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MINIMAL CELL COVERINGS OF SOME SPHERE BUNDLES
Daniel A, MORAN, East Lansing
Abstract: It is shown that certain sphere bundles
over spheres admit coverings by three open cells.
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Let M be the total space of a locally trivial fib-
re space & : M —> S™  with base apace S™ and fib-
re S%  and let m = 4 +q, be the dimension of M .
This note deals with the determination of the smallest num-
ber of open m -cells necessary to cover M . (This number
has been called.the "strong Ljusternik-Schnirelmann cate-
gory"; the ordinary Ljusternik-Schnirelmann category of M
has been computed [2].

It is a simple matter to construct a collection of
three open cells which cover a product of two epherea. Such
a covering will in all cases be minimal, because a compact
manifold can be covered by two open cells if and only if
it is a sphere. Further, there is no difficulty in finding
a covering of four open cells for an arbitrary sphere bun-

dle over a sphere. We contribute the
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Theorem, If M admits a cross-section, then M can
be covered by three open m -gells.

Proof. Let F be the fibre over the point x of S*
end 6: S — M a cross-section. i is homeo-
morphic with the product E® x S% , and the further re-
moval of &S8®™  yields an open m -cell ¢, .

Because M is locally trivial, there is an open 4f -
cell neighborhood 1L of X in the base space such that
a0 is homeomorphic with 1 » S% in such a way
as to preserve fibres. Since the fibres are here hoﬁogeneoua,
el can be considered a slice in this product, and there
is a slice parallel to it corresponding to some local cross-
section ¢': U —> 'U . Then 6T A &'U = F . Let C,

be the open m -cell x=TU - o' .

Let o € U~4x3 . There is a self-homeomorphism f of
U fixed on fdrg U  which carries % into g . De-
fine the self-homeomorphism ¢ of a1 by employing
the product structure on this space and setting ¢ (w,a) =
=(fu ,ar) . Lastly, extend g by the identity to a self-
homeomorphism M of all of M .

Now again consider M - F , a copy of E™ > S% by
way of some fibre-preserving homeomorphism. Once again the
fibres are homogeneous, so the image X = & (ST - {x3)
is a slice relative to some product structure on M ~-F .,
Let ¥ be any slice relative to this atruciture, but chosen
parallel to X and such that hé€’x ¢ Y . Removing
Y from M -F yields an open m -cell D . Set

C, = 4~71D .
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Then M =C,u (v C3 . This completes the proof.

Remark 1. The above theorem is not stated in the ful-
lest possible generality justified by the proof. Minor tam-
pering with the argument yields the same conclusion under
the following weakened hypothesis: there exists a magp
6: S™-{x3—> M with &6 = identity, such that
FArcety (image of ¢ ) = F . (Here as above, F de-

notes the fibre over x .)

Reggrk‘ 2, E. Luft [11 has determined an upper bound
for the strong Ljusternik-Schnirelmann category of any ft-

connected m -manifold. If M is an S% -bundle over S™,

the exact homotopy sequence of the bundle can be exploitad
to infer that M is & -connected, where f +41=minipr,q},
if p,q>1. By Luft’s results, it follows that M can be
covered by three m -cells if -;_—(4»4-4) £ q €2 -1.
(This pair of inequalities is symmetric in # and ¢ .)

The question for arbitrary sphere bundles over spheres

remains unanswered.
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