Commentationes Mathematicae Universitatis Caroline

Pierre-Louis Lions; Jindřich Nečas; Ivan Netuka

A Liouville theorem for nonlinear elliptic systems with isotropic nonlinearities

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 4, 645--655

Persistent URL: http://dml.cz/dmlcz/106184

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A LIOUVILLE THEOREM FOR NONLINEAR ELLIPTIC SYSTEMS
 WITH ISOTROPIC NONLINEARITIES
 P. L. LIONS, J. NEČAS and I. NETUKA

Abstract: We show that if $u=\left(u_{1}, \ldots, u_{m}\right)$ is a solution with bounded gradient in \mathbb{R}^{n} of an elliptic system of the form:

$$
-\frac{\partial}{\partial x_{i}}\left(a_{i j}\left(|\nabla u|^{2}\right) \frac{\partial u_{\alpha}}{\partial x_{j}}\right)=0,1 \leq \alpha \leq m,
$$

then each u_{∞} is an affine function on \mathbb{R}^{n}.
Kev words: elliptic systems, Liouville theorem, regularity, nernack inequality.

AMS: Primery 35J60, 35D10,
Secondary 35G20

I Introduction:

We consider here a nonlinear second-order elliptic system of the following form:
(1) $-\frac{\partial}{\partial x_{i}}\left(a_{i j}\left(|\nabla u|^{2}\right) \frac{\partial u_{\alpha}}{\partial x_{j}}\right)=0$ in $\mid R^{n}, u=\left(u_{1}, \ldots, u_{m}\right)$, $1 \leq \alpha \leq m$.

Throughout all the paper we will assume that $a_{i j} \in c^{1}(I R)$ (for $1 \leq i, j \leq n$) and that (1) is very strongly elliptic in the sense that for every γ and $\xi \neq 0$

$$
\begin{equation*}
a_{i j}\left(|y|^{2}\right) \xi_{i}^{\alpha} \xi_{j}^{\alpha}+2 a_{i k}^{\prime}\left(|y|^{2}\right) \eta_{i}^{\alpha} \eta_{j}^{\beta} \xi_{i}^{\alpha} \xi_{j}^{\beta}>0 \tag{2}
\end{equation*}
$$

We prove below that if u has a bounded gradient on \mathbb{R}^{n}, then
each component u_{α} of u is affine on \mathbb{R}^{n}.
This result is clearly Liouville type theorem. Let us explain now how this reault is related to various facts from nonlinear second-order elliptic systems theory. To this end,let us consider a general second order elliptic system:

$$
\begin{equation*}
-\frac{\partial}{\partial x_{i}}\left(a_{i}^{\alpha}(x, u, \nabla u)\right)+a^{\alpha}(x, u, \nabla u)=f^{\alpha}(x) \text { in } \Omega \tag{3}
\end{equation*}
$$

Where $1 \leq \alpha \leq m, u=\left(u_{1}, \ldots, u_{m}\right)$ and Ω is a bounded domain in \mathbb{R}^{n}. The very strong ellipticity of the system (3) is expressed by the following condition:
(4)

$$
\frac{\partial a_{i}^{\alpha}}{\partial y_{j}^{\beta}}(x, \xi, q) \xi_{i}^{\alpha} \xi_{j}^{\beta}>0, \quad \xi \neq 0
$$

Of course, when (3) reduces to (1), (4) is nothing else than (2). Asemaing that u is a Lipschitz solution of (3), one may ask the following natural (and fundemental) question: is u of class c^{1} or even $c^{1, \mu}$ (for some $\mu \in(0,1)$)?

As shown by M. Giaquinte and J.NeCas [2], this regularity question turns out to be, in some sense, equivelent to the following Liouville type condition: (3) is said to satisfy the Liouwille condition (in short $L\left(\mathbb{R}^{n}\right)$) provided the following implication holde: for all $x^{0} \in \Omega, \xi \in \mathbb{R}^{m}$, if $v=\left(\nabla_{1}, \ldots, \nabla_{m}\right)$ is a solution with bounded gredient of

$$
-\frac{\partial}{\partial x_{i}}\left(a_{i}^{\alpha}\left(x^{0}, j, \nabla \nabla\right)\right)=0 \text { in } \mathbb{R}^{n}
$$

ther each v is affine on \mathbb{R}^{n}. More precisely, in [2] it is proved that if the system (3) (where we sasume (4) with a_{i}^{α}, $a^{*} \in C^{1}\left(\bar{\Omega} \times \boldsymbol{R}^{m} \times \mathbb{R}^{m}\right)$ sotisfies $L\left(\mathbb{R}^{n}\right)$ and $p>n$, then for every $\nu>0$ and every compact. set $K \subset \Omega$ there is $c(\nu, K)<\infty$ such that

$$
\begin{equation*}
\left\|u_{\alpha}\right\|_{c^{1}, \mu(K)} \leq c(\nu, K), \quad 1 \leq \alpha \leq n \tag{5}
\end{equation*}
$$

with $\mu=1-(n / p)$, whenever $f^{\alpha} \in L^{p}(\Omega)$ and u is a Lipschitz solution of (3) such that

Conversely, in some sense, $L\left(\mathbb{R}^{n}\right)$ is a consequence of regularity results of the form (5) - see J.NeCas [6],[7] or M.Giaquinta [1].

Therefore the Liouville result we prove in this paper immediately yields the c^{1}, μ regularity for special systems of form:

$$
\begin{equation*}
-\frac{\partial}{\partial x_{i}}\left(a_{i j}\left(x, u,|\nabla u|^{2}\right) \frac{\partial u_{x}}{\partial x_{j}}\right)+a^{\alpha}(x, u, \nabla u)=f^{\alpha}(x) \text { in } \Omega \tag{6}
\end{equation*}
$$

(for $1 \leqslant \alpha \leqslant m$). At this point, we went to point out that this regularity result (a consequence of our result and an equivelent when $s_{i j}$ depend on $|\nabla u|^{2}$ only) wes established by P.A.Ivert [4] in a generalization of deep results due to K. Uhlenbeck [8]. Thus, in some sense, the result we present here is not new and could be derived from Uhlenbeck - Ivert results. On the other hand, our method of proof is quite different from those of [4], [8] and, we believe, much simpler. Let us also mention that it is straightforward to adapt our method of proof to show directly the c^{1}, μ regularity result (looking, roughly speaking, at little balls instead of large bells).

Let us conclude this introduction by a few words on our method of proof. In section II below, we present a general result on nonlinear elliptic systems which implies in particular that, if we denote by $\omega=\nabla u$, we have: there is $\varepsilon_{0}>0$ such that if $\Phi_{a}(\mathbb{R})<\varepsilon_{0}$, then for every $\rho \in(0, R)$

$$
\begin{align*}
\Phi_{\omega}(\rho) & \leq c_{0} \Phi \omega(R) \tag{7}\\
& -647-
\end{align*}
$$

where C_{0} depends only on $\|\omega\|_{L \sim G_{R}}$) and where for a vector valued function g we denote:

$$
\begin{aligned}
\Phi_{g}(\rho) & =\frac{1}{\rho^{n}} \int_{B_{\rho}}\left|g(x)-(g)^{\rho}\right|^{2} d x \\
(g)^{\rho} & =\left(1 /\left|B_{\rho}\right|\right) \int_{B_{\rho}} g(x) d x
\end{aligned}
$$

By an easy use of Poincare inequality, we see that in order to conclude (using(7)) we just need to show that $\omega=\nabla u$ has the so--called Saint-Venant property:

$$
\begin{equation*}
\lim _{R \rightarrow \infty} R^{-n+2} \int_{B_{R}}|\nabla \omega(x)|^{2} d x=0 \tag{8}
\end{equation*}
$$

The main idea used to prove (7) goes bock to a fundemental lema of E.Giusti - see e.g. [2] .

Next, in section III, we state and prove a Liouville type theorem. This is done by remarking - following [4], [8] - thet $|\nabla u|^{2}=w$ satisfies:
(9) $\quad-\frac{\partial}{\partial x_{i}}\left(A_{i j} \frac{\partial w}{\partial x_{j}}\right)+\alpha\left|D^{2} u\right|^{2} \leq 0$ in $\mid R^{n}$ for some $\quad \alpha>0$, and for some uniformly elliptic coeffieients $A_{i j}$. Using this inequality and a Harnack type inequality proved in D. Gilbarg and N.S.Trudinger [3] (for example), we show that (8) holds end thus ω is constent.

The eutnors wish to thenk P.A.Ivert for useful discussions and' for a careful reading of our manuscript.

II A general result on quesilinear olliptic systems:
In this section we consider a solution $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right)$ of

$$
\begin{equation*}
-\frac{\partial}{\partial x_{i}}\left[A_{i j}^{\alpha \beta}(\omega) \frac{\partial \omega_{\beta}}{\partial x_{j}}\right]=0 \text { in } \mathbb{R}^{n}, \alpha=1, \ldots, N, \tag{10}
\end{equation*}
$$

where $A_{i j}^{\alpha \beta}$ are continuous on \mathbb{R}^{m} and where the ellipticity condition

$$
\begin{equation*}
A_{i j}^{\alpha \beta}(\xi) \xi_{i}^{\alpha} \xi_{j}^{\beta}>0 \text { for } \xi \neq 0 \tag{11}
\end{equation*}
$$

holds.
Theorem II. 1: Let $R>0$, let ω be a bounded solution of (10) in $\left(H^{1}\left(B_{R}\right)\right)^{R}$ and let us assume that (11) holds. We denote $\mu=\|\omega\|{ }_{L} \|_{\left(B_{R}\right)}$. Then there exist $\varepsilon_{0}>0, c_{0}>0$ such that the following statement holds:
if

$$
\Phi_{\omega}(R) \leq \varepsilon_{0}^{2}
$$

then

$$
\Phi_{\omega}(\rho) \leq c_{0} \Phi_{\omega}(R)
$$

whenever $\rho \in(O, R)$. In addition ϵ_{0}, C_{0} depend only on μ and on the ellipticity constants in (11).

Before giving the proof of Theorem II.I, let us mention the Corollary II. I: Let ω be a bounded solution of (10) in $\left(H_{1 O C}^{1}\left(\mathbb{R}^{n}\right)\right)^{N}$ satisfying the Saint-Venant property

$$
\lim _{R \rightarrow \infty} R^{-n+2} \int_{B_{R}}|\nabla \omega(x)|^{2} d x=0
$$

and let us assume that (11) holds. Then ω is a constant vector. Proof: Observe that we have by Poincare inequality:
(12) $\quad R^{-n} \int_{B_{R}}\left|\omega(x)-(\omega)^{R}\right|^{2} d x \leq c_{1} R^{-n+2} \int_{B_{R}}|\nabla \omega(x)|^{2} d x$.
(Here and below c_{1}, c_{2}, \ldots denote various positive contents ingependent of R, ω, u_{0}) Thus we see that (8) implies: $\lim _{R \rightarrow \infty} \oint_{\omega}(R)=0$. Therefore by Theorem II.1, $\Phi_{\underline{\omega}}(\rho)=0$ for all $\rho>0$ and the
proof is complete.
Proof of Theorem II.1: First of all, in view of (11), there exdsts $y>0$ such that for every ξ and $|\xi| \leq \mu$ we have

$$
\left[A_{i j}^{\alpha \beta}(\xi) A_{i j}^{\alpha \beta}(\xi)\right]^{1 / 2} \leq \frac{1}{\nu}, A_{i j}^{\alpha \beta}(\xi) \xi_{i}^{\alpha} \xi_{j}^{\beta} \geq \nu|\xi|^{2} .
$$

Let us also recall that it is known (see e.g.[2]) that there exists $c_{2}\left(=c_{2}(\mu, \nu)\right)$ such that we have:

$$
\begin{equation*}
\Phi_{\omega}(\tau) \leq c_{2} \tau^{2} \cdot \Phi_{\omega}(1), \quad 0<\tau \leq 1 \tag{13}
\end{equation*}
$$

if ω is a solution of the system:

$$
-\frac{\partial}{\partial y_{i}}\left(A_{i j}^{\alpha \beta}(\xi) \frac{\partial \omega_{\beta}}{\partial y_{j}}\right)=0 \text { in } B_{1}
$$

where $|\xi| \leqslant \mu$.
Next, let $\tau \in(0,1)$. We are first going to prove that there exist $\varepsilon_{0}=\varepsilon_{0}(\mu, \tau, \nu)>0$ such that

$$
\begin{equation*}
\Phi_{\omega}(\tau) \leq 2 c_{2} \tau^{2} \Phi_{\omega} \tag{14}
\end{equation*}
$$

Let us argue by contradiction and let us thus assume that there exists a sequence $\left(\omega^{n}\right)_{n} \geqslant 1$ of solutions of (10) satisfying:

$$
\begin{aligned}
& \text { (15) }\left\|\omega^{n}\right\|_{L_{\left(B_{1}\right)}^{\infty}} \leq \mu,\left\{\Phi_{\omega^{n}}(1)\right\}^{1 / 2}=\varepsilon_{n} \rightarrow 0 \\
& \Phi_{\omega^{n}}(\tau)>2 c_{2} \tau^{2} \varepsilon_{n^{2}}^{2}
\end{aligned}
$$

To simplify notations, we will use indifferently the notations $\Phi_{\omega^{n}}(\tau)$ or $\Phi\left(\omega^{n}, \tau\right)$. We then set: $\sigma^{n}=\frac{1}{\varepsilon_{n}}\left[\omega^{n}-\left(\omega^{n}\right)^{1}\right]$. Obviously we have:

$$
\begin{equation*}
\int_{B_{1}}\left|\sigma^{n}(x)\right|^{2} d x=1 ; \Phi\left(\sigma^{n}, \tau\right)>2 c_{2} \tau^{2} ; \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{\partial}{\partial x_{i}}\left(\mathbb{A}_{i j}^{\alpha \beta}\left(\omega^{n}\right) \frac{\partial \sigma_{\beta}^{n}}{\partial x_{j}}\right)=0 \tag{17}
\end{equation*}
$$

Without loss of generslity we may assume that:

$$
\begin{aligned}
\sigma^{n} \longrightarrow \sigma \text { weakly in }\left(L^{2}\left(B_{1}\right)\right)^{n}, \quad \varepsilon_{n} \sigma^{n} \longrightarrow & 0 \quad \operatorname{in}\left(L^{2}\left(B_{1}\right)\right)^{N} \\
& \text { ond a.e., }
\end{aligned}
$$

for some $\sigma \in\left(L^{2}\left(B_{1}\right)\right)^{n}$. In addition, in wiew of (16): $\Phi_{\sigma}(1) \leq 1$. Furthermore, recalling that we have:

$$
\omega^{n}=\varepsilon_{n} \sigma^{n}+\left(\omega^{n}\right)^{1},\left\|\omega^{n}\right\|_{\left.L_{\left(B_{1}\right)}\right)} \leq \mu
$$

we see that $\left|\left(\omega^{n}\right)^{1}\right| \leq \mu$ and $\omega^{n}-\left(\omega^{n}\right)^{1} \longrightarrow 0$ a.e. Since we may assume without loss of generality that $\left(\omega^{n}\right)^{1} \rightarrow \xi(|\xi| \leq \mu)$, we finally deduce: $\omega^{\mathrm{n}} \longrightarrow \xi$. a.e. .

Next, we obtain from (16) and (17):

$$
\begin{equation*}
\int_{B_{k}}\left|\nabla \sigma^{n}(y)\right|^{2} d y \leq c(k) \quad \text { for } \quad k \in(0,1) \text {, } \tag{18}
\end{equation*}
$$

thus we may suppose that $\sigma^{n} \longrightarrow \sigma$ weakly in $\left(H^{1}\left(B_{k}\right)\right)^{n}$ (for all $k<1)$. Thus, passing to the limit in (17), we get:

$$
-\frac{\partial}{\partial x_{i}}\left(\mathbb{A}_{i j}^{\alpha \beta}(\xi) \frac{\partial \sigma_{\beta}}{\partial x_{j}}\right)=0 \text { in } B_{1} .
$$

In addition, since $\sigma_{n} \longrightarrow \sigma$ in $\left(L^{2}\left(B_{k}\right)\right)^{N}$ (for all $k<1$), we deduce from (16): $\Phi(\sigma, \tau) \geq 2 c_{2} \tau^{2} \geqq 2 c_{2} \tau^{2} \Phi(\sigma, 1)$. This contradicts (13) and the contradiction shows our claim.

Let us choose now $\tau \in(0,1)$ satisfying: $2 c_{2} \tilde{\tau}^{2} \leq 1$. Given $\rho \in(0,1)$, let $k \geqslant 0$ be the integer such that: $\tau^{k+1} \leqslant \rho<\tau^{k}$. Now, if ω solves (10) and satisfies: $\|\omega\|_{L^{\infty}\left(\mathrm{B}_{1}\right)} \leqslant \mu, \Phi_{\omega}(1) \leqslant \varepsilon_{0}^{2}$, we have in view of (14):

$$
\tau^{n} \rho^{-n} \int_{B \rho}\left|\omega-(\omega)^{\rho}\right|^{2} d x \leq\left(\rho / \tau^{k}\right)^{n} \rho^{-n} \int_{B \rho}\left|\omega-(\omega)^{\rho}\right|^{2} d x \leq
$$

$\leq\left(\tau^{k}\right)^{-n} \int_{B_{\rho}}\left|\omega-(\omega)^{\tau^{k}}\right|^{2} d x \leq\left(\tau^{k}\right)^{-n} \int_{\mathcal{Z}^{k}}\left|\omega-(\omega)^{\tau^{k}}\right|^{2} d x \leq$
$\leq \int_{\mathrm{E}_{1}}\left|\omega-(\omega)^{1}\right|^{2} d x ;$
that is, we proved: $\Phi_{\omega}(\rho) \leq \tau^{-n} \Phi_{\omega}(1)$.
The proof of Theorem II. 1 is easily completed by considering the function $\tilde{\omega}(x)=\omega(x / R)$.

Remark II.1: We now show how the preceding results are related to the system (1): indeed, if $u \in\left(H_{l o c}^{2}\left(\mid R^{n}\right)\right)^{m}$ is a solutiow of (1) then, for $1 \leqslant k \leqslant n, \frac{\partial u_{\alpha}}{\partial x_{k}}$ satisfies:
$-\frac{\partial}{\partial x_{i}}\left[A_{i j}^{\alpha \beta}(\nabla u) \frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{\beta}}{\partial x_{k}}\right)\right]=0 \quad$ in $\mathbb{R}^{n}, \quad 1 \leq \alpha \leq m$, where $A_{i j}^{\alpha \beta}(\nabla u)=a_{i j}\left(|\nabla u|^{2}\right) \delta_{\alpha \beta}+2 a^{\prime}\left(|\nabla u|^{2}\right) \frac{\partial u_{\alpha}}{\partial x_{l}} \frac{\partial u_{\beta}}{\partial x_{j}}$. Thus $\omega=\nabla u$ satisfies a system of the form (10) and (11) is a consequence of (2).

III The main result:

Let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a solution of (1):

$$
-\frac{\partial}{\partial x_{i}}\left(\varepsilon_{i j}\left(|\nabla u|^{2}\right) \frac{\partial u_{\alpha}}{\partial x_{j}}\right)=0 \text { in } \mathbb{R}^{n}, \quad 1 \leq \alpha \leq m
$$

Theorem III.1: We assume the ellipticity condition (2) and $\nabla u \in\left(L^{\infty}\left(\mathbb{R}^{n}\right)\right)^{n w}$. Then each component u_{α} of u is affine on \mathbb{R}^{n} 。
Proof: Standard arguments yield $u \in W_{10 c}^{2}\left(I^{2}\right)$; cf.[7] or [1].
In view of the results of the preceding section and of Remark II.1,
it is enough to show:

$$
\begin{equation*}
\lim _{R \rightarrow \infty} R^{-n+2} \int_{B_{R}}\left|D^{2} u\right|^{2} d x=0 \tag{19}
\end{equation*}
$$

In order to prove (19), we first observe that an easy compotation yields:
$-\frac{\partial}{\partial x_{i}}\left[A_{i j}(\nabla u) \frac{\partial}{\partial x_{j}}\left(|\nabla u|^{2}\right)\right]+a_{i j} \cdot \frac{\partial^{2} u_{\alpha}}{\partial x_{i}} \frac{\partial^{2} x_{k}}{\partial x_{j}} \partial x_{k} \quad ;$

$$
\begin{equation*}
+2 a_{i k}^{\prime} \frac{\partial u_{\alpha}}{\partial x_{k}} \frac{\partial u_{\beta}}{\partial x_{j}} \frac{\partial^{2} u_{\alpha}}{\partial x_{i} \partial x_{B}} \frac{\partial^{2} u_{\beta}}{\partial x_{j} \partial x_{s}}=0, \tag{20}
\end{equation*}
$$

where $A_{i j}(\nabla u)=\frac{1}{2} a_{i j}\left(|\nabla u|^{2}\right)+a_{i k}^{\prime}\left(|\nabla u|^{2}\right) \frac{\partial u_{\alpha}}{\partial x_{k}} \frac{\partial u_{\alpha}}{\partial x_{j}}$
In view of (2), we see that (for more details, see [4])
(21) $\exists y>0, \quad \forall \xi \in \mathbb{R}^{n}, \quad A_{i j}(\nabla u(x)) \xi_{i} \xi_{j} \geq v|\xi|^{2}$,

$$
\left\{A_{i j}(\nabla u(x)) A_{i j}(\nabla u(x))\right\}^{1 / 2} \leq \frac{1}{\nu} \text { a.e. in } \mathbb{R}^{n}
$$

and (20) implies:
(22) $\quad-\frac{\partial}{\partial x_{i}}\left(A_{i j}(\nabla u) \frac{\partial}{\partial x_{j}}\left(|\nabla u|^{2}\right)\right)+\alpha\left|D^{2} u\right|^{2} \leq 0$ in \mathbb{R}^{n}, for some $\alpha>0$. We denote $\quad u=\left\|\left|\nabla_{u}\right|^{2}\right\| L^{\infty}\left(\mid \mathbb{R}^{n}\right)$.

We are now going to prove:
(23) $\quad R^{-n+2} \int_{B_{R / 2}}\left|D^{2} u\right|^{2} d x \leqslant c_{3} R^{-n} \int_{B_{2 R}}\left(M-|\nabla u|^{2}\right) d x$.

To this end we introduce $\eta \in H_{0}^{1}\left(B_{2 R}\right)$, the solution of:

$$
\begin{equation*}
-\frac{\partial}{\partial x_{i}}\left(A_{j i} \frac{\partial \psi}{\partial x_{j}}\right)=\frac{1}{R^{2}} \text { in } B_{2 R} \tag{24}
\end{equation*}
$$

Standard results yield: $\boldsymbol{\psi} \geqslant 0$ in $B_{2 R}$ and

$$
\text { (25) } \quad\|\eta\|_{L^{\infty}\left(B_{2 R}\right)} \leqslant c \quad \operatorname{infess}_{B_{R / 2}} \eta \geqslant c_{5}>0 .
$$

Then multiplying (22) by ψ^{2} and using (24), (25), we deduce: $c_{6} \int_{B_{B / 2}}\left|D^{2} u(x)\right|^{2} d x \leq \int_{B_{2 R}} A_{i j} \frac{\partial u^{2}}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\left(n-|\nabla u|^{2}\right) d x \leq$
$\leq 2 \int_{B_{2 R}} \frac{1}{R^{2}} \psi\left(\mathbf{M}-|\nabla u|^{2}\right) d x-2 \int_{B_{2 R}} A_{i j} \frac{\partial \psi}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\left(M-|\nabla u|^{2}\right) d x$ end this yields:

$$
\int_{B_{R / 2}}\left|D^{2} u(x)\right|^{2} d x \leq \frac{c}{B^{2}} \int_{B_{2 R}}\left(u-|\nabla u|^{2}\right) d x
$$

and (23) is proved.
To conclude, we see that (19) follows from (23), applying
the following lemma to $w=|\nabla u|^{2}, \alpha_{i j}(x)=A_{i j}\left(\nabla_{u}(x)\right)$.
Lemme III.1: Let $w \in H_{l o c}^{1}\left(\mathbb{R}^{n}\right) \cap \mathbb{L}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfy:
$-\frac{\partial}{\partial x_{i}}\left(\alpha_{i j}(x) \frac{\partial w}{\partial x_{j}}\right) \leq 0$ in \mathbb{R}^{n}
where $\alpha_{i j} \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfy:
$\left\{\alpha_{i j}(x) \alpha_{i j}(x)\right\}^{1 / 2} \leq \frac{1}{\nu}, \alpha_{i j}(x) \xi_{i} \xi_{j} \geqslant \nu|\xi|^{2} \forall \xi \in \mathbb{R}^{n}$,
a.e.in lR^{n}
for some $\nu>0$. If $M=$ sup ese w, then we have: \mathbb{R}^{n}
(26)

$$
\lim _{R \rightarrow \infty}\left(1 /\left|B_{R}\right|\right) \int_{B_{R}} w(x) d x=M .
$$

Proof: This lemma is proved by the use of a weak Harnack inequality (af.[3], for example) which implies:
(27)

$$
R^{-n} \int_{B_{2 R}} z(x) d x \leq \underset{B_{R}}{q_{8} i n f} z
$$

```
with \(z=M-w\). Now if we let \(R \rightarrow \infty\), we obtain (26) since
inf ess \(z \longrightarrow \inf\) ess \(z=0\); and \(z \geq 0\) a.e.in \(R^{n}\).
    \(\mathrm{B}_{\mathrm{R}} \quad \mathbb{R}^{\mathrm{n}}\)
```


References

[1] M. Giaquinta: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Universitet Bonn, Sonderforschungsbereich 72 , Preprint: No. 443.
[2] M.Giequinta and J.NeXas: On the regularity of weak solutions to nonlinear elliptic systems of partial differential equatime, J.Rejne Angew.Math.316(1980), 140-159.
[3] D. Gilbarg and N.S.Trudinger: Elliptic partial differential equations of second order, Springer-Werlag, New York, 1977.
[4] P.A.Ivert: Regularit日tsuntersuchungen von Lơsungen elliptischer Systeme vom quasilinearen Differentialgleichungen zweiter Ordnung, Manuscripta Math.30(1970),53-88.
[5] J. Hečas: Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
[6] J.Recas: A necessary and sufficient condition for the regularity of weak solutions to nonlinear elliptic systems of partial differentisl equations, Abh.Akad.Wiss.DDR, 1981.
[7] J. Feces: Régularité des solutions faibles d'équations elliptiques nonlińaires; applications à l'élasticité, Université Paris VI, Analyse numérique et fonctionnelle,198l.
[8] K.Uhlenbeck: Regularity for a class of non-linear elliptic systems, Acte Math.138(1977), 219-240.

CEREMADE

Université Paris IX, Dauphine Place De-Lattre-de-Tassigny 75775 Paris, Cedex 16
France

Matematicko-fyzikalni fakulta Univerzita Karlova Malostranské ném. 25 110:00 Prahe 1
Ceskoslovenska

Matematicko-fyzikalnf fekulta
Univerzita Karlova
Sokolovaká 83
$t 8600$ Prahe 8
Ceskoslovensko
(Oblatum 7.7. 1982)

