
Commentationes Mathematicae Universitatis Carolinae

Pierre-Louis Lions; Jindřich Nečas; Ivan Netuka
A Liouville theorem for nonlinear elliptic systems with isotropic nonlinearities

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 4, 645--655

Persistent URL: http://dml.cz/dmlcz/106184

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106184
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERblTATIS CAROLINAE 
23.4 (1982) 

A LIOUVILLE THEOREM FOR NONLINEAR ELLIPTIC SYSTEMS 
WITH ISOTROPIC NONLINEARITIES 

P. L. LIONS, J. NECAS and I. NETUKA 

Abstract: We show that if u *(u-,,...,u) is a solution with 

bounded gradient in lRn of an elliptic system of the form: 

" 4x. (aij( t V ul 2 ) T I T )« 0, 1 6 oc 6 m, 
l 7j 

then each u« is an affine function on {Rn. 
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I Introduction: 

We consider here a nonlinear second-order elliptic system of 

the following form: 

(1) - ̂  (ai;j(|Vul
2) -y^ ) * 0 in |Bf\ u * ^ , . . . ^ ) , 

3 1 * * 6 m. 

Throughout sll the paper we will assume that a.. € Cx(IR) (for 

1 -* i,j ̂  n) and that (1) is very strongly elliptic in the sense 

that for every \ and t t 0 

(2) a^C.-yl2) £ £ • 2 -^(ty2) £-$£#;>o 

We orove below that if u has a bounded gradient on ff*n, then 
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each component ly of u is affine on fft
n
. 

This result is clearly a Liouville type theorem* Let us ex

plain now how this result is related to various facts from nonli

near second-order elliptic systems theory. To this end,let us con

sider a general second order elliptic system: 

(J) Э yŁ- (a?(x,u,,Vu)) + a*(x,u,Vu) - f*(x) in Л 

where i -» «c £ m, u » ( u ^ , . . . , , ^ ) and XX is a bounded domain in 

!Hn. The very strong ellipticity of the system (3) is expressed 

by the following condition: 

Of course, when (3) reduces to (1), (4) is nothing else than (2). 

Assuming that u is a Lipschitz solution of (3), one may ask 

the following natural (and fundamental) question: is u of class 

(T or evem C1,/u' (for some ^ue(0,l)) ? 

As shown by M.Giequinta and J.NeSae [2] , this regularity 

question turns out to be, in some sense, equivalent to the fol

lowing Liouville type condition: (3) is said to satisfy the Liou-

vdllt condition (in short L( 1R11)) provided the following implica

tion holds: for all x°€ XI, i € IB*, if • » ( •^•••>*a) i» a so

lution with bounded gradient of 

(3') 
3 ,*, -£-- (•

1
(ж°, $ ,Vт)) » 0 in Щ

n
, 

then each • is affine on IR
n
* More precisely, in [2j it is pro

ved that if the system (3) (where we assume (4) with a*, 

a*c C*(Ii x R* x l R
m
) satisfies L( ffi

n
) and p > n, then for every 

V > 0 and every compact, set K a £t there is c ( y fK) < «o such 

that 
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(5) llU«V.<?«(K) *Cl*'K)' - * « - » . . 

with <*. =- 1 - (n/p)f whenever f^e Lp(iX) and u is a Lipschitz 

solution of (3) such that 

[l1'"^)]* CLp(il)]m 

Conversely, in some sense, L( IR11) is a consequence of regularity 

results of the form (5) - see J.Hecas ][6]f[7] or M.Oisquinta (l] # 

Therefore the Liouville result we prove in this paper imme

diately yields the C »/*• regularity for special systems of form: 

(6) - ^ (ai3.(xfuflVul
2)5^) + .*<x fu f Vu> » f"(x) in SI 

x 3 

(for 1 *«t » ») . At this point, we want to point out that this re

gularity result (a consequence of our result and an equivalent 

when a,, depend on IVul only) was established by P.A.Ivert [4] 

in a generalization of d»eep results due to K.Uhlenbeck [8 ] • 

Thus, in some sense, the result we present here is not new and 

could be derived from Uhlenbeck - Ivert results. On the other 

hand, our method of proof is quite different from those of [ 4 ^ 

[8] and, we believe, much simpler. Let us also mention that it is 

straightforward to adapt our method of proof to show directly the 

C 'J1 regularity result (looking, roughly speaking, at little 

balls instead of large balls). 

Let us conclude this introduction by a few words on our 

method of proof. In section II below, we present a general result 

on nonlinear elliptic systems which implies in particular that, 

if we denote by ai = Vu f we have: there is € 0 > 0 such that if 

$«o(B) < c 0i then for every f «(OfR) 

(7) $ w ( f ) * C0 §co(R) 
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where C depends only on l| a) 11 and where for a vector 

valued function, g we dbenote: 

? B ? 
(g)

9
 = (1/1 B

?
 |) / g(x)dx. 

B

? 

By an easy use of Poincare* inequality, we see that in order to 

conclude (using(7)) we just need to show that co-s^u has the so-

-called Saint-Venant property: 

(8) Urn IT
11
"*"

2
 f iVcu(x)I

2
 dx =- 0 . 

The main idea used to prove (7) goes back to a fundamental lemaa 

of E.Giusti - see e.g* [2] . 

Next, in section III, we state and prove a Liouville type 

theorem* This is done by remarking - following [4],[8] - that 

lVul • w satisfies: 

(9) - ̂ - (A
І;J
 | f т ) + ci ІD

2
ul

2 i 0 iп |R
n 

H 
for some «C > 0, and for some uniformly elliptic coefficients A*.. 

Using this inequality end a Harnack type inequality proved in 

D.Gilbarg and N.S.Trudinger [3] (for example), we show that (8) 

holds end thus to is constant. 

The authors wish to thank P.A.Ivert for useful discussions 

and' for a careful reading of our manuscript. 

II A general result on quasi-linear elliptic systems? 

In this section we consider 8 solution <u= (CO. >•••, *0
N
) of 
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(10) _ .-!-. [AjJ(« ) -j-^]- 0 in (Rn, *-l,...,H, 

where A ^ are continuous on IRm and where the ellipticity con-
-*v 

diticm 

(11) -*iJ<*>?tfS>0 a * * ? ' 0 

holds. 

Theorem II. 1: Let R > 0, let a) be a bounded solution of (10) 

in (lr(B|J) and let us assume that (11) holds. We denote 

A*> = M cu II ^ . Then there exist E A > 0, Crt > 0 such that the 

following statement holds: 

if $«,»> * e 2 , 

then £ (^) ̂  CQ $co(R) 

whenever £e (0,R). In addition t0» CQ depend only on p . and on 

the ellipticity constants in (11). 

Before giving the proof of Theorem II. 1, let us mention the 

Corollary IX.lr Let «j be a bounded solution of (10) in 

(H^0C(ffi
n))N satisfying the Saint-Venant property 

lim R~n+2 J i^a^(x)l2 dx -- 0, 
R--*oo _ 

®R 

and let us assume that (11) holds. Then GO is a constant vector. 

Proof: Observe that we have by Poineare* inequality: 

(12) R~n [ico(x) - ( O J ) R | 2 dx 6 C lR"
n + 2 Jl?o>(x)| 2 dx. 

*R % 

(Here and below c,,c2f..# denote various positive contents inde

pendent of R,< .o fu.) ThuB we see that (8) implies: lim 4L(R) x 0. 
R-*oox 

Therefore by Theorem II.l, $<4J( f ) = 0 fbr all G> > 0 and the 
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proof i s complete. 

Proof of Theorem I I . 1: Fir at of a l l , in view of (11), there e x i s t s 

y > 0 such that for every f and | f I * AJL we have 

Let ue alao reca l l that i t i s known (eee e . g . £ 2 p that there 

ex i s t s c 2 ( * c 2 ^ t y )) such that we have: 

(13) ^cuC^) ^ c 2 T 2 . ^ ( 1 ) , 0 < ^ H , 

i f <o i s a solution of the system: 

" -TTi^&V-Tfi > *Q i n % 

where I \ \ & A, . 

Next, let t 6 (0,1). We are firet going to prove that there 

exist € Q « to(A$^fV)>0 euch that 

(H) & (X ) & 2 c ?t
2 <b (1) 

where co solves (10) and satisfies: WcoW ^ & M « $A,(1) * €? • 

ifca,) ^ x<u ° 
Let ua argue by contradiction and let us thus assume that the

re exists a sequence f^*1),*-** °? solutions of (10) satisfying: 

(15) 'l*n»Lo.(jV V ' f - > ( 1 ) l 1 / 2 - £ n - * ° . 
$wn(t)>2c2-r

2
en. 

To simplify notations, we w i l l use indifferently the notations 

§ n(l ) or $ ( < > A t ) • We then s e t : <rn * ^ [<un - (co11)1 ] • 
co n 

Obviously we have: 

(16) ( |<rn(x)[2dx = I j $ (&n
9X) > 2 c 2 t 2 ; 
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Without loss of generality we msy assume that: 

6n *6~ weakly in (L 2^))*, *n<r
n » 0 in(L2(B1))

11 

and a•e•, 

for some $*e (L2(RL))H . In ad<Jitioxi;in wiew of (16): § f f ( l ) * l . 

Furthermore, reca l l ing that we have: 

o > n - e n 6r n • (wn>1, II «unH U , 
n L 0 0 ^ ) < 

we see that |(oin)M -=£<. and <un - (cu11)1—> 0 a.e. Since we 

may assume without loss of generality that (con) —•> f ( Irjl -£c)f 

we finally deduce: c*Jn—> P , a#e# • 

Rext, we obtain from (16) and (17): 

(18) / ( VfTn(y)|2 dy -= C(k) for ke(0,l), 

\ 

thus we m8y suppose that 6n—> 6" weakly in (Hr(B^)) (for all 

k < 1). Thus, passing to the limit in (17), we get: 

--jfW (Jl§<$>4lT> =0 in % . 
•*• u 

In add i t ion,since 6/
n •—> tf in (L2(Bk)) ! l (for a l l k < 1 ) , we 

deduce from (16) r { ( r f H - 2 c 2 T 2 ^ 2c2 T
2 | ( <T f l) . This 

contradicts (13) and4 the contradiction shows our claim. 

Let us choose now ? € ( 0 , 1 ) sat is fy ing: 2 c 2 * -* 1 . Given 

^ 6 ( 0 , 1 ) , l e t k ^ 0 be the integer such that: 1 k + 1 £ f < T k . 

Now, i f w solves (10) and. s a t i s f i e s : (la; l| &u% $ , » ( ! ) - £ ? , 
L^B-) C **> ° * 

we have in view of (14)J 

t * ? - n f u - ( a ) ) < ! 2 a i M ? / X k ) n f n Jlco-(a>f|2 dx -̂  

в ţ 
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i ( t k ) " n ( " . " - ( t u ^ V a x i C C k ) - n { |«o - ( a , ? * | 2 d x 6 

®? v 

- J I w - ( a ; ) 1 1 2 dx; 

that i s , we proved: <j><^? ) ^ £ ~n $ t u ^ # 

The proof of Theorem I I . 1 i s eas i ly completed by considering 

the function w (x) » cu ( x / R ) . 

Remark I I . 1 : We now show how the preceding resu l t s are related 

«?oc ( 1 R n ^ m 

(1) then, for 1 * k * n, gx'*' s a t i s f i e s 

to the system (1): inđeeđ f i f u€(H? (IRn))m i s a эolutioю of 

k 

rц KîíV«>Â,íí_J >1 - ° in lвП. - ć" é -
a 

where A ^ ( V u ) • . ^ ( I V u l 2 ) J , ^ + 2 _ ' ( l V u I 2 ) ^ ^ A . 

Thus OJ» V u satisfies a system of the form (ID) and (11) is 

a consequence of (2). 

l U The main result; 

Let u * (u^, • • • ,1*̂ ) be a solution of (1): 

• TiT ( 8ij ( l V u l 2 )"3¥: ) s ° in ^n» 1 k * " *• 

Theorem 111.1: We assume the ellipticity condition (2) and 

V u 6 (L°°( IB*1))™1. Then each component u^ of u is affine on 

tfin. 

Proof: Standard arguments yield ueW 2» 2( IB11) j cf#[7] or [l] . 

In view of the results of the preceding section and of Remark II.1, 

it is enough to show: 

(19) lim R"n+2 f | D 2 u | 2 dx « 0. 
R-*co i 
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In order to prove (19), we first observe that an easy com

putation yields: 

-*TE- [^^^-^.(IVul2)]^,.-^,-^- • 

(20) 2 .x2 
, 3u^ **& 3 Up(, 9 ug, 

+ 2 a i - 5 ^ dx d 5 x i 3 x B 9 x d 3 x 8
 = 0 • 

« »-, 3 Unt <) u_ 
where ^ ( V u ) = | a i j ( IV u l 2 ) + a ^ l V u l 2 ) - ^ ^ 

In view of (2 ) , we eee that (for* more de ta i l s , s ee [4]) 

(21) 3 y > o , V^etH11, A i ; j (Vu(x)) t i ! d
 i v M l 2 • 

{ A j . t V u d ) ) A i ; 5 ( V u ( x ) ) ) 1 / 2 4 e .e . inltf 1 

and (20) implies: 

(22) . ^ _ (Ai.(V«) - j ^ ( W U \ 2 ) ) + « .D2^2 * ° i n ^ 
i 3 

for some oc > O. We denote M » II I Vul 2 II _ 
L^dB 1 1). 

We are now going to prove: 

(23) *-n+2 f U 2 ^ 2 * * * c3^"n J <*-!Vul2)dx. 
BR/2 B2E 

To this end we introduce %e H~ (B2R)/the solution of: 

(24) - 4 ^ (A., -|X ) « -Jj- in B2R . 

Standard result** yield: ̂  * 0 in B ^ and 

(25) ll*Y |l ̂  ^ c infess ^ c - > 0 . 
L°Ä(B2R) %/2 
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Then multiplying (22) by .|2 8nd using (24), (25), we deduce: 

Cg [ ii-AiOc)!2 dx ̂  f A x j | i l ^ L - (H-lVu|2) dx ̂  

^ 2 B2H 

^ 2 j ij, i£ (*-|tful2) dx - 2 J A., |i- ||- (M-tVu|
2)dx 

n R T5 i 3 

**2R a2R 

and this yields: 

f lD2u(x)I2dx '--J- J (M - 1 7 u l 2 ) d x 

%/; 2 '2R 

and (23) is proved. 

To conclude, we see that (19) follows from (23), applying 

the following lemma to w * IVul 2 , oC.j.(x) s Ai;j.(Vu(x)). 

Lemma III.l: Let w e n^QC( \Rn) n L°° ( lRn) satisfy: 

- A : ̂ i^x>"fe>60 -» '*n 
«*• J 

where <*£-;€ L°°( lBn) satisfy: 

K j w «i3-<*>}1/2 6 V . ««<-> fi fa * vl^i2 v 5 . i*. 

a . e . i n IR11 

for some y > 0. If M » sup ess wf then we have: 
lRn 

(26) lim (1/lELl) f w(x)dx * M. 

•— 4 
Proof: This lemma is proved by the use of a weak Harnack. inequali

ty (cf.[3}, for example) which implies: 

(27) R"tt j z(x) dx -* c^inf ess z 
B2R 
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with z • If - w. Now if we let B—>oo, we obtain (26) since 

inf ess z —-> inf ess z = 0; and z -* 0 a.e.in Rn. 

H tRn 
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