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REMARKS ON SUBDIRECT REPRESENTATIONS IN CATEGORIES

Jif{ VINAREK, Praha

Abstract: Possibilities of a generalization of the
BirkhofT representation theorem for concrete categories
are discussed. We present some generalizations of this
theorem for a certain clss of categories (including e.g.
relational agstems, topological spaces, partially ordered
sets etc.). Examples of concrete categories for which a
generalization of the mentioned Birkhoff theorem is not
possible are also discussed.
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The concept of subdirect irreducibility was introduced
for algebras by G. Birkhoff in [1]. A variant of his defi-
nition making difference betveqh subobjects and general mo-
nomorphisms (which is unnecessary with algebras) can be ap-
plied also for graphs (see [5]) and for general concrete
categories (see [4),[6]). G. Birkhoff proved that every al-
gebra of a finite type has a subdirect representation. A si-
milar assertion holds also for finite objects of regular ca-
tegories (see [4]). We are going to present examples of ca-
tegories where there are objects with no subdirect represen-

tation.
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I am indebted to A. Pultr for valuable advice.

Definition. Let (#,U) be a concrete category,

Acobj & . Then A is said to have a representation in A

if there exist objects (Aj) ‘j e A , a product

jed?
5113 Ad with projections pjaand a subobject w: A —> T Aj
such that U(pjp) is onto for every je J.

Remark. In particular, we shall use this definition
for representations in classes of subdirectly and meet ir-
reducibles (see [41).

First, we recall some definitions:

(a) let (R,U) be a concrete category, X a set and RUX =
= ({AeobjRIUA = X3 ,<) where < is defined by A<B iff
there exists a ¢ : A—> B with Ug = IUA' Then an object A
is meet irreducible if A =.3/¢\3 Aj (in R UX) implies that

there exists a je J such that Aj = A,

(b) A subobject in a concrete category (®,U) is a mono-
morphism (@ : A—> B such that for every f: UC—>UA for
which there is a 9 : C—> B with Uy = Uu o f there exists
a «@:C—AwithUg= {1,

(c) A concrete category (®,U) is said to be semiregular
if it has the following properties: U preserves limits;
for every invertible mapping f£: X—> UA there is an isomor-
phism ¢ with Ug = f; if «¢ is an isomorphism and Ue = :UA
then o¢ = '.I.A; every RUX is a set; for every ¢ there is a
subobject decomposition ¢ =€ with “a subobject aml

Ue onto.

(d) An object A of a concrete category is said to be sub-
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directly irreducible (cf. [1),[4]1,(6]) if for every subob-
ject @ : A ——‘)i_‘IIJ A such that all U(pj @) are onto at

least one pj(w is an isomorphism.

Proposition 1, Let a semiregular productive (D‘L,U)
satisfy the following conditions:

(i) Every finite object has a representation with
meet irreducibles,

(ii) For every f’inite object A there exists B¢ A which
is maximal in RU(UA),

Then every finite object of ® has a representation
with subdirectly irreducibles (i.e. a subdirect representa-
tion).

Proof. Suppose the contrary. Put n = min { card UA | UA
is finite, A has no subdirect representation} . Obviously,
n>1l, (If card UA£1, A is meet irreducible, then A is sub-

directly irreducible, too.)

(a) Suppose there exists a meximal A, card UA = n, with
no subdirect representation. Then there is a subobject

@ i A——)Jefj A; such that U(pjfu-) is onto for any jeJ
and Py is isomorphic for no je& J. By the maximality of

A, card UA.<n for any je J. Every A. is supposed to have a

J J
subdirect representation. Therefore, A has a subdirect re-

presentation which contradicts the assumption.

(b) let A be an object with card UA = n which has no sub-
direct representation. According to (i) we can suppose with-
out loss of generality that A is meet irreducible. By (a),

A is not maximal and by [6] (Theorem 3.6) there is a < :

: A—> B with card B<n which can be extended to no A'zt A,
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We can suppose that Ugp 1is onto.

B has a subdirect representation. By (ii), there ex-
iets a maximal C§ A, According to (a), C has a sudbdirect
representation.

Define @ : A—>BxC such that pyw ®= ¢ , pou: A<C
(pgsPg are projections), Then Uu is one-to-one and there
existe a subobject decomposition w = A<D ———r Bx C with
@’ & subobject (see [4]). Since ¢ cannot be extended to a
stronger structure, D = A and @ = «’ is & subobject. A has
a representation in {B,C} which have subdirect representa-
tions,

Therefore, A has a subdirect representation which is

a contradiction.

Remark. Differently from [4]), we need not the finite-
ness of R UX for any finite X here.

Example 1. The condition (i) in Proposition 1 is ne-
cessary: Let Setw’,n be a category with the objects (A,v)
where A is a set and O< v<1, and the morphisms (A,v) —>
~—> (B,w) mappings from A to B if v<w and with no morphisms
(A,v)—> (B,w) if v>w,

If v<1 then (A,v) 'v{:}d (A,r). Hence, such a (A,v)
is rot meet irreducible and (by [4]) it is not subdirectly
irreducible,

(A,21) is maximal and it is subdirectly irreducible iff
card A£2, Every product of maximal objects in S“IO,'].] is
maximal and every subobject of a maximal object in S“LO,'.[]
is maximal as well. Hence, no object (A,v) with v<1 has a
subdirect representation although for every (A,v) there is
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(A1) & (A,v) maximal,

Example 2. The condition (ii) in Propositiom 1 is ne-
cessary: Indeed, let s‘too be a .catogory with the objects
(A,n) where A is a set and n is a positive integer, and
(1, @,) as the terminal object, and the morphisme f:(A,n)—>
—> (B,m) where £ is a mapping from A to B and n<m.

One can see that every (A,n) is isomorphic with
(A,n + 1) (1,n) and therefore for a subdirectly irreducib-
le (A,n) we have to have card A£1. (On the other hand, any
(A,n) with card A4<1 is subdirectly irreducible.) Hence,
no (A,n) with card A2 has a subdirect representation al-
though every (A,n) is meet irreducible (because R UA is
isomorphic with w, (resp. «, + 1) for card A%71 (card A =
=1)).

Proposition 2. let a semiregular productive (®R,U)
with a two-point cogenerator satisfy the following condi-
tions:

(i) Every object of & has a representation with meet
irreducibles.

(ii) Por every object A there exists an object M&A
which is maximal.,

(iii) PFor every non-maximal meet irreducible B there
exists a subdirectly irreducible D and a @ : B—> D which
cannot be extended to an object E ; B.

Then every object of &R has a subdirect representa-
tion.

Proof. (a) If M is meximal, card UM< 2, then one can

easily see that M is subdirectly irreducible.
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(b) If M is maximal, card UM> 2, C is a cogenerator,
then card UC = 2 and for (w;: M—» C); the system of all
the morphisms from M to C there exists a subobject @w: N>
—» ¢ gefined by Pj& = &je According to (a) M has a sub-

direct representation.

(¢) Let A be non-maximal meet irreducible. According
to (iii) there exists a subdirectly irreducible D and a ¢ :
: B—> D which cannot be extended to an E ,“; A, Iet M&A be
maximal; define w : A—>MxD by pyw =AM, ppw =g
(pu,pn are projections). Then Uw is one-to-one and (see
[4]) there is a subobject decomposition w = «w'e with (u'a.
subobject and ¢: A4A°, By the assumption, A = A’ and « =
= w’ is a subobject. Consequently by (a) and (b) A has a
subdirect representation.

(d) According to (i),(a),(b) and (¢) every object has
a subdirect representation.

Remark. By Proposition 2, every object has a subdi-
rect representation e.g. in the following categories: rela-
tional systems (in particular, directed graphs, symmetrie
graphs), hypergraphs, topological spaces, preordered sets,
partially ordered sets etc.

Example 3. The condition (iii) in Proposition 2 is

necessary. Indeed, define F: Set —> Set as follows:

FA ={XcA|card X = @ 3 v {0,},

and if f: A—> B then define F(f): FA—> FB putting
F(£)(0,) = Og, F(£)(X) = £(X) if card £(X) = @, F(£)(X) =

= 0B otherwise.
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Then the category S(F) (whose objects are couples
(A,r) with A a set and rcFA and whose morphisms (A,r) —
—» (B,s) are mappings satisfying F(f)(r)c s) has a two-
point cogenerator (2,F2), satisfies ki) and (ii) and con-
tains objects with no subdirect representation.

Proof. One can prove (see {6), 4.4) that S(F) has
the following subdirectly irreducibles: (X,¥) with
card X41, (X,FX) with card X42 and (X,FX\{Y}) with
YC¢FX, card (X\Y)£1. An object (X,FX\ {0y} ) with an
infinite X has no subdirect representation (see [61, 7.2).

On the other hand, any object is either maximal - i.e.
(X,FX), or it has a representation with meet irreducibles

(X,r) = /&\»(X,FX \{ut);

“w €
(X,r)< (X,FX) for every X. Thus, the conditions (i) and (ii)
hold (while (iii) does not).
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