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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,3(1980) 

REMARKS ON TOLERANCE SEMIGROUPS 
Karel DRBOHLAV 

Abstract: The paper is devoted to a study of generali­
zed fixed-points in finite tolerance semigroups. 

Key words: Tolerance space, tolerance semigroup, connec­
tedness, p-contractibility, generalized fixed-point. 

Classification: 20M15 

This investigation of tolerance semigroups has been moti­

vated by a wish to find discrete versions to some known and 

deep theorems on topological semigroups.Our theorem 1 is ana­

logous to a theorem of K.H.Hofmannand P.S.Mostert (see C2j,p. 

62,Theorem I ) which reads as follows 

Theorem (H.-M.) Let S be a compact connected semigroup with 

identity and it a compact connected abelian group of automorp­

hisms of S. Then the set of fixed points of A on S is a com­

pact connected subsemigroup which meets the minimal ideal. 

Our theorem 2 resembles the Second fundamental theorem of 

compact semigroups in C2],p. 157. For a short history of tole­

rance structures and for bibliography, especially for that on 

tolerance algebras, see Clj. 

1. Basic definitions and notation. A tolerance t on a set 

X is any reflexive and symmetric binary relation on X. A set X 

together with a tolerance on it is called a tolerance space. 

The transitive closure t of a tolerance t on X is an equivalen­

ce relation on X. If T equals the universal relation on X, the 
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tolerance space X will be called connected. 

Tolerances of different tolerance spaces will mostly be 

denoted by the same symbol t provided this will not give cau­

se to any misunderstanding. Sometimes, if purposeful, Xc will 

denote the underlying set of the tolerance space X. 

Having tolerance spaces X and Y, a tolerance mapping (or 

continuous mapping) f :X—->Y is any mapping f :XC—>YC which 

preserves the tolerance relation. Uiis means that for all a, 

b€X, a t b in X implies f(a) t f(b) in Y. 

^ e cartesian product XxY is defined by (XxY)c = XQXY.-, 

and by the following convention: we set (a,c) t (b,d) in XxY 

if and only if atb in X and ctd in Y. 

The set T(X) of all tolerance mappings X—•> X is* made to 

a tolerance space mostly by taking the following tolerance p 

on T(X): for any ffgtT(X) we set f p g if and only if for all 

a,bcX, a t b implies f(a) t g(b). If T(X) together with p is 

connected, X will be said to be p-contractible. 

Let us have a tolerance space X with a tolerance t. A sub­

set Ac Xc will be called a simplex in X if and only if AxAct. 

We have then a t b f or all a,beA. If f £ T(X) and if (a)ja € A£= 

=-«f (A) s A, the simplex A will be said to be fixed under f. Let 

Fc T(X). Any a£X will be said to be a generalized fixed-point 

of F if and only if there is some simplex A in X fixed under all 

f eF with a^A. (This treatment of fixed-points comes essenti­

ally from [3].) 

A tolerance semi.grPUP S is a compound notion: S is suppos­

ed to be a tolerance space and a semigroup. It is supposed that 

the semigroup operation Sx. S—*S is a tolerance mapping. The 

last condition can be given the following form; if a t b and 

c t d for some a,b,c,d e S, then ac t bd. An automorphism 
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of a tolerance semigroup S is an automorphism of the semi­

group S belonging to T(S). 

2. The main theorem. The purpose of this section is 

to prove the following 

Theorem 1. Let S be a finite connected tolerance se­

migroup with identity element. Let Ji be any group of auto­

morphisms of S. Ihen ^he set K of all generalized fixed-

points of A in S is a connected subsemigroup of S which 

meets the minimal ideal M(S) of S. 

The proof will be carried out in three steps. 

(A) The structure of M(S). Let S be any finite semi­

group, L and R any of its minimal left and right ideals. It 

is well known that LR equals the least ideal M = M(S) of S 

and that RL = LoR = G is a group. Set X = Lnl(S) and Y = 

= R A E ( S ) where E(S) is the set of all idempotents in S. 

Then it is known and easy to prove that X is a left zero se­

migroup, Y a right zero semigroup and that we have a direct 

decomposition 

Now, assume that S is a finite tolerance semigroup. This as­

sumption makes X, G and Y tolerance semigroups (with tole­

rances induced by that of S). Moreover, it is easy to show 

that the above direct decomposition remains true for tole­

rance spaces M, X, G and Y: for x,x'e X, g,g'e G, y,y'cY 

we have (xgy) t (x'g'y') if and only if x t x', g t g', 

y t y'. 

Remark. A complete description of all finite simple 
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tolerance semigroups is an obvious consequence of our con­

siderations. 

The symbols X, G, Y will keep their meanings also in the 

next section. The projection M—> Y coming out of the dir­

ect decomposition of M (and which was shown to be a tole­

rance mapping) will be denoted by 3T . 

(B) OJie p-contractibility of S and M(S). We start by 

observing that a tolerance space S is p-contractible if and 

only if In p c for the identity mapping ^-S —> S and for 

some constant mapping c:S—>S. 

Lemma 1. Let S be a finite connected tolerance semi­

group with a right identity element u. Then Y = RnE(S) is 

p-contractible• 

Proof: For any se S let f3:Y—*• Y be defined by fg(y)= 

= -Jf (ys) where y eY and ar* :M —->Y is the projection. Clear­

ly, fseT(Y). If a t b in S, then fft p ffe in T(Y). Take any 

fixed be Y. As u *t b by connectedness of S it follows that 

f *p f,. But f = ly and ffe is constant. 

Lemma 2. Let S be a finite connected tolerance semi­

group with identity element 1. Then M(S) and S are p-cont­

ractible . 

Proof: % Lemma 1 we get that Y is p-contractible and 

we get that X is p-contractible by a dual statement. 

Next we shall see that G is connected. For any a,b eG we ha­

ve a t b in S and a t a-pa^ t agf.-a^ t b for some a^ 

in S. But we can suppose that all a. belong to G as every a-

can be replaced by ea^e with e being the identity element 

of G. 

- 450 -



Now, G is a group and so every tolerance on G is a con­

gruence relation. As G is connected it is a simplex in S and, 

consequently, G is p-contractible. It follows that M = X x O x 

;<Y is p-contractible. 

For any st S let gs:S —> S be defined by gfl(x) = xs for 

all xeS. Clearly, gseT(S). If a t b in S, then ga P gb 

in T(S). Take any fixed b&H, As 1 t b by connectedness of 

S it follows that g-̂  p gb. But g1 = lg and gb-S—-> M. As M 

is p-contractible, gb P c for some constant c:S—> M. Thus 

1„ p c and S is p-contractible. 

(C) The final proof. In this section we make use of 

the tools and ideas developed in C33. First we want to re­

call, for reader's convenience, the main lines of the proof 

that in a finite p-contractible tolerance space S there is 

always a non-empty simplex A fixed under all infective 

oC e T(S) (see L3l). 

For any xeS set tx siycsjy t xi. Let P be the set of 

all tx (xeS). P is partially ordered by inclusion relation. 

Let D(S).=-iyeS|ty is maximal in P}. If D(S)+-S we continue 
p 

by taking D (S) = D(D(S)) and by repeating this procedure un-
2 

til we get a finite descending chain So D(S)o D (S)o ... 
...oDn(S) = A such that D(A) = A. Now we have 

Lemma 3. D(S) is a retract of S. 

This is shown by proving ho j s ^JXS) w n e r e J:D(S)—>- S is 

the inclusion mapping and h:S—> D(S) is defined as follows: 

if xeD(S),set h(x) = x,- if x£D(S)f set h(x) = any y e D(S) 

with txcty. Let us point out that h is a tolerance mapping: 

assuming x t x', h(x) = y, h(x') = y', we have txcty, tx'c 

c ty', x'e txcty, y t x', ye tx'c ty', y t y'. 
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Lemma 4. D(S) is p-contractible. 

This is easy: lg p c implies (holgOj) p (hocoj) and so 

XD(S) P c'* 

It follows that A = Dn(S) is p-contractible. 

x) Lemma 5. ' All ta(aeA) are equal. A is a simplex in 

S. 

Assume that not all ta (acA) are equal. We have L p 

const. Consequently, there are tolerance mappings f,ge T(A) 

such that (i) tx = tf(x) for all xcA, (ii) there is some 

xeA with tx4£tg(x), (iii) f p g. For the x from (ii) we shall 

prove txcty where y = g(x). Really, take any x'e tx, x' t x. 

As f p g, we conclude f(x') t g(x), f(x') t y, yetf(x') = tx', 

x'e ty. But tx is maximal as D(A) = A, thus tx = ty, a cont­

radiction in view of (ii). 

Remark. Lemmas 3, 4 and 5 come essentially from £31. We 

have made only slight adaptations of the original proofs. 

ft>w we come to the proof of .Theorem 1. We assume that S 

is a finite connected tolerance semigroup with identity ele­

ment 1 and that A is any group of automorphisms of S. We de­

note by K the set of all generalized fixed-points of Jl in S. 

It is clear that the simplex A = l/Hs) is fixed under all 

cc e A, and thus AcK. We shall show that K is connected. 

Choose any x c K. Obviously, there is some simplex A 

fixed under Jl containing xQ. Set A.̂  =4yeD(S))3 x e A
0 with 

txcty J. It is easy to see that A ^ 0 and A^ = oCikj) for all 

oC € A . Moreover, if y,y'e A-̂ , x, x'e AQ, txcty, tx'c ty', 

x) The sets ta (aeA) and all sets of this form in the proof 
are taken in A. 
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then x'e txcty, y t x', yetx'c ty', y t y'l It follows 

that A, is a non-empty simplex fixed under Jl , A-. c D(S). 

The above lines also show that x' t y for all x'e. AQ and for 

all ye A-,. Repeating this construction we obtain non-empty 

simplices A2)Ao,...,A c A fixed under Jl such that A. c 

c DX(S) and such that A.x.Ai+,c t for all i< n. Consequent- t 

ly, there is some yQ€ A with x t yQ in K. K is connected. 

If A , B are simplices in S fixed under Jl , then 

A B is a simplex fixed under Jl . This shows that K is a o o 

subsemigroup. 

M = M(S) is preserved under all cc e Jl . If we start 

the construction of A with M instead of S, we obtain some 

non-empty simplex A^ in M fixed under A . This means that 

A»cK and K meets M. The theorem is proved. 

3. Further result 3. Theorem 1 can be essentiality sup­

plemented by the following 

Statement; Under the assumptions of Theorem 1 there is 

a connected commutative and idempotent subsemigroup C in K 

containing the identity element 1 of S and meeting the ideal 

M(S). 

This follows from the next 

3:heorem 2. Let S be a finite tolerance semigroup. Then 

the following conditions are equivalent: 

(i) for every eeE(S)\ M(S) e is connected with M(S) in S 

(ii) for every eeE(S)\M(S) e is connected with eSe^IUe) 

in eSe 

(iii) for every eeE(S)\M(S) e is connected with SeS\D(e) 

in SeS 
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(iv) for every eeE(S)N- M(S) there is a connected commuta­

tive and idempotent subsemigroup C in S containing e and mee­

ting the ideal M(S). 

Remarks: We say that e is connected with some Xc S if 

and only if te meets X, "tenX4-0. 

For any xe S let J(x) denote the ideal generated by x. 

For reader's convenience we recall that for any ec£(S)f SeS= 

=- J(e), eSe is the set of all xc S with xe * ex = xf H(e) is 

the maximal group in S containing e and D(e) is the set of 

all xc S with J(x) -= J(e). We have H(e)c eSec SeS and D(e)c 

c SeS. 

Proof; (iv) implies (i); obvious. 

(i) implies (ii): Take ecE(S)\ M(S). We have e t m in S 

for some meM(S). It follows that e = eJ t erne in eSe and it 

remains to prove that eme£H(e)« But erne € H(e)n M(S) implies 

H(e)nM(S)40 and eeM(S), a contradiction. 

(ii) implies (iv): Take eeE(S)\M(S). We have e t x in eSe 

for some xc eSe\H(e). As H(e) is a group and, consequentlyf 

t induces a congruence relation on H(e), we can suppose that 

e t yf y t x for some ycH(e). But then e = (y y) t (y nx) 

and y~ xceSe\H(e). Hence, making a better choice of xf we 

can suppose that e t xf xeeSe^H(e). Consequentlyf x t x 

and, in general, xn t x*1 for all n - 1,2,3,••• • There is 

some k such that j * x e E(S). As x^H(e) we have j4=e. As 

ej - je = j we conclude that e>j. From e t x we get e t x , 

e t j. 

Repeating this procedure we obtain a descending chain in 

E(S) e>j 1> j2> d3> ... with j n t j n + 1 (n • l,2f3f...) 

which must terminate with some J8cM(S). We set C * 
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(iii) implies (i): Take any eeE(S)\M(S). Then ecD(e) and 

e ~t a for some ae J(e)\ D(e). From e T a follows easily 

en t an for all n = 1,2,3,... • There is some k such that 

a = e1GE(S). We have e ~t e1 and J(e1) c J(a)$J(e). 

If e,£ M(S), we continue this procedure and we get finally a 

sequence e^^-eg,... in E(S) with en t en+-jL (n =- 1,2,3,...). 

As J(e)4: J(e^)^ J(e2)!^ ... the sequence must be finite. We 

have some ea£M(S). 

(i) implies (iii): Take e€E(S)\ M(S). Then e l m in S for 
p .... 

some mcM(S). It follows that e t em and e t em in SeS. 

We have to prove yet em^D(e). But emcD(e) implies J(em) = 

= J(e), ec J(em)c M(S), a contradiction. 

Remark. In the condition (iv) of Theorem 2 the connec­

ted semilattice C can be replaced by a connected chain as 

shown in the proof of (ii)s=^ (iv). ftie same can be remarked 

about the statement before Theorem 2. As to the proof of this 

statement we observe that le K and that 1 is connected in K 

with M(K). It follows easily that K satisfies the condition 

(i) of Theorem 2 and, consequently, condition (iv). 
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