) , -a, c X , 

C (9 < ^ < A) which proves our theorem. 

Corollary 4* Let f be subadditive functional on 

X . If f is linear on some open subset M =fc 0 of 

X , then f is linear on X . 

Theorem 7* Let X be a linear normed space of 

the 2nd category in itself, f a subadditive functional 

on X . Let one of the following three conditions be 

fulfilled: (a) f is even and upper-bounded on a Baire 

subset of the 2nd category in X ; (b) *f is nonnega-

tive on X and it is upper-bounded on a symmetric Bai

re subset of the 2nd category in X ; (c) f i$ even 

and there exist an open subset M =£ 0 of X , a func

tional ty, defined on M so that fy possesses a Baire 

property in M and f (AM) £ Q^(>u) for each JUL € M. 

Then f is bounded in X • 

Proof. Assume (a). Then 0 & 4(0) * f ( AJL ~AJL,) & 

& $(AJL)+ f(-Ax) m 2-f(4*) , u. e X^fo*/) ̂  0 for 
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every AA, €. X .By our hypothesis there exist a Baire 

subset B of the 2nd category in X and a constant 

C > 0 so that f (AA, ) *s C for each AM e & . 

Then the set W of all differences W «-• AA, — nr 7 

where AA, , w e B is a neighborhood of 0 in X # 

Hence there exists o£ > 0 such that I *cr f << of3-* 

«-*£ 4ir 6 W , For any ixr e W with II <ur I -< c£ 

we have (itr -» X6 ~ /ir, - x . ^ e B ) 0.6. f f w ) -» 

» f Cu - ir ) £ f Ou) + f (/IK ) £ 2 C . Let AA, be an ar

bitrary point of the ball I AA, H £ R # Then there 

exists an integer /no so that R /ii~ £ a% . Wa ob

tain that 0 6 fto,)** fC~~ • m0) k m,0 *(-$-) £ lC<n0 -

This shows that f is bounded in X . The proof of 

(b) is similar to that of (a). 

Assuming (c) we see that M is a set of the 2nd 

category in X .By our hypothesis there exists AA^ C 

& M — A where A is a set of the 1st category in 

M , so that the restriction g^ /*A _ ̂  of ^ to 

M — A is continuous at AM0 • Hence there exists a 

non-empty open subset N cz M so that AM e N and 

AA, € N - A «-*-> <^ (AA, ) 4s g- (A4,c ) -f- 4 . The set B *= 

* N — A is a Baire set of the 2nd category in X 

Hence AM € B -*-*-> f Co,) .£ 9-C^0 ) + 4 • The rest 

results at once from (a) of our theorem. Theorem is pro

ved. 

Corollary 5. Let X be a linear normed space of 

the second category in itself, f a subadditive even 

functional on X . If f is upper semicontinuous at 
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some point AJU0 e X 7 then f is bounded in X . 

In the sequel we shall use the so-called Banach-

Steinhaus uniform-boundedness principle: Let X , X^ be 

linear normed spaces, A be a set of the 2nd category 

in X . Tit a set of linear continuous operators of X 

into X^ . If x € A -—-» *"£? I U (x ) II --<- CO -

then AyUfi, II (J II < CO . 
Ue 7*1 

We prove the following 

Theorem 8. Let X be a linear normed space of 

the second category in itself, f a convex continuous 

subadditive and finite functional on X . Assume f po

ssesses the Gateaux differential Vf (4t74%) on the set 

N c X , N -jfc 0 . 

Then there exists a constant C >• 0 so that 

II f'Ot) II & C for each xt e. N , where f ' U O 

denotes the Gateaux derivative f '(AJL ) of f at .-U. . 

In particular, if N is convex.,then f is Lipschitz-

ian on N with constant C • 

Proof. If 0 € N 7 then f is additive on X 

according to Theorem 3 a ) . Being f continuous it is 

homogeneous and hence linear on X . Therefore our 

conclusions are trivially fulfilled. 

Assume that 0 ̂  N . By Proposition 6 [5J Vf (*JL7H ) a* 

« f/ (44,) Jh, for each AM e N and every Jh, € X . U-

sing lemma 2 14J-and subadditivity of f we obtain 

-f (-Jh) £ f(4JL,)~4(*-Jh)£4'(juu)Jh,£*(4A,+H)~n^ 

for each AA, e N and Jh/ € X . Hence 
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\f'(u,)A,\ £ muu* (l*(M,)l9 \*(-M,)\) 

for each JULC H and M, e X . By theorem 2.5.3 £9.1 

If OiOl ^ M / I i i l + '() for every Jh, e X , wfaex* 

Oh M, « **W> f(*v) < + co . Hence Jh e X —-> 

—+*uf% [f'(jU,}A\& M̂ CII A/ II ̂ .According to Banaeh-

Steinhaus principle there exists a constant C -> 0 so 

that /*ufv II $' (4JL ) II ^ C . Thus the first 
44. e N 

part of out theorem is proved. To prove the second as

sertion it is sufficient to use the above fact and the 

mean-value theorem. This concludes the proof. 
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