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OOMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,1 (1976) 

ON OOLLECTIVE COMPACTNESS OF DERIVATIVES 

J i H DURDIL, Praha 

Abstract: F being a family of mappings in loca l ly con
vex spaces- and F* being the family o*" t he i r der iva t ives , 
the necessary and suff ic ient conditions for F under which 
F ' i s co l lec t ive ly pre compact, are given* 

Key words: Locally convex space, Gateaux and Fr^chet 
der iva t ives , strong equicont inui ty , co l lec t ive precompact-
ness , Orlicz space. 

AMS: 58C20 Ref. 2 . : 7*978.44 

The concept of co l lec t ive compactness i s a natural gene

r a l i z a t i o n of the notion of compactness* for s ingle mappings. 

I t was introduced by Anselone and Moore i n [43 and then s t u 

died in de ta i l by various authors in [1] - [2]»C5] - [ 9 ] , 

[111, [ 12 ] . A great deal of those papers i s devoted to the 

col lect ive compactness of a family of l inear operators in Ba-

nach spaces because of i t s important applicat ions in the theo

ry of approximate solut ions of operator equations* Neverthe

l e s s , the more general r e l a t i o n s , concerning the concept of 

col lec t ive compactness, were also studied* For ins tance , 

Lloyd investigated in [111 the connections between collect ive 

pre compactness of a family of nonlinear mappings i n topologi

cal l inea r spaces and co l lec t ive precompactness of the family 

of derivat ives o^ those mappings. 
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The aim of our paper i s t o e s t ab l i sh an analogy of the 

well-known theorem of Palmer [130 (on complete continuity 

of the derivative of a mapping i n Banach spaces) for fami

l ies of mappings i n topological l i nea r spaces. That means, 

we w i l l find necessary and suf f ic ien t conditions for a fa*s-

mily of nonlinear mappings under which the family of der iva

t ives of those mappings wi l l be co l l ec t ive ly precompact. 

Thus, some of our r e s u l t s complete pa r t ly the r e s u l t s of 

Lloyd [11]; namely, t h i s concerns our Theorem 2.2 genera l i 

zing Theorem 3 #11 of C111» Our main r e s u l t s are presented in 

Theorems 2 .4 , 4 . 4 , 4.5 and 5 . 1 . 

1 . Notations and de f in i t i ons . Throughout the paper, X 

and X wi l l denote a rb i t ra ry loca l ly convex topological l i 

near spaces over the r e a l f i e l d E f% and V w i l l deno

t e the collections of a l l neighbourhoods of 0 in X and 

X , respect ively, f i 0 and fQ wi l l denote the co l lec t ions 

of a l l open convex balanced neighbourhoods of 0 in X and 

X , respect ively and X* and X* wi l l denote the topolog i 

cal duals of X and X . M w i l l denote an a rb i t ra ry open 

convex subset of X and 3§ and iB^ wi l l denote the co l 

lect ions of a l l bounded subsets of X and M , respec t ive

l y . We will denote bj ££(X,X) the space of a l l continuous 

l inea r mappings from X in to X with the topology of u n i 

form convergence on bounded subsets of X t and by 3f the 

base of neighbourhoods of 0 i n £ (X,X) consisting of a l l 

sets* of the type (B,¥) =-tu € & ( X , X ) : u(B)cV} where 

B 6 & and ? € t , 
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Let f be a family of mappings from M into Y . This 

family i s said to be weakly ( r e s p . , s t rongly) equicontinu-

ous [11] on M i f f for each x € M and each bounded net 

CXA : h e L)cM ( i . e . , L is a di rected se t and the set 

-ix^ : X 6 L } i s bounded), weak convergence x—-»-» x imp

l i e s f ( x ) — ^ f t x ) ( r eap . , f(x)—-> f(xQ)) uniformly over 

f € & • The family {T i s said to be uniformly weakly 

Cresp., strongly) equicontinuous on NcM i f f for amy boun

ded nets (x~ : X e L) , ( x ^ s X e L )cN , weak convergen

ce x ^ - x ^ —-*-- 0 implies f ( x ^ ) - f ( x ^ ) ~-:--» 0 (resp», 

f(x>» ) - f ( x ^ ) — > - 0 ) uniformly over f e & . 

The family & i s said to be co l l ec t ive ly precompact 

[11] on M iff for each B € &m , the set < f ( x ) : x g B f 

f € *&\ i s precompact i n Y . (Recall that pre compactness 

i s equivalent to r e l a t i ve compactness in complete spaces*) 

Similarly, the family &* of der ivat ives t* (see below) of 

mappings from & i s co l lec t ive ly preeompaet on M i f f for 

each B e 33^ , the set $tf(x)i x e B , f e 3*} i s preeom

paet i n St(X,Y) # The family # " of der iva t ives i s said 

to be co l lec t ive ly j o in t l y precompact Cll] on M i f f for 

each B-L c %^ and B** c 33 , the set *ff*(x)h: xcB-^, 

heBg,, t € & } i s precompact in Y » 

We use the following coneept of d i f f e r e n t i a b i l i t y which 

i s due to Averbukh and Smolyanov [15] , [ 1 6 1 (see also t l l ] ) « 

k mapping f: M—>Y is said to be Gfitteaux (resp», Fr^chet) 

d i f ferent iable at xeM , i f f there exists* m € £6(X,X) such 

that for each h€X ( reap . , B € £& ) and ¥ e If , there 

ex is t s oT >• 0 such that 



f(x + th ) - f (x) - u ( th )€ tT 

whenever I t |& of* ( resp. f whenever h e B and I t I ^ <f); 

such a mapping u i s denoted by f* (x) . .4 mapping f: Jt—> 

—>•! i s said to be Gateaux ( r eap . , Frdchet) dif ferent!able 

on Nell i f f i t i s Gateaux ( r e s p . , Fr^chet) d i f ferent iable 

at every x € N. M. mapping fz M—*> I i s sa id to be uniform 

different iable on NcM iff i t i s Fr^ohet d i f ferent iable at 

every xe N , and, given B e 3J and ¥ e *T , the cT;> 0 

in the def ini t ion above can be chosen independently of x € 

6 N . 

For a di f ferent iable mapping f: W—> Y t the notat ion 

6> f tx ,h , t ) **f(x • th) - f (x) - f*(x) ( th) 

( x e l 9 he X, t e R ) wi l l be used throughout t h i s paper# 

A family 3" of mappings from 1 in to X i s said t o 

be Gateaux (resp*, Frdchet) equidifferentiable at x€ M , i f f 

each t je & . i s Giteaux (resp*, Frgchet) di f ferent iable at 

x , and given h€X (resp*, B € & ) and W € V , the cT-> 

> 0 in the def ini t ion above can be chosen independently 

of f 6 W m The equid i f ferent iab i l i ty and the uniform equ i -

d i f f e ren t i ab i l i t y of ST on I c M i s defined in an evident 

WS3F. 

Throughout the paperf for a given family ST of mapp

ings, the following notations are used for point sets and 

families of mappings induced by & : 

# ( x ) * 4 f ( x ) : f c ^ J » « " *it*z f € <$"i , 

$ " ( x ) = -ff (x) : f e f} , r (H) = <f(x) : x £ N , f e ? J , 
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and similar ones. 

We remark that i t must be dis t inguished between precompact-

ness of fFMx) (as a subset of £6(X,Y)) and col lect ive 

pre compactness of ST* (x) (as a family of mappings from X 

in to I ) ; see [ 1 ] for d e t a i l discussion in that di rect ion 

(for ins tance, both concepts are equivalent for compact self-

adjoint operators in a Hi lber t space)* 

2. Hecessarv conditions» Throughout th i s sect ion, & 

w i l l denote a family of Gateaux d i f ferent iab le mappings from 

McX into I • 

Our f i r s t asser t ion (and i t s proof, too) i s a s l ight 

modification of CT113, Theorem 3-.8)* 

Theorem 2,1« Let the family 3 " be col lec t ive ly pre-

compact on M . Then the family 7 i s weakly e qui continuous 

on M uniformly on each bounded subset of M , 

Proof* Suppose & i s not uniformly weakly equiconti

nuous on a set H 6 3*- • Then there exist nets (x~ : 

: ^ e L), ( x ^ : X e L) c N , (f % : X e L) c $ , a cont i 

nuous l inear functional e* € X* and e -> 0 such that 

x * , - *%"-** ° ( ^ « ^ ) and that 

(1) t <tX^X) ~ * A ( x * > > e*>>-> e 

for a l l X € L . According to the well-known mean value theo

rem, for every X 6 L , there exis t s t ^ € (0,1) such that 

<*xlxV -fxix\>* e * > - <*k(x* + **.lxx'xA]) • 

• ( x a " xa)> e* > * 
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Set 2- =- f^ (x^ • t ^ Cx^ - x ^ )) and l e t V e T be such 

tha t K y , e * > | £ | e whenever y€V . Denoting by B the 

balance h u l l of t he set { x ^ - x ^ : X € L? , the set 

ff1 ((N • B)n l ) i s precompact i n «£ (X,Y) and so we can 

choose a subnet ^zx: ^ € ^ °* ( z A : ^ € **) such 

tha t 2^ - z a £ (B,V) for each A ^ j A ^ e L * . Similarly 

as i n the proof of ( t i l l , Th. 3 .8 ) , we can now prove that 

I < f ^ C x ^ ) - f^ (xx)t e*>\£ B for each X e L* , 

which contradicts ( l ) . 

The following theorem improves the resu l t of (£113t 

Th. 1.11). 

Theorem 2 . 2 . Let the fairily # " be col lec t ively 

jo in t ly precompact on M and l e t the set 9* (xQ) be pre

compact , i n T for some x c M • Then the family ST i s 

col lec t ive ly precompact on 1 . 

Proof. Suppose there ex i s t s If € tBM such that 

9r (I) i s not precoiipact; tha t means there are ne ts 

(f^ : % € L) c #* , (x* : *A c L)c N and a neighbour

hood 1 m V such that 

C 2 ) f5L (x4L > * % ( x A * # * 

for a l l A l f ^ 2 € l . Let W € 1T be such that 4 WcV • 

According to the mean value theorem (111] , Th.1 .6) , 

fX ixS } - % ( x o ) c S * * x ( x © * t ( x a * x o } > ( x * - x o } : 

: t e EOf13 ] 

for each X € L f where co denotes the closed convex 
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h u l l . Hence, for every A, e L , there i s £®^ : t e C 0 , 1 3 1 c 

c C0,1] and r* e W such t h a t 

( 3 ) fX UX ) = f a (xo> * * So.43 • * f I (X0 + t ( x * " xo5 )-

' ( x A " xo> + rA » 

where 51 _ at * 1 and only a f i n i t e number of m% ( for 
i e £0,43 -* ^ 

each fixed A ) i s non-*zero. 

Denote by B the balance hul l of «{x^ - xQ : Pi € L ? ; 

i t i s B € 3 and xrt + t (x~ - x ) e (x„ + B)rs M e £>w for 
0 «/V O 0 m 

a l l % e L and t € C0,1J * Hence, denoting 

4 = f jt ( x o * t ( x A " x o n ( x a ~ x o } t 

t the set •$ y* : A c L, t e £0,1.1]: is precompact, and it® 

convex hu l l C i s then pre compact by the well-known theorem, 

t o o . The net ( 21 A a-, y* : ft e L) l i e s i n C and so 
ieco ;4j * ^ 

there ex is t s some Cauchy subnet V S a* y* : A e L ' ) . 

Hence, t he re is X* € LJ such that 

(4) .S at yt - 2 ! at y! € W 
t c Co,1J a f ^ -t e C0,>I3 a 2 ^ 2 

for a l l I p ^ c L whenever ^ i > ^ 2 "̂ ^ 

By the assumption of our theorem, we can choose a Cauchy 

subnet ( f x (xQ) : fte L " ) of the net (f^ (x ) : A € L') 

and hence, there i s ft'1 e L " such that A" £- ft1 and 

(5) f ^ ( x 0 ) - * A 2 ( x 0 ) e i r 
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for a l l A ^ ^ e L " , A1$ X2 h A " . I t follows now 

from (3),(4),C5) that, for a l l A ^ ^ e L 1 1 , 

л 2 t ecoиз л-i л-i t € co?<o xг л2 

whenever ^ ^ , A^ f~ A*1

 ? which contradicts ( 2 ) . 

The following theorem extends the well-known r e s u l t 

concerning a s ingle mapping (see e .g . [143)> t o the case of 

a family of mappings • 

Theorem 2 . 3 . Let & be weakly equi continuous on M 

( r e s p . , uniformly weakly equicontinuous on each bounded 

subset of M ) . I f y i s co l lect ive ly pre compact on Iff 

t h e n i t i s strongly equicontinuous on M ( r e s p . , uniform

l y strongly equicontinuous on each bounded subset of M ) . 

Proof* Suppose 9 i s uniformly weakly equicontinu

ous on each bounded subset of M and i s not uniformly 

stron^Ly equicontinuous on some H e 3&M ; then there are 

c a t s (x^ : A € L ) , ( x ^ : % e L)c N , (fa : X e L) c ^ 

and T € V such that x^ - x^—-*• 0 (X c L) and 

<6> tx<xx) - f a ( x i ) # T 

for every X € L . Moreover, 

(7) < f ( x ^ ) - f ( x ^ ) » e * > — » 0 ( A € L) 

holds for a l l f € 3" and e* € I**. 

Choose arb i t ra ry Cauchy subnets (f,% ( x ^ ) : A e L') 

and (f ^ (x* ) : % € L* ) of nets (f ^ (x ^ ) : X e L ) and 
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(f ~ (x!^ ) : X e.L ) , r e spec t ive ly . Denoting by X the comple

t ion of X (such a complet® Hausdorff space tha t X i s 

dense in If and the topology of X induced from ¥ i s equi-

valent t o the o r ig ina l one; X i s also loca l ly convex), t h e -

r e are y^,y^ £ X such tha t 

in the topology of X . Hence, 

(9) <txixx) - f A < * ; > , * * > — * < y 0 - y 0 ^ > 

( % 6 V > 

for every # * € X * • 

Since the r e s t r i c t i o n of an a rb i t r a ry e ^ e X* i s an 

element of X* , i t follows from (7) tha t 

(10) < txUx) - f ^ x ^ ) , ^ * ) —> 0 ( a e L') . 

Thus, we obtain from (9) and (10) tha t < yQ - y0»e/ic>Sr 

= 0 for every 1* * e X * and so yQ - yQ -=- Ô r » Oy • Whence 

by (8) , 

f a ( x a ) - f ^ ( x ^ ) _ > 0 ( a 6 L'> 

in the topology of X and hence in that of X , too. 

This contradic ts (6) and so proves the "uniform" patt 

of our theorem; the "simple" part can be proved in a s imi

lar way. 

Now, we are ready to present the main resul t of t h i s 

section: 
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Theorem 2 . 4 . Let the family &* be col lect ive ly p?e-

compact on M , the mapping f*(x) be pre compact for every 

f € W and xeW and le t the aet & (x ) be pre compact for 

some xQ€ Ut . Then the family & ia col lect ive ly pre compact 

on M and uniformly strongly e qui continuous on each bounded 

subset of M . 

Proof. By ([113, Th. 3 .10) , the family 9% ia co l l ec 

t ive ly jo int ly pre compact on M • Hence- the reault fol lows 

from Theorems 2 . 1 f 2 .2 and 2 .3 . 

3« The property C . Throughout thla aection, & w i l l 

be an arbitrary family of mappings from M into Y • 

Definition 3.1„ The family T poaaeaaea the property 

C at some point x cM i f f the following condition holds: 

for every net ( f^ : % s L ) c T f a subnet (f^ : % e L*) 

cam be chosen i n such manner that, given arbitrary B e 33 

end ¥ c If f there exiat rg^>© suck that x 0 + r^^Bc M 

and for mvmrj <f % 0 << <F&T^ , there ia %#& I»* auch that 

( U ) t ^ ( x 0 • h) - tx% (x0 + h) c or v 

for each &^ t X^mTJ , 5 l l t ^ >» X^ and each h c etB . 

I t ia evident that i f IT possesses the property £, at 

x0«M than the aet W ixQ} ia pre compact in X • Two f o l i o -

wing theorem w i l l make the .waning of the property C mora 

d e a r . 

ftmcfffl 3»1» **** 3t0cM ^ suppose that every net 

i n IT contains a subnet that i s uniformly Cauehy on aome 

neighbourhood of x , i . e . there exists V * <U auch that 
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for every given V e Of , an index X^ can be chosen such 

that f̂  (x) - fA (x)c'V holds for a l l %1$ X^ h Xr 

and a l l x c x * U • Then $* possesses the property C at 

Proof. Let the condition of Theorem 3^1 hold and le t 

( f^ : X 6 L) c & be an arbitrary net. Choose a subnet 

(f^ : X€ L9) and tf 6 % as described in the theorem 

above and such that xA • UcM . Let B e 3 and V e T 
o 

be arbitrary and choose 3?g^>0 so that r-^EcU • Given 

any o ,̂ 0<aT6 rB-^ , the formula ( l l ) evidently holds for 

a l l h eoTB and a l l ^ i - A ^ e L * , X1$ X^ f-X^f where 

F* • (./"¥• 

Remark. The condition of Theorem 3.1 implies 3* i s 

col lect ively precompact on some neighbourhood of x0 * 

.Proposition 3.1# Let 3" be Fr^chet equidifferentiable 

at a point x e M . Then & possesses the property C at 

xQ i f and only i f both s e t s 9 -(xQ) and ^"(x 0 ) are pre

compact in I and fft(X9Y) , respectively. 

Proof. 1) Suppose SP i s equidifferentiable and pos

sesses the property C at x 0 . Pre compactness of T(xQ) 

in Y i s a direct consequence of Definition 3 .1 and so i t 

remains to prove pre compactness of ?*' (x0) only. 

Let ( -^,(x 0 )s A c L) be an arbitrary net, (f^ : 

t X € L) be the corresponding net in f and let (f^ : 

: A.e L') be i t s subnet chosen according to Definition 3 . 1 . 

We will prove that the corresponding subnet (f£ (xQ): X € 

SL 1 ) of ( f i (x ) : X e D is Cauchy in Sd(X,Y) . 
v* O 
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Let an arbitrary (B,V) € % be given, let W e VQ 

be such that 4 WcV » fhere exists cT such that 0< 

-<• <f0£*fffl (the number from Definition 3.1) and that 

co t^ (x 0 ,h , t )e tW 

whenever 1 t I £ <Lf0, heB and & e L*. By the definition 

of the property C again, there is X* e L* such that 
o 

for every v l ^ ^ e L * , ^ i * 1 ^ £" ^<T a n d e a c l 1 h e B * 

i t holds 

% ( *o ) h - 4 a V k " | C « l 4
 (xo * *oh ) - % (*o * ^oh ) * 

* % a
( V - ^ V * %̂ (X° ,hf ^ " %̂ ( x ° , h | 

oTo) ] e J, C V/r.* ^w * <row + ^ i l c v , 

whence tl (xj - fi (x^) € (B,V) follows. 

2) Suppose f is sfuidifferentlabl© at xQ and the 

sets 3* (x ) and fT*(x ) are praeoapact; we will prove 

that y has the property £ at x0 . 

For an arbitrary net ' (f^ : & e L) in <T , there ex

ists a subnet (fn : & € L#) such that the corresponding 

nets (f^(x ): <& <* L*) and (f^ (x0): A, e L*) are Cau-

chy nets. 

Let B * £J and V e f be arbitrary and let W e If 

be such that 4 f c ? . Choose r--^e(0,l) so that xQ * 

+ r ^ B e i md 

of ( x 0 , h t t ) e t t 
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whenever I t 1 .£ vm , h e B and A € L* • 

Given any <f9 0 -c cT^t-Qj » there i s %# £ L* such 

that 

% ( x o } - f * 2
 ( x o J € (B>W) 

for every A^ t ft^eL', ^ l ^ , A^ ^ ^or" • Jt f o l l o w s n o w 

that for a l l such X1$ X2
 a n d a l 1 h € ° r B • 

*** ( x * + h) - fU (x„ •¥ h) * f<» (x„ + <f k) -

- f% ( x„ + <^k) - Ĉ flt ( x J " fa ( x J 3 + 

• [ft? Cx ) - f* Cx )3 Cd*k) + o>* (x .k,oO -
5 t / j O ^ i ° a, 

- o>^ (x .k s <f)c4 cTW c <fV 
r« o' * 

(where k = i h € B ) holds. 

Fr^chet e qui different l a b i l i t y of ^ at x and boun-

dedness of the set &' (xQ) in ^fc(Xfl) imply equiconti-

nuity of *& at x if the space X i s bornological (see 

[13 and t ! 5 J ) . Hence, the following consequence of our pro

position holds: 

Corollary 3»1. Let X be bornolofical. Let JT be 

Fr^chet equidifferentiable at x cM and possess the pro

perty C at x . Then ST i s e qui continuous at x • 
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4 . StfPflLtfgnfr cpnflj.tlQjft. In the following theorem, 

y i s assumed to be a family of mappings from the closure 

M of M i n X into Y . We suppose the space X i s s e -

mireflexive, which means that each bounded subset of X i s 

re la t ive ly weakly compact; i f X i s barrelled then semire-

f l e x i v i t y i s equivalent to re f l ex iv i ty of X . 

Theorem 4 .1 . Let X be semireflexive, f be strongly 

equicontinuous on M and le t the set ^ ( x ) be precompact 

for each x€M0 where MQ i s dense in M . Then ^ i s co l 

l e c t i v e l y precompact on M • 

Proof* Suppose there exist H f 3 » such that ^(N) 

i s not precompact, i . e . there are nets (f^ : & € L) c T 

and ( x ^ : ^ € L ) c l T and Y e V such that 

(12) f, ( x . ) - f- ( x - ) 4 ¥ 

for every A l f ^ c L • Let W e V be such that 5 WcV • 

Being bounded in X f the set «tx^ : A € L \ i s r e l a 

t i v e l y weakly compact. Being closed and convex, the set Hi 

i s weakly closed. Hence, there ex i s t s a subnet (x^ : & e L' ) 

of (xA : & € L) and xQ€M so that x^—*-. x (A € L*) f 

which implies f ( x^ )—>f (x 0 ) ( X € L') uniformly over 

t * T . 

Choose &^fcL* so that o 

(13) f ( x a ) € f ( x 0 ) • w 

for a l l A e L* , X t %0 and a l l f c f , Since T i s 

equicontinuous on W and MQ i s dense in M" f there i s 

x*,€Mrt so that o o 
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(14) f(x!)ef(xJ + W 
o o 

for every f e 9* • Finally, there exists a subnet (f *> : 

s A € L,f ) of (f^ * 3- £ L) such that 

(15) f 4 - | c * ; > - f ^ ( « ; > • ¥ 

for a l l JL1$&2* L ' 1 . It follows now from (13),(14),(15) that 

for a l l &19Xze L " , &1$&z h X0 , 

% ( x * - , } - % ( x A 2
) € V » 

which contradicts (12). 

Hereafter, we shall suppose f i s a family of mappings 

that are defined on some neighbourhood M* of M in X and 

are Gateaux different! able on M ; we can suppose that M* » 

* 5 * IV where IV c % _ . 
O 0 0 

Applying Theorem 4.1 to the family JF* instead of T 

and using Proposition 3 . 1 , the following result can be obtai

ned. 

Corollary 4 . 1 . Let X be semireflexive and suppose 9* 

i s equldlfferentiable and possesses the property € at each 

point of some set M0 dense in M • I f f* i s strongly e~ 

quicontinuous on M then i t i s col lect ively pre compact on 

M . 

Theorem 4 . 2 . Let X be semireflexive and let ? be 

strongly equicontinuous on M* and uniformly equidifferen-

tiable on each bounded subset of Hi • Then ?* i s strong

l y equi continuous on M • 

Proof. Suppose the conditions of Theorem 4.2 hold but 
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£•• i s not strongly equicontinuous on M . Then there exist 

nets (x^ : X e L)cH and (fA : A € L) c $ 9 xQe U and 

Z € X auch that x^—**. xA ( X e L> , «£ x^ : A £ L ? i s 

bounded and 

*Å (*Я > • f I (-o} + Z 

for all & e L • Let Z = (B,V) where B 6 tB and ¥ 6 V 1 

then, for every X 6 L , there is h^€ B such that 

(16) t*x (xA )hA * f! (r0)hA -> 7 . 

The aet { h ^ : X e L ] i s bounded, hence i t i s r e l a t i 

vely weakly compact and hence, there ia a subnet (h^ : 

: A € L') of (h A : A c L) and hQ€ X such that h^—** 

~ ^ h 0 ( X c L') • 

Denote BQ -=- B u 4h0^ and l e t W c T be such that 

4 WcV . There ex i s t s cfc (0,1) so that cfB^cIV (see the 
* o o 

def init ion of M+ ) and that 

(17) o> f(xA 9nx , t ) e t W , « V x o > h A t t ) c t W 

for each f c T 9 X e L* and 11 1 sfc cf . 

Let A 0 c L ' be auch that 

(18) r ( x a ) - f (x0 )c ĉ rw 

fCx^ • < k j t > - ^(x0 ^ ^ ) * ^ * 

for a l l A e L* f A h- A • and a l l f ^ f . I t follows now 

from (17) ma (18) that 

*fc ( x X )hJ, - f k ( x o ) h a * £ C f 4 <XA ^ h a } " f A ( x o + ^ V * 
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* fx ( V - ** ( x a } + #tx
 (x0>\ ^ " »tx

 l*x >hx > 

<T)2 6 T 

whenever A e L' , %h &0 • Thus, we have a contradiction 

to (16). 

Theorem 4«3 . Let X be bornological« Let S" be equi-

continuous on M and Pr^chet equidifferentiable at some 

point xQe M •. Then the family &* (xQ) i s e qui continuous 

on X • 

Proof. Let arbitrary h0c X and Y * 1f be given, 

l e t W c V be such that 2 WcV * 

Select an arbitrary B c ft tt and l e t <T e (0,1) be 

such that x + </BcM and o^(x0,h,t)e tW whenever 

It I £ cT , h c B and f f i ? * There ex i s t s U c ! t so 

that f ( x 0 + U)c f (xQ) + W for a l l f € ? . Let <f0 € 

c CO,cf) be so that d^Bc U • Then, for every h e B > 

It 1 £ <f0 and f g ? , i t follows that 

t> (xQ)th a f(xQ + th) - f(xQ) - a ) f ( x 0 , h , t ) 6 W - tWcV * 

Put UQ = r̂ N [ f > (x0)]"*1(V) . We have just proved that 

U absorbs B ; hence, since B was arbitrary, i t f o l l 

ows U i s a neighbourhood of 0 * 

Equi continuity of £ ° ( x ) at h i s proved. 

Now, the main result of th i s section can be established: 

Theorem 4#4. Let X be semireflexive* Suppose a fa 

mily y i s strongly equi continuous on M+ , uniformly equi

differentiable on each bounded subset of M and possesses 

the. property C at each point of MQ where MQ i s a den

se subset of M . Then both families & and T* are col-
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l e c t i ve ly precompact on M and the family £"(x) i s col

l e c t i v e l y precompact on X for every xcM • 

Proof* Collective pre compactness: of $ follows imme

diate ly from Theorem 4.1 and Proposition 3 .1 , col lective 

pre compactness of $* follows from Corollary 4.1 and Theorem 

4*2» The result concerning &*' (x) follows from col lect ive 

precompactneas and equidifferent l a b i l i t y of & (see £113 , 

Tiu 3 . 9 ) . 

Remark. It follows from Theorem 4»2 that under the as

sumptions of Theorem 4 .4 , the family $" i s strongly equi-

continuous oh U • I f the space X la born ©logical, the f a 

mily flF'dx) i s equieontinnous on X for every xe M ac

cording to Theorem 4*3* 

We terminate th i s sect ion by the following s l ight modi

f i ca t ion of Theorem 2*4 t o show the close relation between 

our sufficient condition for col lect ive pre compactness of 

&' ('Theorem 4*4) and the necessary one. In fac t , Theorem 

4.5 below i s nearly a converse t o Theorem 4*4. 

Let *& be as i n Section 2» The assertions of the f o l l 

owing theorem immediately follow from Theorem 2.4 and Propo

s i t i o n 3 . 1 . 

Theorem 4>^» Let T be Fr^chet equidifferentiable on 

a se t M c M • Suppose the set 3" (xQ) i s precompact i n 1 

f o r some x € M f the family ST1 i s col lectively precompact 

on M and fix) i s precompact on X for each f e & 

and x€M • Then the family T i s col lect ively precompact 

and strongly equicontinuous on M uniformly on each boun

ded subset of M and possesses the property C at each 
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point of M » 

5« Some pa r t i cu l a r cases . F i r s t , we examine the case 

of M ~ X • In t h i s case, Theorem 4»5 i s prec ise ly a conver

se to Theorem 4.4 and hence, the following equivalence holds: 

Theorem 5 . 1 . Let X9 I be Hausdorff loca l ly convex 

spaces, X be semiref lexive, and l e t $* be a family of map-

pings from X i n t o X » Suppose the family {? i s uniformly 

equidifferent iable on each bounded convex subset of X . Then 

& i s s t rongly equicontinuous and possesses the property € 

on X if and only i f the family <F* i s co l lec t ive ly precom-

pact on X , a l l mappings f ' ( x ) (f e -T , xeM) tare pre— 

compact and the set & (x ) i s precompact in T for some 

x e X . o 

Remark. I t follows from the theorems of the preceding 

section tha t i n the theorem above, the statement * # " i s co l 

lect ively precompact" can be equivalently replaced by ** &' 

is strongly equicontinuous"* 

In the second part of t h i s sec t ion , we wi l l inves t iga

te the case of normed l inea r spaces. In such case, the f o l 

lowing property can be introduced: 

Defini t ion 5 . 1 . Let X, X be normed l inea r spaces f 9 

be a family of mappings from McX into I , x e M . The 

family & i s said t o possess the property C 0 at xQ i f f 

the following condition holds : Given any sequence -Cf̂ *} c T , 

a subsequence *ifn 1 can be chosen such t h a t , for every 

£ > 0 , there ex i s t s r e > 0 such that any cT , 0 -*- <f £ 

£ r ^ , being given, the inequal i ty 
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I f„ txrt + h) - f^ ix0 • h) 1 6 e <f 

holds for every he X , II h ll * cT , and a l l suff ic ient ly 

large nk, m̂  . 

Theorem 5.2 . Let X, *» T , xQ be as in the defini

t ion above. Suppose that for every sequence -i-Pn^ c F , t h e 

re e x i s t s a subsequence -tf-, ? that i s uniformly Cauchy on 
nk 

each suff ic ient ly small sphere with a centre at xQ , i . e . 

a number r 0 > 0 can be given such that for every £, > 0 and 

r , 0«er£r , there i s n £ r such that 
II t^lx) - f^ (x ) II £ e 

for a l l x € M , Bx - x0B -* r , whenever nk , n^^n^* Then 

$ possesses the property £ at x • 

Proof of th i s theorem i s t r i v i a l and can be omitted* We 

remark that in contrast to the condition of Theorem 3*1* the 

condition of Theorem 5*2 does not imply col lect ive preeom— 

pactnesa of f on a neighbourhood of x • Moreover, i n con

trast to the property C , the property CQ at x0 does 

not imply pre compactness of y (x ) in X ; nevertheless, 

the following assertion holds: 

Lemma 5*1. Let X, Y, $ 9xQ be as above. If #" i s 

e qui continuous at x and possesses the property C at 

that point, then the set 3"(x0) i s precompact in I • 

Proof. Let 4--*n(x0)} be an arbitrary sequence of 

points from V (xQ) and denote by ^^ (xQ) } i t s subse

quence defined by the property CQ . We wi l l prove that 

-If- (xrtH i s a Cauchy sequence. 
"It ° 
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Let € > 0 be an a r b i t r a r y number and choose 3?0>0 

so tha t r 0 • heM and 

C19) It f (x0) - f (x 0 + h) || £ | 

for a l l f 6 f and h e X whenever (I h || £ r . Set cT-

» min(lfr0j3P£ ) where r* > 0 i s the number defined by 
2 f 

the property <tQ . Nowf i t follows by the property £ 0 that 

there i s n. - n c „ such that o £ f f lr 

(20) II ^ ( x , • h) - f ^ + h) I U | cT ^ f 

for a l l n^9 a^£& 0 and h sX , tl h II =- <f • Choosing an a r 

b i t ra ry h 0 c X f llh0ll = <f f i t follows from (19) and (20) 

that 

II *n ( * J - '«, ( x J I * " *« ( x J - *« (>C + 1- ) II + 
n^ o mk ° °k nk ° ° 

+ II f (xA + h ) - f (xft + h ) II +• II f (x^ + h ) -n - ^ o o rn^oo m - ^ o o 

- f (x ) II £ £, m̂  o 

whenever n^f m ^ n , and t h i s completes the proof. 

Using the lemma above, the following assert ion can be 

proved i n a s imi la r waj as Proposit ion 3 . 1 . 

Proposition 5,1« Let Xf X, f , xQ be as above and l e t 

T be Fr£chet equidi f ferent iable at x • Then T i s equi-

continuous at x and possesses the property C at x 

if and only if the se t s ? (xQ) and T* (xQ) are precom-

pact in t and «§fc(XfY"), respec t ive ly . 
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Corollary 5.1» Under assumptions of Proposit ion 5 .1 , 

the family 4T possesses the property C at xQ i f and on

ly i f i t i s equicontinuous at x and possesses the proper

t y C 0 at t ha t poin t . 

Corollary 5.2. Let X and X be normed l inea r spa

ces. Then Corollary 4 .1 and Theorems 4 .4 , 4.5 and 5.1 wi l l 

remain true even i f we replace everywhere (C by CQ « 

Note that in the case when X and X are Banach spa

ces, M = X and T~ «Cf$ ( i . e . , T consists of a single 

mapping), our Theorem 5.1 reduces t o the well-known theorem 

of Palmer £133 on compactness of the derivat ive of a mapp

ing. 

Eventually, we wi l l examine the case of Orlicz spaces 

(see e.g.ClO] for def in i t ions and notations used below). An 

Orlicz space L f i s not ref lexive i n genera l , however, i t 

follows from (C10J, Th. 14.4) that i t i s always 1-^- ref le 

x ive , where 3f i s the complementary function t o $ and 

Ey i s the closure of the set of a l l bounded functions i n 

L* . Thus, a l l previous asser t ions wil l be val id also for 

a rb i t r a ry Orlicz spaces i f we write everywhere E^ -weak 

( r e s p . , E^ - s t rongJ e qui continuity instead of ordinary weak 

( r e sp . , strong) e qui cont inui ty and others l ike t h a t . 
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