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ON BIREGULAR AND REGULAR RINGS
Roger YUE CHI MING

. Abstract: A generalization of injectivity, noted Tp-
injectivity, is introduced to study biregular rings and von
Neumann regular rings,

. Key words: Biregular, von Neumann regular, Tp-injective,
p-injective, V-rings.

Classification: 16415, 16A30, 16A32, 16A52

Throughout, A represents an associative ring with iden-
tity and A-modulss are unitary. A left A-module M is called
p-injective if, for any principal left ideal P of A and any
left A-homcrorphism g:P—>M, there exists ye M such that
g(b) = by for all beP. In {107 through [14], left p-injec-
tive rings and p-injective modules are considered. Semi-group
analogues of ring results on injectivity and p-injectivity
are investigated in [6) and L7]. Since a few years, biregular
rings, regular rings, V-rings and their generalizations are
studied by various authors (cf. for example, the bibliography
of [31,1[4)). The purpose of this note is to study biregular
and regular V-rings in terms of the following generalization

of injectivity:

Definition. A left A-module M is called Tp-injective
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(two-sided ideal p«injective) if, for any ideal I of A, ac A,v |
any left A-homomorphism g:Ias —> M, there exists ye M such

that g(ta) = tay for all tel. (An ideal of A will always me-
an a two-sided ideal.)

Obviously, Tp-injectivity implies p-injectivity. Note
that if A is a simple ring, then a left A-module is Tp-injec-
tive iff it is p-injective. (Simple aelf-inﬁectin regulap
rings need not be Artinian (K.R. Goodonrl).)

. Write "A satisfies (X )" if every proper ideal of A is

a Tp-injective left A-iodnle. Recall that A is biregular if,
for any ae A, the ideal AsA is generated by a centrai idempo-
tent. As usual, ‘

(1) A is called a left V-ring if every simple left A-module
is injective; .
(2) A is fully left idempotent if every left ideal is idem-
potent;

(3) A is reduced if it contains no non»zero nilpotent element.
~(4) A is ELT(MELT) i:f every essential (maximal essential)
left ideal is an ideal of A [12].

We first derive a few properties of rings satisfying (x ).

Proposition 1. let A satisfy (% ). Then

(1) For any factor ring B of A, every ideal of B is ge-
nerated by a central idempotent. In particular, A is a bire-
gular fully right idempotent rigg‘ ;

(2) Any prime factor ring of A is simple.

Proof. (1) For the first part, it is sufficient to pro-
ve that every ideal T of A is geﬂerated by a central idempo-
tent. If i:T—» T is the identical map, there exists ueT
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such that i(t) = tu for all t¢ T. In particular, u = j(u) =
= u2 and T = Au. Thus the left singular ideal and the Jacob-
son radical of A are both zero. Therefore Ak is semi-prime
which implies that u is a central idempotent, whence A is bi-
regular. Now for any acA, if AsA = A, then s e (aA)Z, If
Aad#$A, j:As —> Aak ‘the canonical injection, then thers ex- .
ists be AaA such that a = j(a) = abe (an)? again, which pro-
ves that A is fully right idempotent.

(2) follows from the fact that any non-zero ideal in a
prime ring is left and right essential.

Corollary 1.1. If A satisfies (%), the centre of A is
yon Neumann regular.

Applying (1, Theorem 1] to Proposition 1, we get

Corollary 1.2. If A is a P.I. ring satisfying (xk ), then
A is a reguler left and right V-ring.

Corollary 1.3. If A is an indecomposable ring satisfy-
ing (%), then A is simple.

Corollary 1.4. Let A satisfy (%), Then (1) A is regu-

lar iff every primitive factor ring of A is regular; (2) If
every primitive factor ring of A js MELT, then A is a unit-

regular left and right V-ring whose prime factor yings sre
Artinisn.

Proof. (1) Apply L[4, Theorem 1.28] to Proposition 1(2),
(2) Every prime factor ring of A is MELT simple and hence
Artinian. Then A is regular by (1) which implies A unit-regu-
lar [ 4, Theorem 6.101. A is a left and right V-ring by L3,
Theorem 14].
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Corollary 1.5. let A be a directly finite left self=-
injective ring satisfying (% ). Then every prime factor ring
of A is simple left self-injective.

(Apply [4, Theorem 9.32].)

Since a biregular ring is fully idempotent and any fac-
tor ring of a MELT ring is MELT, [ 4, Theorem 1,18 and Theo-
rem 6,101 imply

Proposition 2. Iet A be a MELT biregular ring. Then A
is a unit-regular left and right V-ring whose prime factor

rings are Artinian.

Corollary 2.1. If A is an ELT fully idempotent ring who-

8e primitive factor rings are biregular, then A is a unit-re-

gular left and right V-ring.
Proof. Any prime factor ring B of A is ELT fully idempo-~

tent which implies B primitive and hence Artinian by Proposi-

tion 2.

Rings whose left ideals are quasi-injective (called left
q-rings) may be characterized as ELT left self-injective
rings (5, Theorem 2.3). For left self-injective rings in ge-
neral, non~-zero ideals need not contain non-zero central idem-

potents. However, we have

Remark 1. Let A be a left or right self-injective regu-
lar ring such that any prime factor ring is MELT. Then A is
left and right self-injective biregular. Consequently, semi-

prime left gq-rings are right self-injective biregular.

Remark 2. A left and right V-ring whose prime factor

rings are MELT is a unit-regular ring such that the maximal
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left quotient ring coincides with the right one.

Let us now characterize rings whese left modules are Tp-
injective. Following [8), & left A-module M is called semi-
simple if the intersection of all maximel left submodules is
zero. A is semi-simple Artinian iff every semi-simple left A-

module is injective [8, Theorem 3.2].

.

Theorem 3. The following conditions are equivalent for
a ring A:
(1) Every left A-module is Tp-injective;

(2) Every semi-simple left A-module is Tp-injective;

(3) Every essential left ideal of A ig Tp-injcctive;

(4) A is a regular ring satisfying (x).

Proof. Obviously, (1) implies (2).

Agssume (2), Then every semi-sizple left A-module is p-
injective which implies that A is ven Feumsnn regular, whence
every left ideal of A is semi-simple. Therefore (2) implies
(3).

Assume (3). Since every essential left ideal is p-injec-
tive, then A is regular. If I is a proper ideal of A, there
exists a complement left ideal C such that I ® C is an essen-
tial left ideal. Since a direct summand of a Tp-injective left
A-module is Tp-injective, then REL Tp-injective and (3) im-
plies (4).

Assume (4). Every ideal of A is a principal left ideal
by Proposition f. Then every left A-module, being p-injective,

is Tp-injective which shows that (4) implies (1).

Corollary 3.1. If every ideal of A is generated by an

element, ther A is regular biregular iff every left A-module
is Tp-injective.
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Rings whose left ideals not isomorphic to AA are qua-
si-injective (resp. p-injective), noted wq (reup. WP) rings,
are studied in [9]) and [13). Now call A a WIP ring (weak Tp-
injective) if every left ideal not isomorphic to ‘A is Tp-
injective. Simple regular rings and left principal ideal do-
mains (written PID) are examples of WIP rings.

Since any ideal which is a Tp-injective left A-module
is a direct sumand of Ak the next lemma then follows from
[13, Lemma 1.1].

lemma 4. If A is @ WIP ring, then A is semi-prime with
p-injective left socle such that any finitely generated left
ideal or ideal of A is a principal projective left ideal.

Applying the proof of [13, Proposition 1.9], Propositi-
on 1, Theorem 3 and lLemma 4, we get

Proposition 5. let A be a WIP ring satisfying any one
of the following conditions:
(1) A contains a central sero-divisar;

(2) There exists a proper ideal.I such that A/I is g
regular ring;

(3) A is a direct sum of two left ideals which are of
infinite left Goldie dimension.

Then A is a reguler ring whose left A-modules are Tp-
injective.

Proposition 6. e follow conditions are equivalent:

(1) A is either @ left duo left PID or semi-simple Ar-
tinian;

(2) A is an ELT, WTP ring.
Proof. Obviously, (1) implies (2).
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Assume (2). By lemma 4, every essential left ideal is
principal which implies that A is a principal left ideal ring,
Then ary left ideal not isomorphic to A‘ is injective. In par-
ticular, A is a wg-ring which implies that A is either a left
PID or strongly regulsr left self-injective or has non-zero
socle [9], If A is a left PID, then any non-zero left ideal
is essential which implies A left duo. If A is left self-in-
Jjective, then every left ideal is injective which implies A
semi-simple Artinian. Finally, if A has non-zero socle, then

A is Artinien by [9, lemma 1.5]. Thus (2) implies (1).

After considering regular rings satisfying (x ), we now
look at WP-rimgs satisfying (x).

Proposition 7. let A be a WP-ring satisfying (x ). Then
A is & WTP ring which is either simple or regular.

Prouf. Apply (13, Lemma 1.3] to Proposition ' and Corol-

lary 1.3.

If A is fully right idempotent, then ‘A/T is flat for any
ideal T of A. Lemma 4 then implies

Remark 3. If A is a WIP fully right idempotent ring, then
every ideal of A is generated by a central idempotert. In par-
ticular, A is biregular.

We now characterize semi-simple Artinian rings in terms
of WIP rings and rings satisfying (). ALD (almost left duo)
rings are studied in L[11] and [14].

Theorem 8. The following conditioms are equivalent:
(1) A is semi-simple Artinian;
(2) Every essential left ideal of A is gquasi-injective and
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Tp-injective;

(3 is a left q-ring satisfying (x%);

(4) is a MELT ring satisfying (x);

(5) is WTP_ring with essential left sccls;

(6) is_a MELT, WIP fully right idempotent ring;
(7) is an ALD, WIP ring with non-zero socle.
oof., (1) implies (2) and (5) evidently.

e e

Assume (2). Ther arny left ideal (being a direct summand

>

T > > >

of an essential left ideal) is quasi-injective and Tp-injecti-
ve which shows that (2) implies (3).

(3) implies (4) by [5, Theorem 2,31.

Assume (4). If L is a proper essential left ideal, M a ma-
ximal loft ideal containing L, then A" is Tp-injective which
implies A“ a direct summand cf AA. This contradictiom proves
that any left ideal is & direct summand of LA and (4) implies
(1),

dagume (%), Let S be the left socle of A, Tf S+A, since
S is an ideal, s is a direct summend of ,A which ccntralicts
S ensential., Thus S = A and (5) implics (€).

(6) iwplies (7) by Remerk 3.

(7) implies (1) by [14, Lemma 1,1], Lemma 4 end Theorem

10 below,

Call A left Tp-injective if A is Tp-injective.

Theorem 9. The following conditions are equivalent:
(1) A is a left and right self-injective sirongly regu-~

lar ring;
(2) A is a_left non-singular le ft Tp-injective rimg such
that every couwplement left ideal is sn ideal;
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(3) A is a reduced left Tp-injective ring.

Proof. (1) implies (2) obviously.

(2) implies (3) by (10, Lemma 11.

Assume (3). Since A is reduced left p-injective, then A

is strongly regular by [10, Theorem 1]. Therefore A is left
self-injective and since A is strongly regular, then A is right
self-injective. Thus (3) implies (1).

{14, Lemma 1.1) then implies

Corollary 9.1. The following conditions sre equivalent:
(1) A is either semi-simple Artinian or left and right self-
injective strongly regular;
(2) A is a semi-prime ALD left Tp-injective ring;
(3) A is a semi-prime ALD right Tp-injective ring.

Theorem 10. The following conditiome gre equivalent:
(1) A is a finite direct sum of division rings;
(2) Every ideal of A is s Tp-injective left A-module and eve-

ry complement left idesl is an idegl;
(3) A is a reduced WIP ring with non-zero socle;

(4) A is a reduced WIP ring contai a non-gero p-injective
left ideal.

Proof. (1) implies (2) evidently.

Assume (2). By Proposition t and Theorem 9, A is strongly
regular. Then every left ideal is injective which implies A
semi-simple Artinian. Since A is reduced, then (2) implies (3).

(3) implies (4) by [13, Proposition 1.4].

(4) implies (1) by L13, Corollary 1.6] and Remark 3.

We now consider Tp-injectivity in connection with conti-
nuous regular and Baer regular rings. Recall that (1) A is
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left continuous (in the sense of Y. Utumi) if (a) every left
ideal isomorphic to a direct summand of AA is itself a direct
summand of ,A and (b) every complement left ideal is a direct
summand of ‘A; (2) A is a Baer ring if every left annihila-
tor ideal is a direct summand of ,A; (3) A is quasi-Baer if
the right annihilator of every ideal is a direct summand of

‘Ao

Proposi tion 11. (1) If A is a semi-prime EBLT ring whose
complement left ideals are Tp-injective, then A is left conti-
nuous regular,

(2) If A is en RLT ring whose left annihilatar ideals

are Tp-injective, then A is a Baer regular ring.
Proof. (1) If C is a complement left ideal of A, D a

left ideal such that L = C@® D is an essential left ideal, h:
2L—> C the natural projection, then there exists ce C such
that h(u) = uc for all ue L. In particular, ¢ = h(c) = c2 and
C = Ac is a direct summand of AA. Since A is left p-injective,
then any left ideal isomorphic to a direct summand of ‘A is
principal p-injective and therefore a direct summand of ‘A.
This proves A left continuous. Now A semi~prime RLT implies

A left non-singular whence A is le ft continuous regular.

(2) is similarly proved.
The proof of Proposition 11 yields

Remark 4. If A is a semi-prime ELT ring whose proper
complement left ideals are Tp-injective, then A is either a

left duo left Ore domaim or a left continuous regular ring.

Looking back at Proposition 1, we see that a ring satis-
fying (% ) is quasi-Baer. Also, if A antisfies (X ) and A =
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= B® C, where B, C are ideals of A, then any ideal of B is
generated by a central idempotent. [2, Theorem 3] and [10, The-
orem 11 then yield

Proposition 12, If A is a left or right p-injective ring
satisfying (% ), then A = B@® C, where B is a finite direct sum
of division rings and C is the minimal direct summand of A con-

taining the nilpotent elements of A.

Our last remark will follow from [9, Theorem 2.7] and The-

orem 8.

Remark 5. A wq-ring satisfying (% ) is either semi-simple

Artinian or a simple left PID.

References

[1) ARMENDARIZ E.P. and FISHER J.W.: Regular P.I,-rings, Proc.
Amer. Math. Soc. 39(1973),247-251.

(2] BIRKENMEIER G.F.: Baer rings and quasi-continuous rings
have a MDSN, Pac. J. Math. (to appear).

L3] FISHER J.W.: Von Neumann regular rings versus V-rings,
Ring-Theory: Proc. Oklehoma Conference Lecture
notes n- 7, Dekker (New York)(1974), 101-119,

[4] GOODEARL K.R,: Von Neumann regular rings, Monographs and
studies in Math, 4, Pitman, London-San Francisco-
Melbourne (1979).

[5) JAIN S.K., MOHAMED S.H. and SINGH S.: Rings in which eve-
ry right ideal is quasi-injective, Pac. J. Math.
31(t969), 73-79.

[6] JOHNSON C.S. and Mc MORRIS F.R.: Completely cyclic injec-
tive semi-lattices, Proc. Amer. Math, Soc. 32
(3972), 385-388.

{7] IUEDEMAN J.K., Mc MORRIS F.R. and SIM S.K.: Semi-groups
for which every irreducible S-system is injecti-
ve, Comment. Math. Univ, Carolinae 19(1978),

- .

(8] MICHLER G. and VILLAMAYOR D.E.: On rings whose simple mo-
dules are injective, J. Algebra 25(1973), 185-201,

L9]1 MOHAMED S. and SINGH S,: Weak q-rings, Canad. J. Math.
29(1977), 687-695.

- 605 -



{10] YUE CHI MING R,: On annihilator ideals, Math. J. Oka-
yama Univ. 19(1976), 51-53.

[11) YUER CHI MING R.,: On regular rings and V-rings, Monats-
hefte fir Math. 88(1979), 335-344.

{12) YUE CHI MING R,: On V-rings and prime rings, J. Algebra
62(1980), 13-20.

[13] YUE CHI MING R,: Von Neumann regularity and weak p-in-
jectivity, Yokohams Math. J. 28(1980), 61-70.

L{14] YUE CHI MING R,: On von Neumann regular rings, V, Math.
J. Okayama Univ, 22(1980), 151-160.

Université Paris VII, U.E.R. de Mathématiques, 2, Place Jus-
sieu, 75251 Paris Cedex 05, France

(Oblatum 21.4. 1981)

- 606 -



		webmaster@dml.cz
	2012-04-28T07:20:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




