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CO&MBNTATIONES MATHEMATICAE UNIVEHSITATIS CAROLINAE 

17,3 (1976) 

COGENERATION AND MINIMAL .REALIZATION 

CPreliminary communication) 

Jiri AD^MEK, Praha 

Abstract: Given a triple algebra (Q,d) and a quotient 
e of Q, then e is said to cogenerate the biggest quotient-
algebra of (Q,d), contained in e, provided that such exists. 
(This is dual to the generation of subalgebras.) A necessa­
ry and sufficient condition on a triple T is exhibited in 
order that T admit cogeneration, i.e. that each quotient 
object on each T-algebra cogenerate something. The condi­
tion is very simple; the functor T must preserve cointersec-
tioHB. For triples over sets this characterizes finitary al­
gebras. 

Cogeneration is closely related to minimal realizations 
for triple machines. In terms of Arbib and Manes, an input 
process X is proved to admit minimal realization iff X& 
preserves co intersections. 

All the details are going to appear in 3 . 

Key words: Triple algebra, generation of subalgebras, 
cogeneration of quotient algebras, preservation of cointer-
sections, triple machines, minimal realization. 

AMS: 18B20, 18A30, 08A25 Bef. 2.: 3.971, 2.725 

A) Cogeneration. 

A,l We assume that a category %3C is given, equipped 

with a factorization system (8 ,»it)« This allows us to speak 

about quotient objects of an object Q, as morphisms e: Q—-*»Q 

in & "up to isomorphism*1. The quotients of Q are naturally 

ordered: e-,-6 e^ iff ^ - k-e^ for some k. 

The least upper bounds are called cointersectionsf if they 

always exist (even for classes of quotients), % is said to 

be closed to co intersect ions. And a functor, respecting 

and respecting these least upper bounds, is said to 
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to preserve co intersect ions. (All this is dual to the 

usual notion of big intersections of subobjects.) 

We consider a (fixed) triple T = (T9<U/9^), which 

will be supposed to preserve Q (i.e., e & & implies 

Te e & ). A quotient algebra of a T -algebra (Q.d) is a 

T -homomorphism h: (Q,d)— * (Q*,d') with h e & • 

A>2 Definition: A triple T is said to admit coge­

neration if for every T -algebra (Q,d) and every quotient 

object e of Q there exists the biggest quotient algebra c 

of (Q,d) wittt c£e. Then c is said to be cogenerated by e. 

Note. The cogeneration of quotient algebras is dual 

to the generation of subalgebras. If JC has (big) inter­

sections, the generation presents no problem: each subob-

ject generates the intersection of all subalgebras, contai­

ning it. Fortunately, the intersection of T -algebras is 
T 

always a T -algebra (for the forgetful functor X — • 3D 

creates limits). How9 assume that T preserves cointersec-

tions. Then the' co intersection of T -algebras is always a 

T -algebra (fpr the forgetful functor 3C > X crea­

tes all colimits, preserved by T). Thus, each quotient ob­

ject cogenerates the co intersection of all quotient algeb­

ras, contained in it. This can be reversed as follows. 

Main Theorem. Let & be closed to co intersections 

and let T preserve £/ . Then T admits cogeneration iff 

T preserves cointersections. 

^>3 Corollary. A triple over the category of sets 
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admits cogeneration iff it is isomorphic to the W-free 

algebra triple for some variety W of finitary algebras. 

Note. More on functors, preserving cointersections, 

can be found in [23. E.g., under additional, rather mild, 

assumptions on JC , each functor which preserves co in­

tersections, generates a free triple. (Recall from C53 that 

a free triple T , generated by an endofunctor X, is a 

transformation t: X — > T such that for every triple T' and 

every transformation t': X — > T ' there exists a unique tri­

ple morphism r: T > T with t' = r.t.) A corollary: 

every triple which admits cogeneration, is a retract of a 

free triple. 

Another result in £23 concers endofunctors of the cate­

gory of vector spaces (over an arbitrary given field) from 

which we get 

Corollary. A triple over vector spaces admits cogene­

ration iff it is finitary, i.e. T preserves filteres coli-

mits. 

B) Minimal realization 

Bl Arbib and Manes investigate automata over free tri­

ples £43• In.the same direction, automata over arbitrary 

triples can be defined (cf. [4,63 and, for a more general 

approach,[YD. Concerning the minimal realization problem, 

this generalization of the Arbib-Manes approach turns out 

to be very convenient: the whole technique becomes much 

simpler. 

Let X: 3C—-> JC be a functor, generating a free tri-
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pie T - (Arbib and Manes call X an input process and they 

denote TQ = X ^ Q.) Then pairs (Q,cO, where Q is an ob­

ject and <T : XQ —> Q is a morphism, naturally correspond 

to T -algebras (Q,d); therefore, T -algebras will play 

the role of (Q9cf) for triple machines. 

B2 As in A) above, we have IfC f (&,^t) and T . 

For fixed objects Y and I, a machine is tuple M = 

= (Q,dfY, ft ,I9*e)f where (Q,d) is a T-algebra and ft : 

: Q — * Y and a*: I—> Q are morphisms. T -homomorphisms, 

commuting with both the ft'a and the t> #s 9 are called 

simulations (from one machine to another). 

Given a machine M, the morphism r = d.T x, : TI —> Q 

is called the run map of M, and the composition f« = 

= ft .r: T I — * Y is the behavior of M. The machine M is 

reachable if r c 8/ . 

A realization of a "behavior", i.e. of a morphism f: 

: TI—>Y, is any machine M with £** = f. This realization 

*s minimal if (i) it is reachable and (ii) for every reach­

able realization M# there exists a unique simulation from 

M' to M. Every behavior has a reachable realization, e.g. 

M(f) = (TI, fi?,Y,f ,1, 4J1) - here r = id^-j. The problem of 

minimal realization is: does every behavior have a minimal 

realization? If this is so (for all I, Y and f) then T 

is said to admit minimal realization. 

B>3 Theorem. A triple T t preserving 8 f admits 

cogeneration iff it admits minimal realization. 

Combining this theorem with the above result, we ob-
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tain, in the terminology of Arbib abd Manes: 

Corollary. Let 0 be closed to cointersection and 

let X be an input process, preserving £ • Then X admits 

minimal realization iff X v preserves cointersections. 

B,4 A finite model* To capture also finite-state ma­

chines, we can proceed as in [23, starting with a class & 

of epis. We do not assume any factorization properties and 

we think of & -morphisms as "finite quotientsM. A behavi-

o r ifl regular if it has a reachable realization (i.e., r e 

c & - recall that if B contains all isomorphisms, then 

all behaviors f are regular, via M(f)). And T admits mi­

nimal realization if each regular (!) behavior has a mini­

mal realization* As above, it suffices that £ is closed 

to, and T preserves, co intersect ions. This can be reversed 

if T(g ) c e : 

Theorem* Let & be a class of epis, closed to coin-

tersections, let T preserve & • Then T admits minimal 

realization iff T preserves co inter sect ions. 

Example. Let 3C be the category of sets, or, the ca­

tegory of vector spaces. Let fe denote epis e: A — > A with 

A finite (resp., finite-dimensional). Then 2 -cointersec-

tions are proved in £23 to be absolute colimits. 

Corollary. Every triple over sets or over vector spa­

ces admits finite minimal realization. 
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